Facet-Dependent Interfacial Charge Transfer in TiO₂/Nitrogen-Doped Graphene Quantum Dots Heterojunctions for Visible Light Driven Photocatalysis

Nan-Quan Ou ^{1,†}, Hui-Jun Li ^{1,†}, Bo-Wen Lyu ¹, Bo-Jie Gui ¹, Xiong Sun ¹, Dong-Jin Qian ², Yanlin Jia ^{3,4,*}, Xianying Wang ^{1,5,*} and Junhe Yang ^{1,5}

- ¹ School of Materials Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China; <u>ounanquan@163.com</u> (N.-Q.O.); <u>huijunli0701@126.com</u> (H.-J.L.); <u>bowenlyu0324@163.com</u> (B.-W.L.); <u>bojie gui@163.com</u> (B.-J.G.); <u>sunxiong1993@163.com</u> (X. S.); <u>wangding@usst.edu.cn</u> (D.W.); <u>jiayanlin@126.com</u> (J.L.); <u>xianyingwang@usst.edu.cn</u> (X.W.); <u>jhyang@usst.edu.cn</u> (J.Y.)
- ² Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China <u>diqian@fudan.edu.cn</u> (D.-J.Q.)
- ³ College of Materials Science and Engineering, Central South University, Changsha, 410083, China
- ⁴ College of Materials Science and Engineering, Beijing University of Technology Beijing 100124, China
- ⁵ Shanghai Innovation Institute for Materials, Shanghai 200444, China
- * Correspondence: xianyingwang@usst.edu.cn (X.W.); jiayanlin@126.com (J.L.)
- ⁺ These two authors contributed equally to this work.

Figures

Figure S1. (a) Slab model of anatase TiO₂ single crystal, and (b) equilibrium model of anatase TiO₂ single crystal.

Calculation method of the percentage of {001} facets, based on previously reported literature ^[2-5]:

$$S_{001} = 2a^{2}$$

$$S_{101} = 8(\frac{1}{2}CG * b - \frac{1}{2}GF * a)$$

$$S_{001}\% = \frac{S_{001}}{S_{001} + S_{101}}$$

$$= \frac{2a^{2}}{2a^{2} + 8(\frac{1}{2}CG * b - \frac{1}{2}GF * a)}$$

$$= \frac{a^{2}}{a^{2} + 4\left(\frac{1}{2} * \frac{\frac{1}{2}b}{\cos\theta} * b - \frac{1}{2}\frac{\frac{1}{2}a}{\cos\theta} * a\right)}$$

$$= \frac{a^{2}}{a^{2} + \frac{b^{2} - a^{2}}{\cos\theta}} = \frac{1}{1 + \frac{\frac{b^{2}}{a^{2}} - 1}{\cos\theta}}$$

$$= \frac{\cos\theta}{\cos\theta + \frac{b^{2}}{a^{2}} - 1}$$

(1)

Herein, two independent parameters b and a denote the lengths of the side of the bipyramid and the side of the square $\{001\}$ 'truncation' facets, respectively. θ is the theoretical value (68.3°) for the angle between the $\{001\}$ and $\{101\}$ facets of anatase.

Figure S2. (a) Raman spectra of different TiO_2 samples without and with NGQDs decoration. (b) Raman spectra of T1 before and after decoration of NGQDs. The inset in Figure S2b is the enlargement of 1200–1700 cm⁻¹ of T1-NGQDs.

Figure S3. TEM images of (**a**) T0, (**b**) T1, (**c**) T2, and (**d**) T3.

Figure S4. (**a**) TEM image, (**b**) HRTEM image, (**c**) AFM image, (**d**) UV-vis spectra and PL spectra of the GQDs (the excitation wavelength is 365 nm), (**e**) Raman spectra and (**f**) XRD pattern of NGQDs. The inset in (**a**) is the size distribution of NGQDs. The inset in (**b**) is the autocorrelated HRTEM lattice images.

Figure S5. HRTEM images of the anatase TiO₂ decorate with NGQDs.

Figure S6. (a) The photocatalytic degradation of different pollutants for T1-NGQDs, and (b) plot of k values for different pollutants degradation in T1-NGQDs.

References

1. Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.; Li, D.; Tan, H.; Zhao, Z.; Xie, Z.; Sun, Z., Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. *Nanoscale* **2013**, *5*, 12272-12277.

2. Jiaguo Yu, J. L., Wei Xiao, Peng Zhou, and Mietek Jaroniec, Enhanced Photocatalytic CO₂ Reduction Activity of Anatase TiO₂ by Coexposed {001} and {101} Facets. *J. Am. Chem. Soc.* **2014**, *136*, 8839–8842.

3. Xiang, Q.; Yu, J.; Jaroniec, M., Tunable photocatalytic selectivity of TiO₂ films consisted of flower-like microspheres with exposed {001} facets. *Chem Commun* **2011**, *47*, 4532-4534.

4. Yu, J.; Dai, G.; Xiang, Q.; Jaroniec, M., Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO₂ sheets with exposed {001} facets. *J. Mater. Chem.* **2011**, *21*, 1049-1057.

5. Kobayashi, K.; Takashima, M.; Takase, M.; Ohtani, B., Mechanistic Study on Facet-Dependent Deposition of Metal Nanoparticles on Decahedral-Shaped Anatase Titania Photocatalyst Particles. *Catalysts* **2018**, *8* (11), 542-556.