Epoxidation of karanja (*Millettia pinnata*) oil methyl esters in the presence of hydrogen peroxide over a simple niobium-containing catalyst

Nicola Scotti, Nicoletta Ravasio, Claudio Evangelisti, Rinaldo Psaro, Michele Penso, Prashant S. Niphadkar, Vijay V. Bokade and Matteo Guidotti

Figure S1. 1H-NMR spectrum of karanja FAME mixture in CDCl3.

Figure S2. ¹³C-{¹H}-NMR spectrum of karanja FAME mixture in CDCl₃.

Figure S3. X-ray diffraction patterns of NbOx-SiO2 catalyst

Figure S4. Representative TEM micrographs of NbO_x-SiO₂.

Figure S5. EDS spectrum for NbO_x-SiO₂.

Figure S6. BJH pore distribution for SiO₂ (a) and NbO_x-SiO₂ (b).

Figure S7. DRS UV-vis pattern of a reference Nb-MCM-41 catalyst (Nb content 1.0 wt.%) prepared via liquid-phase deposition of *bis*(cyclopentadienyl)niobium(IV) dichloride over pure-silica MCM-41 under dry air.

Figure S8. Conversion of C=C double bonds of karanja FAME mixture (solid lines) and selectivity to monoepoxides (dashed line) *vs*. time over NbO_x-SiO₂. During the heterogeneity test (green line), after 1 h, the catalyst was removed from the reaction mixture by centrifugation and the resulting solution was checked for further reaction. Reaction conditions: glass batch reactor, 100 mg catalyst, 1 mmol C=C substrate, 4 mmol aq. H₂O₂, 90°C, 300 rpm, 5 mL CH₃CN.