

Article

Supplementary material: Optimization parameters, kinetics and mechanism of naproxen removal by catalytic wet peroxide oxidation with a hybrid ironbased magnetic catalyst

Ysabel Huaccallo-Aguilar^{1,2}, Silvia Álvarez-Torrellas ¹, Marcos Larriba ¹, V. Ismael Águeda ¹, José Antonio Delgado ¹, Gabriel Ovejero ¹ and Juan García ^{1*}

- ¹ Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense s/n, 28040 Madrid, Spain.
- ² Departamento de Ingeniería Química, Universidad Nacional de San Agustín, Av. Independencia s/n, 04001 Arequipa, Peru.
- * Correspondence: jgarciar@ucm.es, Tel.: +34913945207

Treatment process	Experimental conditions	Initial concentration, mg/L	Removal efficiency, %	Reference
Homogeneous Fenton	$[Fe^{2+}] = 4.83 mg/L;$ $[H_2O_2]_0 = 9.98 mM$	20.0	100.0	[1]
Fenton-like oxidation	pH = 3; 28-33 °C MGO = 1 g/L; 25 °C; pH = 3; [H2O2] = 5 mM	2.3	100.0	[2]
Fenton-like oxidation	citric acid (CA) [Fe ²⁺] ₀ = [CA] ₀ = 75 μM; ion ; 25 °C; [S ₂ O ₈ ²⁻] ₀ = 750 μM	17.2	99.9	[3]
Homogeneous sonocatalytic process (US/Fenton/TiO2)	Fe ²⁺ :H ₂ O ₂ =20/4 1000 kHz; pH = 3; 20 °C	0.23	96.0	[4]
Heterogeneous sonocatalytic process	60 kHz; pH = 4.5; [ZnO/MMT]=11 g/L	10	82.0	[5]
Magnetite supported on multiwalled carbon nanotubes	Cat = 1g/L; 70 °C, [H2O2]0 = 1.5 mM; pH 5	10	82.0	This work

Table S1. Comparison of iron-based catalytic systems for the removal of NAP in liquid phase.

Compound	Molecular weight	[M+H] ⁺ , m/z	Reaction pathway	Chemical structure
C1	216	217	+[HO] -[CH3O]	но он
C2	229	230	*	O OH
C3	230	231	+[HO] -[CH3O] +[CH3]	HO CH ₃ O OH
C4	228	229	-[H]	
C5	186	187	-[COO]	
A	218	219	+2[HO] -[H] -[COOH]	ОСНООН
C6	184	185	+[HO] -[H2O] -[COOH]	
C7	200	201	+[HO] -2[H] -[COOH]	O CH ₃ CH ₃
C8	176	177	+3[HO] -[CH3O] -[COOH] -[C3H5]	HO
С9	208	209	+5[HO] -[CH ₃ O] -[COOH] -[C ₃ H ₅]	HO HO OH
В	148	149	+10[HO] -[CH₃O] -7[COOH] -[C₃H₅]	

Table S2. NAP degradation products detected by (-)-ESI-LC-MS analysis.

	Hospital water	Surface water	WWTP effluent
рН	8.6	6.1	7.4
Conductivity (mS/cm ²)	1.17	0.1641	0.557
COD (mg/L)	365	16	18
TOC (mg/L)	110	6.8	9.8
Suspended solids (mg/L)	138	140	80
Aromaticity (a.u)	0.50	0.16	0.12
Phenolic compounds (mg/L)	8.9	9.8.10-4	0.002
TN (mg/L)	94	0.98	0.87
NH4+ (mg/L)	75	2.43	0.8
NO ³⁻ (mg/L)	0.64	1.84	0.0201

Table S3. Representative analysis of the three real-aqueous matrices.

Figure S1. XRD patterns of (**a**) magnetite (Fe₃O₄) and catalytic support; (**b**) Fe₃O₄/MWCNTs-1 and Fe₃O₄/MWCNTs-2 catalysts.

Figure S2. Evolution of H₂O₂ efficiency along the three CWPO runs.

Figure S3. Quenching tests of hydroxylradicals in the CWPO reaction.

Figure S4. Chromatogram of NAP treated byCWPO reaction.

intens	10					#	m/z	1
2500-	18	4.8			_	1	172.9	172
1						2	174.8	126
-						3	184.8	2523
2000-						4	185.9	358
2000						5	216.8	124
						6	228.8	839
1						7	255.0	143
1500-						'	255.0	145
1								
]								
-								
1000-								
]			2	28.8				
-								
500								
5001								
-								
1	172.9		216.8		255.0			
۰L	باللىب	الاحمداييب	المباليب	Munulu.		ستعان		
	160 180	200	220	240	260		280	m/z

Figure S5. Chromatogram of NAP standard.

Figure S6. Evolution of the aromaticity content (**a**) for the three tested real-aqueous matrices spiked with NAP; (**b**) for SW sample and SW sample spiked with NAP.

References

- Lan, R.-J.; Li, J.-T.; Sun, H.-W.; Su, W.-B. Degradation of naproxen by combination of Fenton reagent and ultrasound irradiation: optimization using response surface methodology. *Water Sci. Technol.* 2012, 66, 2695-270.
- 2. Sétifi, N.; Debbache, N.; Sehili, T.; Halimi, O. Heterogeneous Fenton-like oxidation of naproxen using synthesized goethite-montmorillonite nanocomposite. *J. Photochem. Photobiol. A* **2019**, *370*, 67-74.
- 3. Dulova, N.; Kattel, E.; Trapido, M. Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: The effect of citric acid addition. *Chem. Eng. J.* **2017**, *318*, 254-263.
- 4. Im, J.; Yoon, J.; Her, N.; Han, J.; Zoh, K. Sonocatalytic-TiO₂ nanotube, Fenton, and CCl₄ reactions for enhanced oxidation, and their applications to acetaminophen and naproxen degradation. *Sep. Purif. Technol.* **2014**, *141*, 1-9.
- 5. Karaca, M.; Kıranşan, M.; Karaca, S.; Khataee, A.; Karimi, A. Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite. *Ultrason. Sonochem.* **2016**, *31*, 250-256.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).