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Abstract: The novel Ag(I) and Cu(II) coordination polymers [Ag(µ3-1κO;2:3κO′;4κN-HL)]n·n/2H2O (1)
and [Cu(en)2(µ-1κO;2κN-L)]n·nH2O (2) [HL− = 2-(2-(1-cyano-2-oxopropylidene)hydrazinyl)benzene
sulfonate] were synthesized and characterized by IR and ESI-MS spectroscopies, elemental and single
crystal X-ray diffraction analyses. Compounds 1 and 2 as well as the already known complex salt
[Cu(H2O)2(en)2](HL)2 (3) have been tested as homogenous catalysts for the cyanosilylation reaction
of different aldehydes with trimethylsilyl cyanide, to provide cyanohydrin trimethylsilyl ethers.
Coordination polymer 2 was found to be the most efficient one, with yields ranging from 76 to
88% in methanol, which increases up to 99% by addition of the ionic liquid [DHTMG][L-Lactate].

Keywords: Ag(I) and Cu(II) coordination polymers; arylhydrazone; catalysis; ionic liquids;
cyanosilylation reaction

1. Introduction

Cyanohydrins are industrially valuable substrates and important intermediates for the preparation
of α-aminonitriles, α-hydroxyketones, α-hydroxyacids, β-hydroxyamines, and β-aminoalcohols, among
others [1]. The main synthetic route for the synthesis of cyanohydrins is the catalytic addition of the cyano
group to a carbonyl compounds. Trimethylsilyl cyanide (TMSCN) is a frequently explored substrate for
catalytic cyanation reaction since it is easy to handle, it has a high atom economy without providing
side reactions, and its Si–C bond has low dissociation energy (Scheme 1) [2–7], therefore, contrasting
with the toxic nature of other cyanide sources such as HCN, NaCN, KCN, etc. Numerous catalysts,
including Lewis acids [8–10], Lewis bases [11–13], oxazaborolidinium ion [14,15], amino-thiourea [16,17],
organic-inorganic salts [18–22], N-heterocyclic carbenes [23,24], nonionic bases [25,26], Ti,Al-phosphine
oxide bifunctional species with carbohydrate or binaphthol scaffolds [27–29], Ti,Al-N-oxide bifunctional
catalysts with proline, pyrrolidine and 1,2-diamino ligands [30–32], V-, Mn-, Al-, and Ti-salen
complexes [33–36], chiral Ti-α,α,α,α-1,3-dioxolane-tetraaryl-4,5-dimethanols [37,38], Cu(II) and Co(II/III)
hydrazone complexes [39,40] and also metal organic frameworks (MOFs) [41–44], have been developed
for this transformation. According to the proposed reaction mechanism [1], the coordination or
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noncovalent bond acceptor behavior of the oxygen atom of an aldehyde enhances the electrophilic
character of the carbon atom at C=O, which makes it more susceptible to a nucleophilic attack by
the cyano group. Thus, the reaction rate and yield of cyanohydrin trimethylsilyl ethers are strongly
dependent on the nature of metal center and the coordinated ligand in the metal complex catalyzed
cyanation reaction [1].
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MOFs or coordination polymers are attractive not only as storage, transporter, magnetic and
luminescence materials [45–48], but also as catalysts for various catalytic transformations, such as
alkane/alcohol oxidation [49,50], C–C bond formation [40,44], etc., from the viewpoint of green
chemistry. The design and synthesis of coordination polymer catalysts, in particular being inexpensive,
highly efficient and selective with a wide range of substrates, remains a challenging goal in
cyanosilylation reaction. Having this objective in mind, we intend to report the synthesis of new
copper(II) and Ag(I) coordination polymers bearing an arylhydrazone ligand and their application in
cyanosilylation reaction of different aldehydes with trimethylsilyl cyanide.

Moreover, ionic liquids (ILs) have wide applications in catalysis, namely as green solvents or
reaction promoters [51], being able, in some cases, to enhance the reaction rate, improve the yield and
selectivity in organic transformations under mild conditions. To date, a few ILs have been reported
in the cyanosilylation of aldehydes [52,53]. Thus, another aim of this work is to use a cooperative
action of ILs and coordination polymers in cyanosilylation reaction, a type of approach that we have
successfully applied in the oxidation of alkanes [54,55] and oxidation of alcohols [56].

2. Results and Discussion

2.1. Synthesis and Characterization of 1–3

Sodium 2-(2-(1-cyano-2-oxopropylidene)hydrazinyl)benzenesulfonate (NaHL) and [Cu(H2O)2(en)2]
(HL)2 (3) were synthesized as previously reported [57]. Reaction of AgNO3 or Cu(NO3)2·2.5H2O with
NaHL in methanol in the presence of nitric acid or ethylenediamine (en) led to the novel coordination
polymer [Ag(µ3-1κO;2:3κO′;4κN-HL)]n·n/2H2O (1) or [Cu(en)2(µ-1κO;2κN-L)]n·nH2O (2), respectively
(Scheme 2). Both polymers were characterized by IR spectroscopy, ESI-MS, elemental analysis, and single
crystal X-ray diffraction.
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The IR spectra of 1 and 2 (see experimental section) show the expected N≡C, C=O and C=N
vibrations which generally occur at wavenumbers different from those of the proligand (i.e., 2206,
1645, and average 1570 cm−1, respectively [57]), therefore attesting the involvement of the compound
in coordination to the metals. The nitrile group stretching frequency ν(C≡N) in 1 is 8 cm−1 above that
measured for NaHL which is consistent with its coordination. In 2, that frequency is 2 cm−1 below.
Concerning the ketone vibrations, ν(C=O), they occur 16 (for 1) and 30 (for 2) cm−1 above those of
the NaHL reference value, whereas ν(C=N) assume values 13 (for 1) and 26 (for 2) cm−1 above the
average one for NaHL. Fragmentation peaks in MS-ESI of the compounds are related as follows: 749.20
[Mr–H2O+H]+ (for 1) and 450.05 [Mr–H2O+H]+ (for 2), accounting for the existence of the dinuclear
and mononuclear species in solution, respectively. Elemental analyses and X-ray crystallography
experiments are also in accordance with the proposed formulations.

The asymmetric unit of 1 contains one AgI cation, a HL– anion and a crystallization water
molecule. Upon symmetry expansion, a 2D polymer is revealed with every silver cation adopting a
distorted trigonal pyramidal geometry (τ4 = 0.48) [58] filled by one Ncyano- and three Osulfonate-atoms
(Figure 1). Each organic ligand behaves as a bridging three donor chelators. Polymer 1 contains four
membered {AgO}2 fragments which side-share with two eight-membered {AgO2S}2 metallacycles thus
giving rise to infinite chains connected by the organic ligands (Figures S1 and S2). The water molecules
are trapped in these metal-organic sheets, each one donating to the Oketo atoms of two hydrazones
(Figure S3 and Table S1).
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The asymmetric unit of 2 comprises a hydrazine ligand bridging two copper cations that stand
in special positions, half a chelating ethylenediamine molecule and a crystallization water molecule.
Symmetry expansion reveals a 1D polymer (Figure 2) featuring wave-like chains (base vectors [101])
with the copper cations alternating N6 and N4O2 coordination environments every 7.6836(4) Å (see
Figure S4 and Table 1). The octahedral geometries of the two metals are roughly similar in terms of
volume and of quadratic elongation (13.319 and 13.935 Å3; 1.021 and 1.046, in this order), but differ
in the angle variances (10.77 for 1 against 36.53 ◦2 for 2) [59]. The water molecules in 2 are trapped
between the metal-organic chains (Figure S4 and Table S1), each one donating to an Oketo and accepting
from a Namine in a chain, and interacting with an Osulfonate atom in a vicinal one.

The NN and Cketo−Chydraz distances (Table 1) in the compounds considered in this work vary in
the order 3 > 1 > 2 and approach single bond characters, while the C−Nhydraz and C−Oketo lengths
follow the reverse sequence 2 > 1 > 3 therefore pending to double bond types. Such observations
suggest electronic delocalization along the OCketoChidrazNN skeleton of the hydrazo ligand of polymer
2. This is further supported by the presence of the NH groups in polymer 1 and in complex salt 3,
which are involved in RAHB interactions with Osulfonate atoms (see also Table S1). The dianionic nature
of this ligand in 2 is thus allocated to their O atoms. Since the C≡N groups in 1 and 2 are engaged in
coordination, their lengths slightly increased as compared to that found in 3. The M–Namine distances
in 2 and 3 are comparable (Table 1) indicating that in the former this parameter was not affected
by the coordination of the L2− ligand. In 2 the axial M−Ncyano (eventually, also the M−Osulfonate)
length considerably exceeds the equatorial M-Namine, conceivably due to Jahn-Teller effect. Despite
the planarity of the hydrazone ligand in 1 and 2, the C≡N−M angle in the latter is considerably lower
than that in the former (126.5(6) against 165.2(7)◦, see Table 1). As it was found in the complex salt
3, polymer 1 is stabilized by the intramolecular N–H···Osulfonate resonance assisted hydrogen bond
(RAHB) system. The N–H···O angle of 150(11)◦ is significantly higher than the average O–H···O value
of 149◦ found in β-diketones involved in similar intra-molecular interactions [60].
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Carom

Cmethyl

Ccyano
N

NN 1.294(9) 1.277(10) 1.312(3)

C−Nhydraz 1.310(10) 1.359(11) 1.303(3)

Cketo−Chydraz 1.449(11) 1.432(12) 1.479(3)

Cketo−O 1.237(10) 1.246(11) 1.218(4)

C≡N 1.142(10) 1.148(12) 1.139(4)

Involving the metal centre

M−Ncyano 2.249(7) 2.458(7) -

M−Namine -
1.994(7)

to
2.027(7)

2.002(2)
2.020(2)

M−Osulfonate

2.364(6)
2.402(6)
2.580(6)

2.635(3) -

C≡N−M 165.2(7) 126.5(6) -

Intramolecular M···M 3.871(1) {Ag2O2}
5.861(1) {Ag2O4S2} 7.6836(4) -

Intermolecular M···M >10 6.0884(4) 6.9798(4)

2.2. Catalytic Activity of 1–3 in Cyanosilylation Reaction

Polymers 1 and 2, mononuclear complex 3 and NaHL have been tested as homogeneous
catalysts in cyanosilylation reaction of benzaldehyde with trimethylsilyl cyanide (model reaction) in
different organic solvents (tetrahydrofurane, dichloromethane, or methanol), and at room temperature
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(Scheme 1, Table 2). In all the experiments, higher yields are observed in MeOH (entries 1–12, Table 2).
Polymer 1 can be considered as inactive towards the reaction under study in view of the obtained
yields (entries 1–3, Table 2) being identical to those attained in the absence of any metal catalyst
(entries 16–18, Table 2). The catalytic activities of polymer 2 and the complex salt 3 are also comparable
(compare entries 4–6 with 7–9 in Table 2) suggesting disaggregation of 2 in solution giving rise to
3. Polymer 2 was chosen as the catalyst (it provides 79.9% product yield, slightly above that of 3,
75.3%) and methanol as the solvent for the following studies (Table 3). Reaction of benzaldehyde
with TMSCN provides low product yield in the presence of a metal salt, AgNO3 or Cu(NO3)2·2.5H2O
(maximum yield of 33%), and without metal catalyst (maximum yield of 25%) (entries 13–18, Table 2).
With catalyst 2, a high yield of 2-phenyl-2-((trimethylsilyl)oxy)acetonitrile is already obtained (79.0%)
after 8 h, which did not increase considerably for longer times (entries 1–6, Table 3). The amount of this
catalyst was varied from 1 to 9 mol %, and no considerable yield increase was observed for a catalyst
load above 5% (entries 7–11, Table 3). The temperature (in the 15–55 ◦C range) had not a marked effect
on the product yield (entries 12–15, Table 3).

Table 2. Catalyst and solvent screening for the cyanosilylation of benzaldehyde a.

Entry Catalyst Solvent Yield (%) b

1
1

THF 15.1

2 CH2Cl2 15.9

3 MeOH 26.8

4
2

THF 26.1

5 CH2Cl2 28.7

6 MeOH 79.9

7
3

THF 25.9

8 CH2Cl2 28.3

9 MeOH 75.3

10
NaHL

THF 22.0

11 CH2Cl2 25.2

12 MeOH 28.3

13 AgNO3 MeOH 30.0

14 Cu(NO3)2·2.5H2O MeOH 32.9

15 c - - 20.0

16 c - THF 14.0

17 c - CH2Cl2 14.4

18 c - MeOH 24.7
a Reaction conditions: 5 mol % catalyst, 2 mL solvent, 0.12 mmol TMSCN and 0.10 mmol aldehyde, in air at room
temperature, 24 h reaction time. b Determined by 1H NMR analysis of crude products. c From Reference [39].
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Table 3. Optimization of the parameters of the cyanosilylation reaction of benzaldehyde and TMSCN
with catalyst 2 a.

Entry Time (h) Amount (mol %) of Catalyst T (◦C) Yield b (%)

1 1 5 25 42.6
2 4 5 25 65.4
3 6 5 25 73.5
4 8 5 25 79.0
5 12 5 25 78.9
6 24 5 25 79.9
7 8 1 25 44.9
8 8 3 25 72.9
9 8 5 25 79.0

10 8 7 25 78.9
11 8 9 25 79.0
12 8 5 15 70.3
13 8 5 35 79.2
14 8 5 45 80.8
15 8 5 55 82.5

a Reaction conditions: MeOH (2 mL), TMSCN (0.6 mmol) and benzaldehyde (0.4 mmol), in air. b Determined by 1H
NMR analysis of crude products (see the Experimental part).

Among the common organic solvents that we tested, methanol is the best one for this system.
However, this solvent is considerably toxic. In order to use a greener solvent, we applied several room
temperature ionic liquids (Table 4). In all experiments, the reaction proceeded smoothly to produce
2-phenyl-2-((trimethylsilyl)oxy)acetonitrile in a moderate yield (68.7–75.2%) under catalyst-free
conditions (entries 1, 6, 11, and 16), which increases (75.1–82.2%) in the presence of 2 (entries 2,
7, 12, and 17). The use, as reaction medium, of a mixture of IL with MeOH afforded the product in a
higher yield in comparison to the IL alone (Table 4). In general, ILs with guanidinium cations shows a
higher catalytic performance than imidazolinium or phosphonium cations (Table 4). The ionic liquid
[DHTMG][L-Lactate] afforded the product in the highest yield (92.6% yield; Table 4, entry 9).
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Table 4. Cyanosilylation of benzaldehyde with TMSCN in the absence or presence of catalyst 2 in IL or
IL + MeOH media a.

Entry Ionic Liquid IL or IL:MeOH (v/v) Yield,% b

1 c
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Trihexyl(tetradecyl)phosphonium L-Prolinate
[P6,6,6,14][L-Prolinate]

[P6,6,6,14][L-Prolinate] 68.7

17 [P6,6,6,14][L-Prolinate] 75.1

18 1:1 78.2

19 1:10 77.3

20 1:20 75.9
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c Without catalyst 2.

Subsequently, the cyanosilylation reaction of para-electron-withdrawing or -donating aromatic
aldehyde substrates in the presence of catalyst 2 was tested under optimized reaction conditions
(entries 1–3 and 5–6 in Table 5, respectively), in MeOH or in IL+MeOH mixture. With 4-nitro-, 4-chloro-
or 4-bromobenzaldehyde, higher yields were obtained (Table 5, entries 1–3), as compared to the
benzaldehyde derivatives having an electron-donating substituent (methoxy or methyl) (Table 5,
entries 5 and 6), due to an increase of the electrophilicity of the carbon atom at C=O in the former
case. The use of linear aliphatic aldehydes (acetaldehyde, propionaldehyde and hexanal) as substrates
(entries 7–9, Table 5) allowed to reach higher yields than in the case of the aromatic aldehydes, in
MeOH or in a mixture of [DHTMG][L-Lactate]:MeOH (1:10, v/v), which decrease with the growth
of the aliphatic fragment. In all cases, 2 shows higher catalytic performance in a mixture of
[DHTMG][L-Lactate]:MeOH (1:10, v/v) than in the conventional organic solvent MeOH (Table 5).
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Table 5. Cyanosilylation of different aldehydes with TMSCN using catalyst 2, in MeOH or in IL+MeOH
mixture a.

Entry Substrate
Yield,% b

MeOH
Solvent

[DHTMG][L-Lactate]:MeOH (1:10, v/v)
Medium

1 4-Nitrobenzaldehyde 83.4 97.8
2 4-Chlorobenzaldehyde 79.7 94.0
3 4-Bromobenzaldehyde 79.6 93.3
4 Benzaldehyde 79.0 92.6
5 4-Methylbenzaldehyde 78.0 92.1
6 4-Methoxybenzaldehyde 76.4 90.7
7 Acetaldehyde 87.7 99.0
8 Propionaldehyde 87.4 98.5
9 Hexanal 85.2 97.9

a Reaction conditions: 5 mol % of catalyst 2, MeOH or a mixture of [DHTMG][L-Lactate]:MeOH (1:10, v/v) (2 mL),
TMSCN (0.6 mmol) and aldehyde (0.4 mmol). Reaction time: 8 h. b Determined by 1H NMR analysis of crude
products (see Experimental part).

Up to now, a solvent capable of extracting effectively the products from the IL+catalyst system
was not found. Therefore, no recycling experiments were made and the reaction analysis with IL was
made by using a sample of the reactional mixture containing the product and the IL (see Experimental).
This method was accurate because the 1H NMR peaks of ILs do not overlap with those of the product.

Comparing with reported homogeneous catalytic systems for the cyanosilylation reaction, there
are several advantages in using 2 as a catalyst in this transformation: (i) It is available from relatively
cheap starting materials (arylhydrazone and copper nitrate); (ii) it shows a higher activity (79.0%) in
methanol medium in comparison to Zn(II) (30%) [61], Cu(II) (27%) [62], potassium salt of L-proline
(83%) [63], etc.; and (iii) a shorter reaction time (8 h) and the convenient room temperature can be
used favorably, in comparison to other cases operating for a longer reaction time (96 h) [64], at higher
(40 ◦C) [62] or lower (even negative) (−50 ◦C) [65] temperatures.

The reaction mechanism can be similar to that proposed for some reported examples with related
catalytic systems [1,66,67]. Moreover, the reaction possibly can be promoted by cooperative action of
coordination and noncovalent interactions, which increase the electrophilic character of carbon atom
at the carbonyl group of the aldehyde towards the nucleophilic addition of the cyano moiety with the
assistance of a tetrel bonding (Scheme 3), and migration of the silyl group to the oxygen followed by
product liberation.Catalysts 2018, 8, x FOR PEER REVIEW  10 of 17 
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3. Experimental

3.1. Materials and Instrumentation

All the chemicals were obtained from commercial sources (Aldrich, St. Louis, MO, USA) and
used as received. Sodium 2-(2-(1-cyano-2-oxopropylidene)hydrazinyl)benzenesulfonate (NaHL) and
[Cu(H2O)2(en)2](HL)2 (3) were synthesized according to the reported procedures [57]. Infrared spectra
(4000–400 cm−1) were recorded on a Vertex 70 (Bruker, Billerica, MA, USA) instrument in KBr pellets.
Carbon, hydrogen, and nitrogen elemental analyses were carried out by the Microanalytical service of
Instituto Superior Técnico. The 1H and 13C NMR analyses were performed on a Bruker Avance II + 300
(Bruker, Billerica, MA, USA) spectrometer, which operates at 300.130 and 75.468 MHz for 1H and 13C,
respectively. The chemical shifts are recorded in ppm in reference to tetramethylsilane. Electrospray
mass spectra (ESI-MS) experiments were run by using an ion-trap instrument (Varian 500-MS LC Ion
Trap Mass Spectrometer, Palo Alto, CA, USA) containing an electrospray ion source. In order to perform
the electrospray ionization, the optimization of the drying gas and flow rate was undertaken in accord to
the particular sample with 35 p.s.i. of nebulizer pressure. Scanning was recorded from m/z 0 to 1100 in a
methanol solution. The compounds were seen in the positive mode (capillary voltage = 80–105 V).

3.2. Synthesis

3.2.1. Synthesis of 1

1 mmol (289 mg) of NaHL was dissolved in 25 mL of methanol, and 2 drops of HNO3 (70%) and
1 mmol (170 mg) of AgNO3 were added, and the system was then stirred for 10 min. After ca. 3 d at
room temperature, orange crystals precipitated and were filtered off and dried in air.

1: Yield, 49% (based on Ag). Calcd. for C20H18Ag2N6O9S2 (Mr = 766.26): C 31.35, H 2.37, N 10.97;
found C 31.22, H 2.40, N 10.89. MS (ESI, positive ion mode), m/z: 749.20 [Mr–H2O+H]+. IR (KBr): 3470
ν(OH), 3406 ν(NH), 2214 ν(C≡N), 1661 ν(C=O), and 1583 ν(C=N) cm−1.

3.2.2. Synthesis of 2

1 mmol (289 mg) of NaHL was dissolved in 25 mL of methanol, 0.12 mL (2 mmol) en and 1 mmol
(232 mg) of Cu(NO3)2·2.5H2O were added, and the system was then stirred for 10 min. After ca. 2 d at
room temperature, greenish yellow crystals precipitated and were filtered off and dried in air.

2: Yield, 53% (based on Cu). Calcd. for C14H25CuN7O5S (Mr = 467.00): C 36.01, H 5.40, N 21.00; found
C 35.96, H 5.43, N 20.93. MS (ESI, positive ion mode), m/z: 450.05 [Mr–H2O+H]+. IR (KBr): 3450 ν(OH),
3340, 3286, 3266 and 3134 ν(NH), 2204 ν(C≡N), 1675 ν(C=O), and 1596 ν(C=N) cm−1.

3.3. Crystal Structure Determination

Intensity data for compounds 1 and 2 were collected at 150 K using a Bruker SMART APEX-II
diffractometer equipped with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). Data were
collected using omega scans of 0.5◦ per frame and full sphere of data were obtained. Cell parameters
were retrieved using Bruker SMART software and refined using Bruker SAINT [68] on all the observed
reflections. Absorption corrections were applied using the SADABS program [69]. The structures were
solved by direct methods using SIR97 package [70] and refined with SHELXL-2018/3 [71]. Calculations
were performed using the WinGX System-Version 2014-1 [72]. The hydrogen atoms of water molecules
and hydrazine (in 1) or ethylenediamine (in 2) were found in the difference Fourier map and the
isotropic thermal parameters were set at 1.5 times the average thermal parameters of the belonging
oxygen or nitrogen atoms, with their distances restrained by using the DFIX and DANG commands.
Hydrogen atoms bonded to carbon atoms were included in the refinement using the riding-model
approximation with the Uiso(H) defined as 1.2 Ueq of the parent aromatic atoms, and 1.5Ueq of the
parent carbon atoms for methyl. Compound 2 was refined as a 2-component twin; the unaccounted
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twinning was resolved by using the TwinRotMat program in Platon [73]. Least square refinements with
anisotropic thermal motion parameters for all the non-hydrogen atoms were employed. The details of
the crystallographic data for 1 and 2 are summarized in Table 6. Selected bond distances and angles for
polymers 1 and 2 as well as, for comparative purposes, complex salt 3 are shown in Table 1. Ellipsoid
plots are presented in Figures 1 and 2, while Figures S1–S5 in the Supplementary Material File illustrate
packing properties for both polymers.

Crystallographic data have been deposited at the Cambridge Crystallographic Data Center:
CCDC 1891994 for 1 and 1891993 for 2. Copy of this information can be obtained free of charge
from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: (+44) 1223-336033; E-mail:
deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk/data_request/cif).

Table 6. Crystallographic data and structure refinement details for 1 and 2.

1 2

Empirical formula C20H18Ag2N6O9S2 C14H25CuN7O5S
fw 766.26 467.01
Temperature (K) 150(2) 150(2)
Cryst. Syst. monoclinic triclinic
Space group C 2/c P-1
a (Å) 12.982(2) 7.2744(8)
b (Å) 5.7571(10) 11.7588(14)
c (Å) 33.603(6) 11.8024(13)
α, ◦ 90 83.559(4)
β, ◦ 98.673(6) 75.174(3)
γ, ◦ 90 84.810(4)
V (Å3) 2482.7(7) 967.78(19)
Z 4 2
ρcalc (g cm−3) 2.050 1.603
µ(Mo Kα) (mm−1) 1.810 1.279
F (000) 1512 486
Rint 0.0554 0.0594
R1 a (I ≥ 2σ) 0.0572 0.0718
wR2 b (I ≥ 2σ) 0.1304 0.2039
GOOF 1.190 1.114

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]]1/2.

3.4. Synthesis of ILs

1-Ethyl-3-methylimidazolium L-prolinate [EMIM][L-Prolinate] and 1’,1’-dihexyl-3,3,3’,3’-
tetramethylguanidine L-lactate [DHTMG][L-Lactate] were prepared by known procedure [74,75].
1,1,3,3-Tetramethylguanidine acetate [TMGH][OAc] and trihexyl(tetradecyl)phosphonium L-prolinate
[P6,6,6,14][L-Prolinate] were synthesized by the same methodology (see below).

3.4.1. Synthesis of 1,1,3,3-tetramethylguanidine acetate [TMGH][OAc]

To a solution of 35 mmol of 1,1,3,3-tetramethylguanidine in 20 mL of methanol, 35 mmol of acetic
acid were added dropwise. The mixture was then stirred at room temperature for 24 h. Then, the
methanol was evaporated, and the product was dried under vacuum during 24 h. A colorless oil was
obtained (98% yield). 1H NMR (CDCl3): δ 1.91 (s, 3H, CH3), and 3.01 (s, 12H, 4CH3) ppm.

3.4.2. Synthesis of trihexyl(tetradecyl)phosphonium L-prolinate [P6,6,6,14][L-Prolinate]

This IL was synthesized in two steps: (i) 3.6 mmol of L-proline were dissolved in 50 mL of
methanol and 3.6 mmol of crystalline NaOH were added. The reaction was left stirred for 24 h;
(ii) After sodium prolinate was formed, 3 mmol of [P6,6,6,14]Cl were added, and the mixture was
stirred for 24 h at room temperature. After that time, methanol was removed under low pressure

www.ccdc.cam.ac.uk/data_request/cif
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and the mixture was re-dissolved in dichloromethane. The precipitated NaCl was filtered off and the
dichloromethane was evaporated. Then, the product was dried under vacuum during 24 h. A yellow
oil was obtained (67% yield). 1H NMR (CDCl3): δ 0.89 (t, 12H, 4CH3), 1.25 and 1.30 (m, 40H, 20CH3,
peaks very messy and overlapped), 1.50 (m, 16H, 8CH3), and 2.42 (m, 8H, 3CH2, NH, and CH, these
peaks correspond to the anion and are all overlapped) ppm.

3.5. General Procedure for Catalytic Studies

In a typical cyanosilylation experiment, to a solution of benzaldehyde (0.4 mmol), catalyst (1–3)
(1–8 mol %) in any of the solvents [CH2Cl2, THF, MeOH or IL; 2 mL], trimethylsilyl cyanide (TMSCN)
(0.6 mmol) was added dropwise. The mixture was stirred continuously for a certain amount of
time. The solvent was then evaporated (in the case of CH2Cl2, THF and MeOH) and the residue was
analyzed by 1H-NMR spectroscopy in CDCl3, in order to evaluate the yield of the products [39,40].
In the case of the reactions with IL, the analysis was made by taking directly a sample of the reactional
mixture, which was analyzed by 1H-NMR in CDCl3. For the reactions in a IL+MeOH mixture, MeOH
was evaporated and a sample of products+IL was taken for analysis. The adequacy of this procedure
was confirmed by using blank 1H NMR analyses with 1,2-dimethoxyethane (0.10 mmol) as an internal
reference [benzaldehyde (0.10 mmol) and TMSCN) (0.15 mmol)] (Figure S6). The internal standard
method showed the absence of side products

4. Conclusions

We have prepared two new silver(I) and copper(II) coordination polymers 1 and 2, and applied
them, with the known mononuclear copper(II) complex 3, as catalysts in cyanosilylation reaction
of several aldehydes with TMSCN. The CuII coordination polymer 2 showed the highest activity
for the cyanosilylation reaction in methanol and in a mixture of [DHTMG][L-Lactate]:MeOH (1:10,
v/v) achieving yields up to 99% at room temperature. Electron-withdrawing substituents, such as
–NO2, –Cl, –Br, in the para position of the aromatic aldehyde provide higher product yields, whereas
electron-donating groups (–CH3, –OCH3) inhibit the reaction. Cooperative actions of coordination and
noncovalent interactions are proposed for the C=O activation in the aldehyde substrate. The use of a
IL+MeOH mixture also increases the catalytic activity in comparison with the case of MeOH alone or
another organic solvent.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/3/284/s1,
Figure S1. Fragments of the 2D network in compound 1; Figure S2. Fragment of a 1D infinite chain in compound
1; Figure S3. Fragment of two 2D sheets of polymer 1 with intercalated water molecules; Figure S4. Fragments of
the 1D chain in compound 2 viewed perpendicular to the ab plane; Figure S5. Fragment of chains of polymer 2
with intercalated water molecules (represented in space filling model); Table S1. Hydrogen bonding distances and
angles for 1 and 2.
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