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Abstract: A facile synthesis method of palladium phosphide supported on the activated carbon
was developed. The effects of Pd precursors for phosphatization, phosphatization temperature,
and the ratio of hypophosphite/Pd on the generation of palladium phosphide were investigated,
and a generation mechanism of the Pd3P crystal structure is proposed. The results demonstrate
that only PdO, rather than Pd or PdCl2, can transform into Pd phosphide without damage to the
activated carbon. The penetration of P into the Pd particle can dramatically improve the dispersion
of Pd species particles on the activated carbon. The generation of Pd phosphide greatly depends
on the phosphatization temperature and the ratio of hypophosphite/Pd. An intact Pd3P crystal
structure was obtained when the ratio of hypophosphite/Pd reached 32 and the phosphatization
temperature was above 400 ◦C. The Pd3P supported on the activated carbon exhibited superior
catalytic performance in terms of the hydrogenation of halonitrobenzenes to haloanilines because it
had few L acids and B acids sites and could not generate deficient-electron active hydrogen atoms
as electrophiles.
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1. Introduction

Aromatic haloamines are widely used in the synthesis of fine chemicals including pharmaceuticals,
pesticides, pigments, and liquid crystal materials [1–6]. Due to their enormous application markets,
it is of great necessity to develop a convenient method to efficiently produce aromatic haloamines.
It is well known that selective hydrogenation using molecular hydrogen instead of conventional
chemical reducing reagents (Fe, Na2S, etc.) is the main choice for the synthesis of aromatic haloamines
because of its environmentally friendly process (Scheme 1). However, the highly selective synthesis of
aromatic haloamines remains an unsolved challenge on almost all kinds of metal catalysts, such as
Pt, Pd, Ni, Ru, and Au [7,8]. Numerous research efforts have been devoted to the suppression
of the hydrodehalogenation side reaction, such as modulating metal particle size [9], adding
organic additives [10–13], synthesizing metal complexes [14–16], adding metal promoters [7,17,18],
and modifying the interaction between metal active components and metallic oxide supports [19].
Recently, co-based catalysts as representatives of non-noble metals have been proposed, and the
catalytic performance of the hydrogenation of halonitrobenzenes has been explored [20]. Additionally,
metal-free catalysts (such as Carbon Nanospheres [21] and Carbon Nanotubes [22]) have been
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explored, and many attempts have been made. Although these catalysts exhibit excellent selectivity to
haloanilines, it is far from practicable. For this reason, exploring novel environmentally friendly and
efficient catalyst materials to enhance the hydrogenation of halonitrobenzenes is still strongly desired.
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Heteroatoms-doped metal interstitial compounds have attracted considerable attention because
of their technologically useful properties as catalytic materials. They have been demonstrated to
improve specific catalytic performance in many reactions such as the Fischer–Tropsch reaction [23],
hydrodesulfurization (HDS) [24], hydrodenitrogenation (HDN) [25], and ammonia synthesis [26,27].
Metal nitrides have also been considered great potential catalysts owing to their similarity with Group
VIII metals. Recently, the temperature-programmed treatment of MoO3 in flowing N2 + H2 has
been employed to prepare β-phase molybdenum nitride (β-Mo2N), which promotes the continuous
gas phase hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroanilines (p-CAN) with 100%
selectivity in terms of -NO2 group reduction [16]. The ternary Pt-Mo2N/SBA-15 catalysts have shown
superior performance for the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol [28].
Au/Mo2N as a new catalyst formulation promotes the hydrogenation of p-CNB with 100% selectivity
to p-CAN. Au nanoparticles (mean size = 8 nm) enhanced hydrogen uptake with a four-fold increase
in rate [29].

Transition metal phosphides, such as MoP [30,31], WP [32], Co2P [33], and Ni2P [34–38],
are regarded as a novel type of metal-interstitial catalytic material after metal nitrides and carbides.
Although the physical and chemical properties of phosphides bear a likeness to those of carbides and
nitrides, they differ substantially in their crystal structure because the atomic radius of phosphorus
(0.109 nm) is larger than that of carbon (0.071 nm) or nitrogen (0.065 nm) [35]. Their attractive properties
encourage researchers to explore phosphorus-modified catalysts for the various catalytic reactions,
including P-doped activated carbon supported Pd for the p-CNB hydrogenation to p-CAN [39], 3D
Pd-P alloy networks for the formic acid electrooxidation [40], and non-metal phosphorus modified
Pd/C as an oxygen reduction catalyst for direct methanol fuel cells [41]. However, study of selective
hydrogenation reactions over pure palladium phosphide crystal phase is still lacking.

Herein, a facile synthesis method of palladium phosphide supported on activated carbon is
developed. The effects of Pd precursors for phosphatization, phosphatization temperature, and
the ratio of hypophosphite/Pd on the generation of palladium phosphide are investigated, and the
generation mechanism of Pd3P crystal structure is proposed. It was found that the penetration of
P into Pd particles can dramatically improve the dispersion of Pd species particles on activated
carbon and enhance selectivity to haloanilines. Pd3P exhibited superior catalytic performance for the
hydrogenation of halonitrobenzenes to haloanilines.

2. Results and Discussion

2.1. The Preparation of Palladium Phosphides Supported on Activated Carbon

The effect of addition amounts of hypophosphite (n(P)/n(Pd)) on the generation of palladium
phosphides was investigated first. Figure 1 shows the X-ray diffraction (XRD) patterns of Pd-P/C
catalysts treated with different addition amounts of hypophosphite. It can be seen that the deliberately
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designed phosphatization precursor, PdO, was obtained by adjusting the forms of Pd ion before
impregnation on the activated carbon (Figure 1g). After treatment at the temperature of 400 ◦C, PdO
began to transform into ’Pd‘ gradually. Diffraction peaks at 2θ = 39.9, 46.5, and 68.1◦ ascribed to
Pd(111), Pd(200), and Pd(220) crystal facets, respectively, were found on Pd-P(0)/C(400) (Figure 1a).
With the increase in addition amounts of hypophosphite, the diffraction peaks located at 39.9◦ became
more and more dispersed (Figure 1b–e), except Pd-P(8)/C(400) (the reason will be discussed below).
In fact, these peaks at 39.9◦ were not equal to that of the PdO/C sample because the diffraction
peaks of palladium phosphides had been mixed into ‘Pd’ [39]. When the addition amount of
hypophosphite reached up to n(P):n(Pd) = 32, the complete diffraction peaks of Pd3P (PDF 03-065-2415)
were clearly observed.

Further, the influence of phosphatization temperature on the generation of palladium phosphides
was examined from 330 to 600 ◦C. As shown in Figure 2, the intact Pd3P crystalline phase started
after 400 ◦C. Furthermore, the clear XRD patterns (Figure 2b–d) display the same peak shape for those
samples treated at above 400 ◦C, indicating that the particles sizes of palladium phosphides remained
unchanged and that palladium phosphides nanoparticles had excellent thermal stability.

This generation process of a Pd3P crystalline phase was further confirmed by transmission
electron microscope (TEM) technology. TEM analysis of Pd-P/C catalysts treated with different
addition amounts of hypophosphite was performed, and the results are shown in Figure 3. The lattice
spacing distances of monometallic Pd species particles for PdO/C and Pd-P(0)/C(400) are 0.23 and
0.22 nm, corresponding to the (110) and (111) planes of PdO and Pd nanocrystals, respectively.
For Pd-P(8)/C(400) and Pd-P(32)/C(400), the lattice spacing distance of Pd species particles is 0.23 nm,
a feature of the Pd3P (220) crystalline phase [42] (Figure 3e). Combining these results with the
results of XRD, it is quite clear that the crystal structure of Pd species changed from PdO to Pd and
then Pd3P with the penetration of P into the Pd species lattice. In addition, the TEM images show
that the particle sizes of Pd species increased first and then decreased with the increase of addition
amounts of hypophosphite, consistent with the results of XRD. The mean size of the Pd species
particles for Pd-P(8)/C(400) reached up to ~28.1 nm. However, this is much higher than that measured
by the Scherrer formula, indicating that these particles may have formed from aggregation of the
primary particles due to the introduction of a low level of P (n(P)/n(Pd) ≤ 8) into the Pd nanocrystal.
Figure 4 shows a relationship diagram of the average size of Pd species particles of Pd-P/C catalysts
and n(P)/n(Pd). It very clearly exhibits the evolutionary process of the size and morphology of
palladium phosphides.
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Figure 1. X-ray diffraction (XRD) patterns of Pd-P/C catalysts with different addition amounts of
hypophosphite. (a) Pd-P(0)/C(400); (b) Pd-P(4)/C(400); (c) Pd-P(8)/C(400); (d) Pd-P(16)/C(400);
(e) Pd-P(24)/C(400); (f) Pd-P(32)/C(400); (g) PdO/C without calcination treatment.
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Figure 3. Transmission electron microscopy (TEM) images of Pd-P/C catalysts treated with different
addition amounts of hypophosphite and PdO/C. (a) PdO/C; (b) Pd-P(0)/C(400); (c) Pd-P(8)/C(400);
(d) Pd-P(32)/C(400); (e) element line scan of Pd and P of Pd-P(32)/C(400).
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Figure 4. The relationship diagram of the average sizes of Pd particles of Pd-P/C catalysts and
n(P)/n(Pd).

For further research on the role of P in phosphatization, X-ray photoelectron spectroscopy (XPS)
was employed to investigate the chemical and electronic properties of P and Pd. The Pd 3d and P
2p spectra of the samples are shown in Figures 5 and 6. The relative content and binding energy
of Pd and P species are summarized in Table 1. As shown in Figure 5, the Pd 3d5/2 spectra present
four types of peaks located at 335.60, 336.28, 337.80, and 338.40 eV, which can be assigned to Pd0,
Pdx+, Pd2+, and Pd4+, respectively, according to reports from Liu [43]. For PdO/C, only a Pd2+

peak was observed, implying that Pd species in the form of PdO exists on the catalyst without
phosphatization. In contrast, Pd0 and Pd4+ species began to appear in Pd-P(32)/C(330) accompanied by
the disappearance of PdO, suggesting that the crystal structure may have been changing dramatically.
When the phosphatization temperature reached 400 ◦C, the Pd0 species completely disappeared, and
Pdx+ became the dominant Pd species, which indicates that the transformation from PdO to Pd3P was
completed (Figures 3e and 5). Accordingly, the deconvoluted P 2p spectra demonstrate that there were
two types of P species located at 130.1 eV, assigned to the P species of PdxP, and at 133.6–133.8 eV,
ascribed to PO4

3−. The increase in phosphatization temperature greatly raised the content of P species
but did not change the ratio of various P species (Table 1). This implies that various P species may
react according to certain proportions.
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phosphide is proposed (Figure 7). The hydrated ’PdO‘ ions can be generated by adjusting the pH 
value of aqueous H2PdCl4 to 6.0–7.0 by the addition of an aqueous NaOH solution because [PdCl4]2– 
is easily reduced by oxygen-containing groups of activated carbon [47,48]. Thus, PdO can be kept 
with the activated carbon. However, a disproportionation reaction of hypophosphite will then occur 
and produce strong reducing PH3 when the hypophosphite is heated. As a result, the in situ generated 
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2.2. Generation Mechanism of Palladium Phosphide

Many methods or strategies have been developed to prepare metal phosphides [44–46]. However,
there are relatively few studies devoted to the preparation of activated carbon-supported metal
phosphides, limited by the natural properties of activated carbon. In this work, Pd and PdCl2
supported on the activated carbon prepared with aqueous H2PdCl4 (Figure S1) and H2PdCl4 +
aqua regia (Figure S2) as palladium precursors, respectively, were used to prepare Pd phosphide.
The results demonstrate that only PdO can transform into Pd phosphide without damage to activated
carbon. On the basis of the experiment results above, a plausible generation mechanism of palladium
phosphide is proposed (Figure 7). The hydrated ’PdO‘ ions can be generated by adjusting the pH
value of aqueous H2PdCl4 to 6.0–7.0 by the addition of an aqueous NaOH solution because [PdCl4]2–

is easily reduced by oxygen-containing groups of activated carbon [47,48]. Thus, PdO can be kept with
the activated carbon. However, a disproportionation reaction of hypophosphite will then occur and
produce strong reducing PH3 when the hypophosphite is heated. As a result, the in situ generated
PH3 will react with PdO, resulting in the replacement of the O in the PdO crystal structure with
P. This replacement or penetration of P greatly depends on the ratio of hypophosphite/Pd and the
phosphatization temperature.
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2.3. Catalytic Performance of Pd3P/AC

Solvent-free selective hydrogenation reactions of p-CNB to p-CAN were performed, and the
results are listed in Table 2. As shown in Table 2, the selectivity of the dichlorination side reaction
(AN, short for aniline) over Pd-P(0)/C(400) was 17.62%, similar to the general Pd/C with a similar
size of Pd particle [39]. In contrast, the aniline selectivity dramatically decreased to about 2.2% when
P was doped into the Pd crystal structure. XPS results show that some phosphate remained on the
catalyst, so one comparable sample was prepared by supporting disodium phosphate dodecahydrate
onto the fresh Pd-P(0)/C(400) catalyst according to the ratio of P–PO4

3− based on the XPS result
of Pd-P(32)/C(400) and was then evaluated for the hydrogenation performance of p-CNB. Aniline
selectivity was 16.31%, indicating that the hydrodechlorination reaction was effectively suppressed
due to the doping of P into the palladium catalyst. It is worth noting that Pd-P(8)/C(400) exhibited a
p-CAN selectivity of 99.35% with a 100% conversion. However, the size of the Pd species cluster of
Pd-P(8)/C(400) was so large that it could influence the selectivity of p-CAN [9]. Thus, it is very difficult
to investigate the real role of P for the Pd phosphides. Therefore, Pd-P(32)/C(400) with an intact Pd3P
crystal phase and a particle size of 5 nm was selected as a representative for further research on the
effect of P doping on Pd particles.

Table 2. Effect of phosphorus doping amounts on the selective hydrogenation of p-CNB under
solvent-free conditions.

Catalyst Solvents
Temperature

◦C
Pressure

MPa
Reaction Time

(min)
Conversion

(%)
Selectivity (%)

p-CAN AN

Pd-P(0)/C(400) / 90 1.6 186 100 82.38 17.62
Pd-P(4)/C(400) / 90 1.6 168 100 97.79 2.21
Pd-P(8)/C(400) / 90 1.6 318 100 99.35 0.65

Pd-P(16)/C(400) / 90 1.6 158 100 97.63 2.37
Pd-P(24)/C(400) / 90 1.6 156 100 97.51 2.49
Pd-P(32)/C(400) / 90 1.6 150 100 97.96 2.04
Pd-P(32)/C(400) / 85 1.5 145 100 99.69 0.31
Pd-P(32)/C(400) / 100 1.5 136 100 96.88 3.12
Pd-P(32)/C(400) / 85 1.0 178 100 99.78 0.22
Pd-P(32)/C(400) / 85 2.0 119 100 99.37 0.63

Pd-P(32)/C(400) 150 mL of
methanol 85 1.5 140 100 95.12 4.82

Pd-P(0)/C(400) +
Na3PO4

/ 85 1.5 267 100 83.69 16.31

Reaction conditions: p-CNB, 100 g; catalyst, 0.5 g; stirring rate, 1200 rpm.

Temperature and H2 pressure have been reported to have a great influence on the selectivity for the
selective hydrogenation of halonitrobenzenes [39,49]. As shown in Table 2, optimal reaction conditions
were 85 ◦C and 1.0–1.5 MPa for Pd-P(32)/C(400) under solvent-free conditions. The selectivity to
p-CAN reached up to 99.78%. Compared with Pd-P(8)/C(400) and Pd-P(0)/C(400), Pd-P(32)/C(400)
exhibited higher selectivity to p-CAN, which implies that P, not the small size of Pd species,
plays a crucial role in the suppression hydrodehalogenation. In addition, as shown in Table 3,
Pd-P(32)/C(400) exhibited excellent catalytic performance and selectivity after six recyclings without
obvious deactivation, which suggests that the Pd3P framework structure is steady even under
hydrogenation conditions.

For the hydrogenation of halonitrobenzenes, the adsorption of hydrogen is involved in the
rate-determining step over noble metal catalysts [50,51]. In addition, it is the dominant academic
view that -NO2 hydrogenation and C-X (X = Cl, Br, I) hydrogenolysis conform to the nucleophile and
electrophilic substitution mechanism, respectively. Therefore, hydrogen species with a negative charge
prefer the complete suppression of C-X hydrogenolysis. Metal phosphides have few L acids and B
acids sites because of the P atom penetration into the Pd crystal structure [52,53]. This means that
there are few deficient-electron sites on Pd3P particles. As a result, Pd3P particles are not ideal electron
acceptors, and active hydrogen dissociated on Pd3P particles has no lack of electrons, implying that
such particles could not generate deficient-electron active hydrogen atoms as electrophiles. This may
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be the main reason that Pd3P supported on activated carbon exhibits superior catalytic performance in
terms of the hydrogenation of halonitrobenzenes to haloanilines. A plausible catalytic mechanism of
p-CNB hydrogenation over palladium phosphide (Pd3P) is illustrated in Scheme 2.

Table 3. Recycling of Pd-P(32)/C(400) catalyst for selective hydrogenation of p-CNB under
solvent-free conditions.

Recycling
Time

Catalyst Addition Reaction Time Conversion Selectivity (%)

(g) (min) (%) p-CAN AN

1 0.5 148 100 99.70 0.30
2 0.025 150 100 99.66 0.34
3 0 146 100 99.68 0.32
4 0 152 100 99.70 0.30
5 0 145 100 99.71 0.29
6 0 146 100 99.69 0.31

Reaction conditions: p-CNB, 100 g; Pd-P(32)/C(400), 0.5 g; stirring rate, 1200 rpm; temperature, 85 ◦C; H2 pressure,
1.5 MPa. Note: The catalyst was separated and recycled by the same filter paper each time.

Catalysts 2019, 9, 177 8 of 12 

 

selectivity to p-CAN reached up to 99.78%. Compared with Pd-P(8)/C(400) and Pd-P(0)/C(400), Pd-
P(32)/C(400) exhibited higher selectivity to p-CAN, which implies that P, not the small size of Pd 
species, plays a crucial role in the suppression hydrodehalogenation. In addition, as shown in Table 3, Pd-
P(32)/C(400) exhibited excellent catalytic performance and selectivity after six recyclings without 
obvious deactivation, which suggests that the Pd3P framework structure is steady even under 
hydrogenation conditions. 

Table 3. Recycling of Pd-P(32)/C(400) catalyst for selective hydrogenation of p-CNB under solvent-
free conditions. 

Recycling 
Time 

Catalyst 
Addition Reaction Time Conversion Selectivity (%) 

(g) (min) (%) p-CAN AN 
1 0.5 148 100 99.70 0.30 
2 0.025 150 100 99.66 0.34 
3 0 146 100 99.68 0.32 
4 0 152 100 99.70 0.30 
5 0 145 100 99.71 0.29 
6 0 146 100 99.69 0.31 

Reaction conditions: p-CNB, 100 g; Pd-P(32)/C(400), 0.5 g; stirring rate, 1200 rpm; temperature, 85℃; 
H2 pressure, 1.5 MPa. Note: The catalyst was separated and recycled by the same filter paper each 
time. 

For the hydrogenation of halonitrobenzenes, the adsorption of hydrogen is involved in the rate-
determining step over noble metal catalysts [50,51]. In addition, it is the dominant academic view 
that -NO2 hydrogenation and C-X (X = Cl, Br, I) hydrogenolysis conform to the nucleophile and 
electrophilic substitution mechanism, respectively. Therefore, hydrogen species with a negative 
charge prefer the complete suppression of C-X hydrogenolysis. Metal phosphides have few L acids 
and B acids sites because of the P atom penetration into the Pd crystal structure [52,53]. This means 
that there are few deficient-electron sites on Pd3P particles. As a result, Pd3P particles are not ideal 
electron acceptors, and active hydrogen dissociated on Pd3P particles has no lack of electrons, 
implying that such particles could not generate deficient-electron active hydrogen atoms as 
electrophiles. This may be the main reason that Pd3P supported on activated carbon exhibits superior 
catalytic performance in terms of the hydrogenation of halonitrobenzenes to haloanilines. A plausible 
catalytic mechanism of p-CNB hydrogenation over palladium phosphide (Pd3P) is illustrated in 
Scheme 2. 

 

Scheme 2. Plausible catalytic mechanism of p-CNB hydrogenation over palladium phosphide (Pd3P). 

  

Scheme 2. Plausible catalytic mechanism of p-CNB hydrogenation over palladium phosphide (Pd3P).

3. Materials and Methods

3.1. Catalyst Preparation

PdO/C preparation: 5 g of activated carbon, made by CECA Arkema, Colombes, France (particle
size: 250–300 mesh, N2-BET: 980 m2 × g−1, ash content: 3%) was dried under vacuum at 110 ◦C for 2 h.
After being cooled to room temperature, it was added to a 250 mL beaker. Subsequently, 2.0 mL of an
aqueous 0.05 gpd/ml H2PdCl4 solution and 20 mL of deionized water were added to a 100 mL beaker
under vigorous stirring at room temperature for 0.5 h. Next, the obtained aqueous H2PdCl4 solution
was adjusted to pH 6.0–7.0by an aqueous NaOH solution and was then added to dried activated
carbon and stirred for 60 min at 30 ◦C. After that, the stirring was stopped and the temperature was
raised to 50 ◦C and kept at that temperature for 4 h. The resulting product was washed with deionized
water several times until the pH value was 7 and then dried at 60 ◦C for 12 h. The precursor was
labeled PdO/C, and the nominal Pd loading was 2 wt %.

Pd-P(x)/C(t) preparation: A certain amount of sodium hypophosphite and PdO/C precursorwas
stirred evenly and then subjected to a temperature-programmed treatment with a heating rate of
10 ◦C/min under an Ar atmosphere at the desired temperature for 3 h. After slowly cooling down to
room temperature, deionized water was used to completely wet the catalyst in a nitrogen atmosphere.
Next, the catalyst was quickly taken out and poured into the 1% ammonia aqueous solution, stirred
evenly for several minutes, and then filtered and washed with ionized water until the pH value
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was 7. The black powder Pd-P(x)/C(t) was obtained where x represents the ratio of n(P)/n(Pd), and t
represents the calcination temperature.

3.2. Catalyst Characterization

The X-ray diffraction (XRD) of catalysts was carried out with an X’ Pert PRO diffractometer
(PNAlytical Co., Almelo, The Netherlands) at 45 kV and 40 mA using a Cu Kα radiation source
with a scanning rate of 2◦/min and a step of 0.02◦. TEM measurements were performed on a
JEOL JEM-200CX (JEOL Ltd, Tokyo, Japan) instrument operating at 160 kV. Two hundred particles
of the catalyst were randomly selected in the TEM images to calculate the mean particle size.
The Brunauer–Emmett–Teller (BET) specific surface and porous parameters of the samples were
measured via N2 physical adsorption at 77 K on a Micromeritics ASAP 2020 (Micromeritics, Atlanta,
GA, USA) instrument. X-ray photoelectron spectroscopy (XPS) analysis was performed on a Thermo
Scientific ESCALAB 250Xi (Waltham, MA, USA). The calibration of the binding energy (BE) of the
spectra was referenced to the C1s electron binding energy at 284.8 eV arising from adventitious carbon.
After the linear baseline for nonmetal element signals (using the Shirley baseline for metal element
signals) was subtracted, curve fitting was performed using a non-linear least-squares algorithm
assuming a Gaussian peak shape.

3.3. Catalytic Hydrogenation Tests

In a typical experiment, the desired amount of p-CNB and catalyst were mixed together and
introduced into a 700 mL stainless steel autoclave (4500 series, Parr Instrument Co., Moline, IL, USA).
The reactor was sealed and purged with N2 five times (1.0 MPa every time) and then pure H2 five
times (1.0 MPa every time) in order to replace air in the reaction system. Subsequently, the reactor was
heated to the desired temperature, the H2 gas was charged into the autoclave up to 1.0–2.0 MPa, and
the stirring rate was set at 1200 r/min. During the reaction, the temperature, pressure, and stirring rate
were kept constant. After the entire conversion of the halonitrobenzenes, the reactor was cooled down
to room temperature, and the H2 gas was released. The catalyst was filtered from the mixture for the
next recycled use. The liquid products were qualitatively analyzed by gas chromatography (Agilent
7890, Agilent Technologies, Santa Clara, CA, USA) equipped with a programmed split/splitless
inlet, a flame ionization detector (FID), and a capillary column HP-5 (30 mm × 0.20 mm × 0.25 µm).
The quantitative analysis of products was applied by the area normalization method.

4. Conclusions

A facile synthesis method of palladium phosphide supported on activated carbon was developed.
By an investigation of the effects of Pd precursors for phosphatization, phosphatization temperature,
and the ratio of hypophosphite/Pd on the generation of palladium phosphide, it was found that only
PdO supported on activated carbon, rather than Pd or PdCl2, can transform into Pd phosphide. It was
found that the penetration of P into Pd particles can dramatically improve the dispersion of Pd species
particles. An intact Pd3P crystal structure was obtained when the ratio of hypophosphite/Pd reached
32 and the temperature was above 400 ◦C. Pd3P particles supported on activated carbon exhibited
superior catalytic performance in terms of the hydrogenation of halonitrobenzenes to haloanilines
because they had few L acids and B acids sites and could not generate deficient-electron active
hydrogen atoms as electrophiles.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/177/s1,
Figure S1: The XRD pattern of unreduced Pd/C, Figure S2: The XRD pattern of high dispersed PdCl2 on Pd/C
treated with aqua regia.
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