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Abstract: Ethanol oxidation reaction (EOR) is an important electrode reaction in ethanol fuel cells.
However, there are many problems with commercial ethanol oxidation electrocatalysts today, such as
poor durability, poor anti-CO poisoning ability, and low selectivity for C–C bond cleavage. Therefore,
it is very meaningful to develop a high-performance EOR catalyst. Herein, we designed ternary
N, S, and P-doped hollow carbon spheres (C–N,P,S) from polyphosphazene (PCCP) as Pd supports
for EOR. Using SiO2 spheres as the templates, the PCCP was first coated on the surfaces of SiO2

spheres by in situ polymerization. Through high-temperature pyrolysis and hydrofluoric acid-etching,
the hollow PCCP has a large surface area and porous structure. After loading Pd nanoparticles (NPs),
the Pd/C–N, P, S catalysts with Pd NPs decorated on the surfaces of C–N, P, S can achieve a high mass
peak current density of 1686 mA mgPd

−1, which was 2.8 times greater than that of Pd/C. Meanwhile,
the Pd/C–N, P, S catalyst also shows a better stability than that of Pd/C after a durability test of 3600s.

Keywords: ethanol oxidation reaction; palladium; hollow carbon sphere; alkaline medium

1. Introduction

Recently, direct ethanol fuel cells (DEFCs) have become the ideal solution to the energy crisis and
environmental issues and, therefore, have attracted enormous interest. Specifically, DEFCs have many
advantages such as high efficiency, high energy density, low pollution, and excellent electrochemical
stability. Besides, the biomass fuel ethanol is widely used because of its many advantages, such as
easy to store, non-toxic, simple to synthesize [1–4]. The ethanol oxidation reaction (EOR) is a crucial
reaction in DEFCs, which is the most important part of determining the performance of the entire
fuel cell. Platinum (Pt) is the most widely used precious metal for EOR in acidic media because of its
attractive characteristics of high electrochemical activity and low over potential. Unfortunately, high
cost and poor anti-poisoning have inhibited Pt-based catalysts application in DEFCs [5,6]. Because of
this, many researchers have turned their attention to another metal. Some studies have found that
Palladium (Pd) is a more suitable alternative than Pt in DEFC. Although the Pd-based catalyst activity
in the acidic medium is not as good as that of the Pt-based catalyst, the Pd-based catalyst performs
better than the Pt-based catalyst in the alkaline medium. Regarding price, Pd is cheaper than Pt, which
significantly reduces the cost of experimentation and research [7–11].

Catalysts 2019, 9, 114; doi:10.3390/catal9020114 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
http://www.mdpi.com/2073-4344/9/2/114?type=check_update&version=1
http://dx.doi.org/10.3390/catal9020114
http://www.mdpi.com/journal/catalysts


Catalysts 2019, 9, 114 2 of 11

As we all know, the activity and stability of an electrocatalyst depends significantly on the
composition and structure of the supported catalysts and metallic nanoparticles. Therefore, the
construction of a new type of Pd-incorporated supported catalyst can play an important role in DEFCs.
Carbon-based materials often serve as catalyst supports because of their good electrical conductivity
and stability. So far, graphene, carbon microspheres, carbon nanotubes and carbon black have widely
been employed as supporting materials of Pd [12–15]. As is well-known, catalyst supports need not
only a large specific surface area but also good electrical conductivity, so that the noble metal particles
have a high dispersion state while exposing more active sites. Many studies have shown that materials
with hollow structures and mesopores can serve as good supports for electrocatalysts. Material such
as mesoporous hollow carbon hemispheres [16], spherical carbon capsules [17], hollow graphitized
carbon nanocage [18] were used as supports of noble metals electrocatalysts due to their large specific
surface area and high stability. Moreover, core-shell structures are widely used in the preparation of
catalysts, such as Pd@porous SiO2 yolk-shell nanostructure [19], PdO/ZnO@mSiO2 [20], Cu@Cu2O
core-shell nanocatalyst [21].

On the other hand, heteroatom-doped carbon materials are considered to be better catalyst
supports than pristine carbon-based supports. Studies have indicated that heteroatom doping can
effectively improve catalyst activity and make more active sites exposed [22–24]. In particular, when
two or more elements, such as N, S, etc. are doped in the structure of carbon, the catalyst activity can
improve obviously. That is because N and S as dopants can create synergistic effects that make them
easier to modulate for some conjugated bonds and electron distribution, and then making catalysis
more efficient [25]. Furthermore, P atom doping could also improve the active sites of the carbon
materials [26–28].

In summary, N, S, and P- ternary hollow carbon sphere materials can be used as good precious
metal carriers. In this work, N, S, and P- ternary hollow carbon sphere materials (C–N,P,S) were
fabricated by a one-step procedure with high-temperature pyrolysis of polyphosphazene coated SiO2

spheres template composites, followed by removing SiO2 spheres template via HF solution etching.
Finally, Pd nanoparticles were grown on the surfaces of C–N,P,S via the immersion reduction method.
The as-prepared Pd/C–N,P,S catalysts exhibited superior electrocatalytic performance toward EOR
than that of Pd/C. We have reason to believe that the Pd/C–N,P,S catalyst can be a commercial Pd/C
alternative in practical applications towards EOR in the future.

2. Results and Discussion

The morphologies and microstructures of the precursors and Pd/C–N,P,S catalysts were first
investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM)
images. As shown in Figure 1a, the SEM image of pure SiO2 microsphere templates exhibits uniform
with the diameters ranged from 300 to 500 nm. Through in situ polymerization, the polyphosphazene
(PCCP) was coated on the surfaces of SiO2 microspheres. From the Figure 1b, the obtained PCCP-coated
SiO2 microspheres (PCCP@SiO2) show the core-shell structures. From the edge, the thickness of the
PCCP layer is about 140 nm. Afterward, the PCCP@SiO2 was pyrolyzed at 900 ◦C. From the SEM
image (Figure 1c), the pyrolyzed PCCP@SiO2 still remained spherical with a certain fusion. After
etching by HF solution, the SiO2 templates were removed and C–N,P,S were formed. Finally, using
C–N,P,S as the supports, the Pd/C–N,P,S was prepared by using in situ reduction. As observed in
Figure 1d, Pd/C–N,P,S shows the distinct uniform hollow struture with Pd NPs decorated on the
surface. In the EDS elemental mapping (Figure 1e–i), the C, N, P, S, Pd elements are distributed on the
surfaces of Pd/C–N,P,S, demonstrating su18ccessful fabrication of Pd/C–N,P,S catalysts.
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Figure 1. Scanning electron microscope (SEM) images of (a) SiO2, transmission electron microscope 
(TEM) image of (b) PCCP@SiO2, (c) SEM image of C–N,P,S, (d) TEM image of Pd/C–N,P,S and 
electrospray ionization (EDS) elemental mapping of (e–i) C, N, P, S, and Pd elements for Pd/C–N,P,S 
catalysts. 
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metallic Pd NPs with distinct lattice fringe were close contact with the surface of C–N,P,S which 
benefits the synergistic effect between the Pd and C–N,P,S. The diameter of Pd NPs is ~ 5 nm. The 
lattice fringe spacing of d = 0.22 nm is attributed to the (111) planes of metallic Pd. Figure 2b shows 
the X-ray diffraction (XRD) patterns of as-prepared Pd/C and Pd/C–N,P,S. The characteristic peak at 
2θ = 25° is corresponded to the C (002) crystal plane. The Pd/C and Pd/C–N,P,S all show characteristic 
peaks at 2θ values of 39.1°, 45.1°, 66.1°, and 79.7°, which were assigned to (111), (200), (220) and (311) 
crystal planes of face-centered cubic (fcc) Pd (JCPDS 65–6174), respectively. This agrees with the 
analysis of the HRTEM image. Figure 3 is the X-ray photoelectron spectroscopy (XPS) spectra of the 
Pd/C–N, P, S catalyst. The coexistences of C, O, N, P, S, and Pd elements are all in the structure of 
Pd/C–N,P,S (Figure 3a).The presence of O element may come from the surface hydroxyl groups. In 
Figure 3b, the high-resolution C 1s XPS spectra were deconvoluted into three distinct peaks which 
are located at 284.6, 285.5, and 286.7 eV, respectively. The first peak is the classical peak of the sp2-

hybridized C–C bond, while the second peak contributes to the C–N or C–S backbone. Besides, the 
third peak is determined as the C–O groups [23,29]. Furthermore, we also carried out high-resolution 
XPS analysis of N 1s, P 2p, S 2p and Pd 3d. As shown in Figure 3c, there are two peaks at 398.4 
(pyridinic-N) and 402.1 eV (pyridinic-oxide-N) in the deconvoluted N 1s peak [30,31]. The P 2p peak 
at 133.8 eV can be assigned as the P–N bond (Figure 3d) [26,32]. From the S 2p spectra (Figure 3e), 
the two peaks at 164.4 and 168.5 eV are contributed to the –S–C–S– and –C–S (O) X –C– groups, which 
prove that the doped S atoms are tightly bound to the adjacent C atoms [32]. Meanwhile, the high-

Figure 1. Scanning electron microscope (SEM) images of (a) SiO2, transmission electron microscope
(TEM) image of (b) PCCP@SiO2, (c) SEM image of C–N,P,S, (d) TEM image of Pd/C–N,P,S
and electrospray ionization (EDS) elemental mapping of (e–i) C, N, P, S, and Pd elements for
Pd/C–N,P,S catalysts.

Furthermore, from the high-resolution TEM (HRTEM) image of the Pd/C–N,P,S (Figure 2a), the
metallic Pd NPs with distinct lattice fringe were close contact with the surface of C–N,P,S which benefits
the synergistic effect between the Pd and C–N,P,S. The diameter of Pd NPs is ~ 5 nm. The lattice
fringe spacing of d = 0.22 nm is attributed to the (111) planes of metallic Pd. Figure 2b shows the X-ray
diffraction (XRD) patterns of as-prepared Pd/C and Pd/C–N,P,S. The characteristic peak at 2θ = 25◦ is
corresponded to the C (002) crystal plane. The Pd/C and Pd/C–N,P,S all show characteristic peaks at
2θ values of 39.1◦, 45.1◦, 66.1◦, and 79.7◦, which were assigned to (111), (200), (220) and (311) crystal
planes of face-centered cubic (fcc) Pd (JCPDS 65–6174), respectively. This agrees with the analysis of
the HRTEM image. Figure 3 is the X-ray photoelectron spectroscopy (XPS) spectra of the Pd/C–N, P,
S catalyst. The coexistences of C, O, N, P, S, and Pd elements are all in the structure of Pd/C–N,P,S
(Figure 3a).The presence of O element may come from the surface hydroxyl groups. In Figure 3b,
the high-resolution C 1s XPS spectra were deconvoluted into three distinct peaks which are located
at 284.6, 285.5, and 286.7 eV, respectively. The first peak is the classical peak of the sp2− hybridized
C–C bond, while the second peak contributes to the C–N or C–S backbone. Besides, the third peak is
determined as the C–O groups [23,29]. Furthermore, we also carried out high-resolution XPS analysis
of N 1s, P 2p, S 2p and Pd 3d. As shown in Figure 3c, there are two peaks at 398.4 (pyridinic-N) and
402.1 eV (pyridinic-oxide-N) in the deconvoluted N 1s peak [30,31]. The P 2p peak at 133.8 eV can be
assigned as the P–N bond (Figure 3d) [26,32]. From the S 2p spectra (Figure 3e), the two peaks at 164.4
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and 168.5 eV are contributed to the –S–C–S– and –C–S (O) X –C– groups, which prove that the doped
S atoms are tightly bound to the adjacent C atoms [32]. Meanwhile, the high-resolution Pd 3p XPS
spectra shown in Figure 3f were deconvoluted into two groups peaks: the peaks at 335.7 and 341 eV
are contributed to the metallic Pd. In addition, the other XPS peaks at 337.0 and 342.5 eV could be
ascribed to Pd oxide species [33,34].
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Figure 4a,b show the N2 adsorption–desorption isothermals over typical samples of C–N,P,S, and
Pd/C–N,P,S. According to the original International Union of Pure and Applied Chemistry (IUPAC)
classification, the C–N,P,S, and Pd/C–N,P,S both exhibit type-IV isotherms, and their hysteresis loops
are clear H4 type hysteresis loops. The BET specific surface areas of C–N,P,S, and Pd/C–N,P,S are 801
and 212 m2 g−1,respectively. Furthermore, from the inset BJH pore size and pore size distributions,
the pore sizes of the C–N,P,S, and Pd/C–N,P,S are about ~ 4 nm. The large specific surface area of
C–N,P,S supports with porous structure can facilitate the infiltration of electrolyte and charge transport
in EOR, thereby enhancing the electrochemical activity. As can be seen from Figure 4c, in the Fourier
transform–infrared (FT–IR) spectra of SiO2, PCCP@SiO2 and pyrolytic PCCP@ SiO2 composites, the
characteristic peaks at 464, 795, and 1092cm−1 are attributed to the bending and symmetrical stretching
vibrations of Si–O–Si, respectively. Besides, the peak at 952 cm−1 is attributed to the specific vibration
of Si–O. The peak at 3453 cm−1 is assigned to the vibration of hydroxyl groups on the surfaces of SiO2

microspheres. As templates, the PCCP@SiO2 with PCCP is coated on the surfaces of SiO2 microspheres.
Toward PCCP@SiO2, the absorption peaks at 1588 and 1490 cm−1 originate from the benzene ring in
PCCP. The peaks at 1295 and 1154 cm−1 are ascribed to the sulfone in PCCP. Furthermore, the peaks
at 1187 and 887 cm−1 originate from the vibrations of P=N and P–N in the structure of PCCP. More
importantly, the characteristic peak at 949 cm−1 implied the formation of P–O–benzene ring. Therefore,
the PCCP can be grafted onto the surfaces of SiO2 microspheres via in situ polymerization. As for
sample pyrolytic PCCP@SiO2, the characteristic peaks of PCCP disappeared. The peaks at 470 and
800 cm−1 are corresponded to the symmetrical stretching vibration of Si–O. It demonstrates that the
layer of PCCP in the PCCP@ SiO2 has already changed into porous carbon structure. Figure 4d shows
the Raman spectra for the samples of C–N,P,S and Pd/C–N,P,S composites. The D and G bands of
carbon were observed at ~1335 and ~1595 cm−1 [35]. The value of ID/IG for the C–N,P,S (≈1.1) was
lower than that of the Pd/C–N,P,S (≈1.18), which could be due to increased defects in C atom for the
Pd/C–N,P,S after Pd NPs decoration.
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PCCP@ SiO2, (d) Raman spectra for the samples of C–N,P,S and Pd/C–N,P,S.
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The cyclic voltammetry (CV) curves of Pd/C and Pd/C–N,P,S catalysts were measured in 1 mol/L
sodium hydroxide water solution. As shown in Figure 5a, the hydrogen adsorption–desorption peak
of Pd/C–N,P,S catalyst shows a higher current density between −1.0 and −0.7 V vs. SCE. Besides, the
peaks which is located at around −0.35 V is the reduction peak of PdOx. It is noting that there is a
negative shift of ~ 2 mV for the Pd/C–N,P,S catalyst in comparison with Pd/C, indicating that the
decreased oxophilicity on the Pd surfaces can reduce chemisorptions of these oxygen species, which
benefits the EOR in the alkaline condition. Furthermore, the CV curves of Pd/C–N,P,S and Pd/C in the
sodium hydroxide and ethanol mixture solution were shown in Figure 5b. Obviously, the mass peak
current density for Pd/C–N,P,S catalyst can reach ~1686 mA mg−1, which is 2.8 times higher than that
of Pd/C. Also, the mass peak current density of Pd/C–N,P,S catalyst is higher than previously reported
Pd-based EOR catalysts (Table S1), such as Pd–Ag nanoparticles, Pd7/Ru1,etc. [36–42]. Considering the
structure of the Pd/C–N,P,S catalyst, the doped N, P, and S atoms can significantly tune the electronic
structure of the carbon shell of C–N,P,S. On the one hand, the C–N,P,S with large surface area are
conductive to the diffusion of electrolyte and charge transportation; on the other hand, the electrons
can transfer from Pd to C–N,P,S due to the existences of heteroatoms. The synergic effects between Pd
and C–N,P,S contributed the high electrochemical activity. More importanly, the C–N,P,S supports also
can faciliate the COad intermediates.
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Figure 5. (a) Cyclic voltammetry (CV) of Pd/C and Pd/C–N,P,S catalysts in sodium hydroxide (1
mol/L), (b) CVs of Pd/C and Pd/C–N,P,S catalysts in sodium hydroxide (1 mol/L) and ethanol (1
mol/L) mixture solution, (c) CO monolayer stripping voltammograms of the Pd/C and Pd/C–N,P,S
catalysts in diluted sulfuric acid solution (0.5 mol/L), (d) chronoamperometric curves for the the Pd/C
and Pd/C–N,P,S catalysts in sodium hydroxide (1 mol/L) and ethanol (1 mol/L) mixture solution at
−0.20 V. Scan rate: 50 mV/s.

The CO monolayer stripping curves of the Pd/C and Pd/C–N,P,S catalysts were recorded in
0.5 mol/L of sulfuric acid. As shown in Figure 5c, the onset potential of CO oxidation on Pd/C–N,P,S
catalyst is 0.665 V. In comparison with Pd/C, there is a negative shift of 2.1 mV, indicating the COads can
be oxidized at a lower potential on Pd/C–N,P,S catalyst. From CO-stripping CV, the electrochemical
surface areas (ECSA) can be calculated by CO desorption [43]. Considering the 420 µC cm−2 is the
charge required to oxidize a monolayer of COads on Pd surface [44]. Therefore, the ECSA of the
Pd/C–N,P,S catalyst is 76.31 m2 g−1, which was 2.76 times higher than that of the Pd/C. This indicated
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that the synergistic effects between the ternary doped hollow carbon sphere and those uniformly
dispersed Pd particles which ensure the Pd/C–N,P,S catalyst with large ECSA and better anti-CO
poisoning ability. Generally, the stability of an electrocatalyst is a very important factor for further
practical application. The chronoamperometric measurement was carried out in the sodium hydroxide
and ethanol mixture solution at a constant potential of −0.2 V. As shown in Figure 5c, the Pd/C–N,P,S
catalyst always exhibits the higher oxidation current density than that of the Pd/C after different
periods. After a repetitive 200 potential cycling tests, the peak current density of Pd/C–N, P, S has
decreased by ~4.2%, and the peak current density of Pd/C has decreased by ~18.6%. Obviously, the
Pd/C–N, P, S shows higher structural stability than that of Pd/C. From Figure 5d, towards the ratio
(i3600/i10) of the peak current density after 3600 s to that after 10 s, the i3600/i10 of Pd/C–N, P, S is 8.6%
higher than that of Pd/C (6.7%).

3. Materials and Methods

3.1. Materials

Tetraethoxysilane (TEOS), hexachlorocyclotriphos (HCCP), 4,4-sulfonyldiphenol (BPS),
triethylamine (TEA), ethylenediaminetetraacetic acid (EDTA), acetonitrile, sodium carbonate,
potassium tetrachloropalladate (II) (99.95%), sodium tetrachloropalladate (99.95%) were all obtained
from Shanghai Aladdin Bio-Chem Technology Co.,Ltd (Shanghai, China). Ammonia water and ethanol
were purchased from the Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All chemicals and
solvents were of analytical grade and used without further purification.

3.2. Synthesis of C–N,P,S

Figure 6 shows the schematic illustration of fabrication for C–N,P,S hollow microsphere. Uniform
SiO2 microsphere templates were fabricated by a reported method [45]. First, 0.2 g of SiO2 was
dispersed into 200 mL of acetonitrile. Then, a certain amount of HCCP, BPS and TEA were added to
the above SiO2/acetonitrile dispersion with continuous stirring. After 6 h of stirring, the products
of PCCP@SiO2 was separated by centrifuge washing with water and ethanol, and then vacuum
dried at 50 ◦C for 12 h. Then, PCCP@SiO2 was subjected to pyrolysis under a nitrogen atmosphere.
The pyrolysis condition is 600 ◦C for 1 h, and then 900 ◦C for 3 h (2 ◦C/min). After being pyrolyzed,
the C–N, P, S@SiO2 was collected. IThen, the above C–N, P, S@SiO2 was etched in HF to remove SiO2

microsphere templates. Finally, the C–N, P, S was then washed by lots of water and vacuum dried
overnight at 50 ◦C.
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3.3. Preparation of Pd/C–N,P,S Catalysts

The Pd/C–N,P,S was prepared by a simple and efficient chemical reduction impregnation method.
50 mg of C–N,P,S was first dispersed into 30 mL of H2O with bath sonication of 30 min. Then, 50 mg
of K2PdCl4 and 50 mg of EDTA were added into a C–N,P,S/water dispersion with continuous stirring.
In the next stage, the pH value of above mixture solution was adjusted to about 10 by concentrated
ammonia water. After that, 0.1 g of Na2CO3 and 0.1 g of NaBH4 were dissolved in 20 mL of H2O as
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reductant solution. The reductant solution was slowly added dropwise to the previous dispersion.
After reaction of 4 h with stirring, the Pd/C–N,P,S was collected by centrifugation. After washing by
water and ethanol, the Pd/C–N,P,S was vacuum dried at 70 ◦C for 12 h.

3.4. Electrocatalytic Activity Test

A CHI 660E electrochemistry workstation (Shanghai, China) was used for testing the
electrocatalytic performance of all catalysts with a conventional three-electrode method. The graphite
rod electrode was employed as counter electrode. A saturated calomel electrode (SCE) was the
reference electrode. The Pd/C–N,P,S and Pd/C modified glassy carbon electrodes (Φ = 3 mm) were
used as the working electrodes. CO stripping experiment was peformed in diluted sulfuric acid
solution. CV tests and chronoamperometry were undertaken in the sodium hydroxide and ethanol
mixture solution.

3.5. Catalysts Characterization

X-ray diffraction (XRD) patterns were obtained from a Bruker D8 Advance X-ray diffractometer
(Karlsruhe, Germany). The morphology and microstructure of all catalysts were characterized by
field-emission scanning electron microscopy (FE-SEM, JSM-7800F, Tokyo, Japan) and transmission
electron microscopy (TEM, JEOL JEM-2100F electron microscope, Tokyo, Japan). XPS measurements
were performed on a Kratos Axis Ultra DLD (Kratos Analytical, Manchester, UK) with an Al Kα

X-ray (1486.6 eV). Fourier transform–infrared spectroscopy (FT–IR) analyses were obtained with a
FTIR-8400S spectrometer (Kratos Analytical, Manchester, UK).

4. Conclusions

In summary, the Pd/C–N,P,S with Pd NPs decorated on the surfaces of ternary N, S, and P-doped
hollow carbon microspheres was successfully prepared using the SiO2 microspheres and PCCP as
templates and carbon source. As EOR catalyst, the Pd/C–N,P,S exhibits high electrochemical activity
with a mass peak current density of 1686 mA mg-1 which is 2.8 times higher than that of Pd/C.
Remarkably, the ECSA of the Pd/C–N,P,S catalyst can reach ~76.31 m2 g−1 which is 2.76 times higher
that of the Pd/C. In addition, the Pd/C–N,P,S catalyst also shows good stability. The high performance
of Pd/C–N,P,S catalysts may be mainly due to the following reasons: (1) the porous C–N,P,S with
large surface area are conductive to the diffusion of electrolyte and charge transportation, and (2) the
electrons can transfer from Pd to C–N,P,S due to the existences of heteroatoms. Also, the C–N,P,S
supports can also faciliate the COad intermediates. The synergic effects between Pd and C–N,P,S
contributed to the high electrochemical activity. Therefore, the Pd/C–N,P,S catalyst has promising
prospects for high-performance EOR catalysts.
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Pd/C after 200 repetitive potential cycling tests, Table S1: The mass peak current densities of various reported
EOR catalysts.
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