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Abstract: In this work, the photo-catalytic activity of TiO2 is considerably enhanced via sensitization
with CdIn2S4, and its application for protecting Q235 from corrosion in splash zones is examined.
TiO2 nanotube arrays (NTAs) are prepared on a flat Ti substrate via two-step anodization. CdIn2S4 is
deposited on the surface of TiO2 NTAs by hydrothermal reaction. TiO2 NTAs with enormous specific
surface areas and large-diameter hollow nanostructures are found to benefit the immobilization of
CdIn2S4. As a narrow band gap semiconductor, CdIn2S4 is able to extend the light absorption range
of TiO2, and the construction of an n–n type hetero-junction accelerates the separation of carriers.
Strong solar light, which accelerates the corrosion of Q235 in the splash zone area, is converted into
the necessary condition for protecting Q235 from corrosion. In this work, TiO2 is sensitized with
MoS2 microspheres (MoS2/TiO2 nanocomposites), which were prepared on a flat Ti substrate via a
two-step anodization and hydrothermal method, sequentially.

Keywords: corrosion; photocathodic protection; visible light; narrow bandgap semiconductor; TiO2

1. Introduction

With the increasing development and utilization of marine resources, metallic materials have been
extensively used in ports, cross-sea bridges, and offshore oil platforms over the past decades [1]. As
low-carbon steel, Q235 steel (with a yield strength of 235 MP) displays ultra-high cost performance and
well strength, and is low-cost, which makes it suitable for bridges, platforms, and other engineering
structures [2–4]. However, corrosion poses a challenge to the application of Q235 in the marine
environment. Marine corrosion areas are generally divided into mud, immersion, tidal, splash, and
atmospheric zones [5–9]. Among these areas, the splash zone experiences the most serious level of
marine corrosion due to its alternating dry and wet seasons, abundant amount of sunshine, high
salt concentration, and other factors [10–12]. In particular, the corrosion rate of carbon steel could
be increased by the corrosion product, which contains a p-type semiconductor, under strong solar
light. Specifically, the corrosion rate in the splash zone is approximately 3 to 10 times higher than that
recorded in other marine corrosion areas. Therefore, the protection of steel in the splash zone must
be examined.
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Photocathodic protection, as a new cathodic protection method, has been widely examined
by scholars due to its lack of power and anode material consumption and theoretically permanent
validity [13–16]. Photocathodic protection is based on the transfer of photo-induced electrons from
semiconductors to the surface of the protected metal under light to replace the loss of electrons in the
metal. The requirements for effective photocathodic protection are that (1) the semiconductor should
be n-type, (2) the semiconductor should possess high photo-induced carrier separation efficiency, and
(3) the semiconductor should have a more negative Fermi level than the self-corrosive potential of the
protected metal. The performance of photocathodic protection can be improved by sufficient solar
light. Hence, this approach is particularly effective for corrosion protection in splash zones with an
abundant amount of solar light.

TiO2 is the most important semiconductor in this area [17,18]. TiO2 has been widely used
in photocracking water and photodegrading organic pollutants and solar cells due to its excellent
photoelectric properties and costly performance [19–21]. As a 1D semiconductor material, TiO2

nanotube arrays (NTAs) have been extensively utilized in photocathodic protection due to their
excellent electronic transmission properties [22,23]. However, TiO2 also demonstrates some defects.
For example, the large band gap of TiO2 can limit its absorption of ultraviolet light below 380 nm, and
its high carrier recombination rate leads to a low photon-to-electron conversion efficiency. In addition,
the conduction band of TiO2 is insufficiently negative for Q235. Consequently, electrons from Q235
can be transferred to TiO2 to accelerate the corrosion. A strategy has been proposed to improve the
light absorption of TiO2, accelerate the separation of photo-induced carriers, and make the Fermi level
negative. Loading a narrow band semiconductor with a negative conductance band on the surface of
TiO2 NTAs and constructing heterojunction simultaneously could be an effective method.

As a narrow band gap (2.1 eV) semiconductor material, CdIn2S4 is an ideal material for improving
the visible light response of semiconductor composites [24–29]. The conduction band (−0.76 eV) of
CdIn2S4 is more negative than that of TiO2 (−0.29 V versus NHE), which could cause the negative
shift of the Fermi level of TiO2. As a ternary semiconductor, CdIn2S4 is much more stable due to the
presence of In3+ along with Cd2+ [27,30]. It effectively avoids the occurrence of photo-corrosion due to
photo-induced holes and •OH in CdS-based systems. In addition, similarly to TiO2, CdIn2S4 is an
n-type semiconductor. The recombination of photo-induced carriers could be inhibited due to the
construction of an n-n heterogeneous type when CdIn2S4 is coupled with TiO2. Hence, the proposed
loading of CdIn2S4 on the surface of TiO2 may improve the photoelectrochemical properties of TiO2,
and Q235 could be protected by this composite via photocathodic protection. Na2S/Na2SO3 would be
used as hole trapping agents which could rapidly absorb photo-induced holes and •OH on the surface
of the composite. The hole trapping agents could further prevent the occurrence of photo-corrosion.
By contrast, the alkaline environment provided by Na2S/Na2SO3 could negatively shift the Fermi level
of the synthetic materials, which is good for the protection of Q235.

In this paper, photocatalytic active CdIn2S4/TiO2 NTAs are successfully prepared by using the
two-step anodization process and facile hydrothermal method. The photocathodic protection of
CdIn2S4/TiO2 NTAs for Q235 is examined. XRD, SEM, X-ray photoelectron spectroscopy (XPS),
and TEM are used to confirm the success of material preparation. UV-VIS diffuse reflectance and
photoluminescence spectra analyses are conducted to characterize the samples. Photochemical
experiments are used to investigate the photocathodic protection properties of Q235.

2. Results and Discussion

A two-step anodization process was performed to prepare TiO2 NTAs with large tube diameters. A
facile hydrothermal method was also used to load CdIn2S4 nanoparticles on the surface of TiO2 NTAs.
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2.1. Results Analysis

2.1.1. XRD Analysis

As shown in Figure 1, all diffraction peaks of the standard card (ICDD 00-027-0060) can be found
in the curve of pure CdIn2S4, and the intensity matches well. This finding indicates the preparation of
highly crystalline and pure CdIn2S4. For the pristine TiO2 NTAs, the main peaks appeared at 25.4◦,
37.0◦, 37.8◦, 48.1◦, 53.9◦, 55.2◦, 70.5◦, and 76.2◦; these can be assigned to the (101), (103), (004), (200),
(105), (211), (220), and (301) crystalline planes of the anatase structure, respectively (ICDD 01-89-4921).
The diffraction peak of Ti (ICDD 01-089-3725) is stronger and sharper than that of TiO2, suggesting
that TiO2 forms only a thin layer on the Ti sheet. Simultaneously, the weak peaks of the monomer are
found in the curve of the synthetic CdIn2S4/TiO2 NTA composites. This finding indicates that a small
amount of CdIn2S4 particles had been successfully loaded onto the surface of the TiO2 NTAs.
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Figure 1. XRD patterns of the pure TiO2 nanotube array (NTA), CdIn2S4, and CdIn2S4/TiO2

NTA composites.

2.1.2. SEM Analysis

A morphology image of the prepared TiO2 NTAs is shown in Figure 2a. The internal diameter of
the tubes was approximately 150 nm, and their wall thickness was 2 nm. These factors could lead
to a large load of CdIn2S4 due to the appearance of load on the surface of the NTAs and the wall of
tubes. This finding is due to the relatively large internal diameter, which facilitates the entry of the
solution into the tubes. As shown in Figure 2b, the length of TiO2 NTAs was found to be 3.9 µm,
and independent and ordered tubes were observed. Figure 2c shows the SEM image of the resultant
CdIn2S4, which was supported on TiO2 NTAs. The synthetic CdIn2S4 shows a relatively symmetrical
octahedral or truncated octahedral shape with a smooth surface, grain boundaries, and tip cones. The
presence of CdIn2S4 on the surface and inner part of TiO2 NTAs indicates the successful entry of the
electrolyte into the tubes. As shown in Figure 2d, the octahedral structure inside the tubes could also
be observed in sections.
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NTA composites.

2.1.3. XPS Analysis

A total survey spectrum of the synthesized composite is shown in Figure 3a. The peaks of S,
In, Cd, O, and Ti elements can be observed from the survey spectrum. The existence of S (II) in the
fresh CdIn2S4/TiO2 NTA composite is indicated by the closely spaced spin-orbit components (∆ =

1.16 eV and intensity ratio = 0.511) at approximately 161.3 eV (Figure 3b). Meanwhile, the In (IV) 3d
spectrum exhibits two broad peaks, namely, 3d5/2 and 3d3/2 (resulting from the spin-orbit splitting)
without any loss features in the high binding energy side. The two peaks are located at 444.6 and
452.2 eV (Figure 3c) and can be assigned to CdIn2S4. For Cd, two broad peaks appear near 405 eV with
well-separated spin-orbit components (∆ = 6.8 eV) on the spectrum. The loss features, which cannot be
observed in the high binding energy side of the 3d3/2 spin-orbit component, indicate that the Cd was
trivalent. The O (II) and Ti (IV) in TiO2 are presented in Figure 3e,f, respectively. Figure 4 indicates the
presence of hydroxyl groups on the surface of TiO2.

In addition, the valence band of the monomers was determined by two monomer XPS testing.
In Figure 3g,h, the straight line near 0 eV in the obtained graph was extrapolated to intersect with
the horizontal extension line. The intersection point (1.39 eV) denotes the valence band (Ev) of the
synthetic material, and the Ev of the synthetic TiO2 was found to be 2.81 eV.
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synthesized TiO2 NTAs and CdIn2S4.
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2.1.4. TEM and HRTEM Analysis

A typical low-magnification Transmission electron microscopy (TEM) image of the synthesized
CdIn2S4/TiO2 NTAs is shown in Figure 4a,b. A batch of nanotubes was clearly developed, forming
orderly NTAs; some octahedrons existed on the walls of the TiO2 nanotubes, which agrees with the
SEM results. High resolution transmission electron microscopy (HRTEM) was used to characterize the
catalysts after the reaction, as shown in Figure 4c,d. The synthesized sample shows the characteristic
0.351 nm spacing of the (101) lattice plane of anatase TiO2. Lattice spacings of around 0.62 nm, which
correspond to the distances of the (111) plane of CdIn2S4, were also observed. These findings indicate
that the CdIn2S4 nanoparticles were bound to the TiO2 NTAs.

2.1.5. UV–Vis Diffuse Reflectance Spectra Analysis

As shown in Figure 5a, the TiO2 NTAs exhibited a high absorption intensity in the ultraviolet
region; its absorption band edge was approximately 385 nm, and the corresponding band gap (Eg)
was 3.22 eV. These characteristics are typical of anatase. Similarly, CdIn2S4 exhibited effective light
absorption at wavelengths less than 590 nm, and the Eg of CdIn2S4 was 2.1 eV. The absorption of
the composite material was much better than that of TiO2, and the absorption boundary shifted to
492 nm, thereby extending the absorption range of light. The apparent band gap of the corresponding
composite material was 2.52 eV. The introduction of CdIn2S4 slightly narrowed the apparent band
gap of TiO2, thereby allowing the semiconductor to absorb visible light with a large percentage of
solar energy.
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In combination with the valence band position of the composite material, the position of the
conduction band (Ec) can be calculated using the following formula.

Eg = Ev − Ec (1)

The Ec of the synthetic TiO2 was −0.41 eV, whereas that of the CdIn2S4 was −0.71 eV. These
factors indicate that the prepared TiO2 NTAs and CdIn2S4 were as expected. Moreover, the synthetic
composite showed excellent absorption performance of visible light and provided photocathodic
protection for Q235.

2.1.6. Photoluminescence (PL) Spectra Analysis

PL spectra of CdIn2S4/TiO2 and TiO2 NTAs at the same excitation wavelength are shown in
Figure 5b. The same shapes of the two curves indicate that the supported CdIn2S4 did not increase
the recombination of photo-induced electrons and holes within the wavelength range of less than
approximately 590 nm. The spectral intensity of the CdIn2S4/TiO2 NTAs composite was stronger
than that of pure TiO2 NTAs. This finding that the amount of photo-induced electrons or holes for
recombination increased in TiO2 NTAs is due to the supported CdIn2S4 nanoparticles. This increase is
due to the transfer of photo-induced electrons from the conduction band of CdIn2S4 to that of TiO2. In
the large wavelength range, the spectral intensity increased with different intensifications due to the
recombination of photo-induced carriers in CdIn2S4.

2.1.7. Photochemical Analysis

Photoinduced volt–ampere characteristic curves under intermittent visible light (i–V curves) [31,32]
were used to test the photoelectric chemical properties of the synthesized materials. Figure 6 shows
the i–V curves of the samples. Negative photo-induced potential and positive photo-induced current
density indicate that TiO2 is a typical n-type semiconductor. The photocurrent started to flow at −1.4 V
(versus the saturated calomel electrode (SCE)) and the outset potential was negative compared with its
Fermi level. This phenomenon was due to the negative shift of the Fermi level of TiO2 under alkaline
conditions [20,33,34]. The i–V curves of the synthetic CdIn2S4/TiO2 NTA composite showed a higher
photocurrent density than that of TiO2. This finding indicates that any composite other than TiO2

can easily inject electrons into Q235 in need of protection. In particular, at the corrosion potential
of Q235 (from the Tafel curve), the photo-induced electrons were fully capable of transferring from
CdIn2S4/TiO2 NTAs to Q235 due to the large positive photocurrent. This transfer is beneficial to the
photocathodic protection of TiO2.
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Tafel polarization curves of Q235 with and without composite semiconductor materials are shown
in Figure 7.
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Figure 7. Tafel polarization curves of Q235 with and without composite semiconductor materials.

On the curve of pure Q235, the self-corrosion current of pure Q235 was the current value
extrapolated from the straight part of the anode area to the self-corrosion potential on the level of
10−6 A. The left branch of the polarization curve shows a transient platform, indicating the existence
of the cathode reaction of concentration polarization of O2. On the curve of Q235 coupled with
CdIn2S4/TiO2 NTAs, the extrapolation values obtained by the same method in the cathode zone are
similar to those obtained by i–V curves at −0.96 V (the equilibrium potential from the Tafel curve). This
finding explains why the polarization curve of Q235 coupled with CdIn2S4/TiO2 NTAs was found to
be above that without coupled CdIn2S4/TiO2. The equilibrium potential demonstrates a negative shift
when Q235 was coupled with the CdIn2S4/TiO2 photo-anode due to the existence of the photo-induced
electrons. Nonetheless, the dissolving current of Fe decreased under negative potential.

The variations in the potentials of the Q235 electrode coupled with the photo-anode and the
current densities from Q235 to the synthetic composite with non-polarization under intermittent
visible light were measured to characterize the photocathodic protection performance of the synthetic
photo-anode. Figure 8a shows that the potential of Q235 coupled with TiO2 NTAs continued to
decrease and slightly fluctuated when the light was turned on and off. This finding indicates that
TiO2 NTAs have no photocathodic protection effect on Q235 and may even accelerate the corrosion of
Q235. For CdIn2S4/TiO2 NTAs, the potential drop of Q235 coupled with CdIn2S4/TiO2 NTAs reached
approximately 400 mV when visible light was switched on. Q235 was therefore polarized to −1.0 V.
Ch. Barchiche et al. [35] have proven that Q235 is effectively resistant to corrosion from XRD, SEM,
and electrochemical methods. Other studies [36–38] have also shown that Q235 might be effectively
resistant to corrosion when polarized to −0.9~−1.2 V. Hence, the polarization of Q235 to −1.0 V could
be considered effective protection from corrosion [39–41]. The dissolution of Fe was substantially
inhibited in this potential. This inhibition is due to the response of CdIn2S4 to visible light, the n–n
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type heterojunctions, and the more negative Ec of CdIn2S4 compared with that of TiO2, contributing
to the photocathodic protection effect of the composite on Q235. Figure 8b shows that the current
density was negative with and without visible light for TiO2 NTAs. This result indicates that Q235 was
able to accelerate corrosion when coupled with the TiO2 NTAs. For the CdIn2S4/TiO2 NTAs, current
density sharply increased along the positive direction when the visible light was switched on for the
photoelectrode. This finding suggests that a large number of electrons and holes were generated
and that the photocurrent was maintained at a relatively stable level. Moreover, the photocurrent
density of CdIn2S4/TiO2 NTAs reached approximately 50 mA/cm2, which was larger than the current
produced by the reduction of O2 and H+ (reference self-corrosion current). These findings suggested
that Q235 was protected by the coupled photoelectrode under visible light. The high photocurrent
can also polarize the coupled Q235 electrode to a much more negative potential, thereby providing
an improved cathodic protection. Overall, CdIn2S4/TiO2 NTAs showed an effective photocathodic
protection effect on Q235 under visible light.Catalysts 2019, 9, x FOR PEER REVIEW 9 of 13 
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A mechanism describing the enhanced photocathodic protection performance of the synthesized
CdIn2S4/TiO2 NTA photoelectrode is illustrated in Figure 9. TiO2 and In2S3 can produce a large
number of photo-induced charge carriers under bright visible light exposure. The separation of
photo-induced carriers is accelerated by the construction of an n–n heterojunction considering the flow
of photo-induced electrons from the conduction band of CdIn2S4 into the conduction band of TiO2.
The holes from CdIn2S4 and TiO2 are then consumed by the hole trapping agent in the solution. Q235
is protected by the transfer of photo-induced electrons from TiO2 to Q235 because the dissolution of Fe
is inhibited at a relatively negative potential.
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3. Experiment

3.1. Materials

All reagents involved in this work were purchased and used directly without any purification.
NH4F, AR was obtained from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China).
In(NO3)3·4.5H2O, Na2S·9H2O, NaCl, Na2SO3, C2H5NS (thioacetamide), CH3CH2OH (ethyl alcohol),
and (CH2OH)2 (ethylene glycol) were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Cd(NO3)2·4H2O was acquired from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). All the above chemicals used in the experiments were of analytical reagent grade.
A custom-made H-type photochemical electrolytic cell was obtained from Tianjin Aida Heng Sheng
Technology Development Co., Ltd. (Tianjin, China).

3.2. Preparation of TiO2 NTA and CdIn2S4/TiO2 NTA Composites

A two-step anodization process [42,43] was performed to prepare the NTAs using Pt foil, Ti foil,
and NH4F solution as a cathode, an anode, and an electrolyte, respectively, to produce TiO2. The Ti foil
(99.99%, 0.30 mm) was cut into 10 × 30 mm2 foil pieces and was ultrasonically washed with deionized
water, ethyl ethanol, and acetone 10 min before its usage. The Pt foil was a 1.0 × 1.0 cm2 commercial
platinum electrode. The NH4F solution was obtained by dissolving 1.72 g NH4F in 50 mL deionized
water and mixing well with 450 mL ethylene glycol. The voltage of anodic oxidation was set to 60.0 V.
After the first step of anodizing, the Ti foil was placed in 1 M of HCl for ultrasonic cleaning until a
glossy surface was realized. The conditions for the second oxidation were exactly the same as those for
the first oxidation. The oxidized Ti sheet was rinsed with deionized water to remove the electrolyte
solution from the surface and air dried afterward. The oxidized Ti foil was then placed in the muffle
furnace, calcined at 450 ◦C for 120 min, and left to cool at room temperature. The TiO2 NTAs were
successfully prepared on the surface of the Ti foil.

A facile hydrothermal method was used to load CdIn2S4 nanoparticles onto the surface of the
TiO2 NTAs. In this synthesis, 0.4 mmol of Cd(NO3)2·4H2O, 0.8 mmol of In(NO3)·4.5H2O, and 3.2 mmol
of C2H5NS were dissolved in an ethanol solution containing 15.0 mL of deionized water and 15.0 mL
of ethanol. After stirring for 20 min, the mixed solution and prepared TiO2 NTAs were transferred to a
100 mL Teflon-lined autoclave and heated at 180 ◦C for 24 h. After the hydrothermal reaction, the Ti
foil was rinsed with absolute ethanol and deionized water several times and dried at 80 ◦C for 12 h. A
CdIn2S4/TiO2 NTA composite was eventually synthesized.

XRD patterns were used to detect the crystalline structures of the synthesized CdIn2S4/TiO2

NTAs and monomers using a Bruker D8 Advance diffractometer with Cu Kα radiation (λ = 0.154 nm).
The monomer of CdIn2S4 was collected from the bottom of the Teflon-lined autoclave and dried at
80 ◦C after washing in deionized water and absolute ethanol successively. The surface morphology
of the samples was observed on a Hitachi S-4800 field-emission SEM, and the section was obtained
by warping the edges caused by cutting. The surface chemical composition and chemical state of
the samples were analyzed using XPS (ESCALAB 250XI, Thermo Fisher Scientific, Waltham, US)
with Al Kα (hv = 1486.6 eV). TEM (JEM-F200, JEOL, Tokyo, Japan) was employed to characterize
the microstructure of the CdIn2S4/TiO2 NTAs. The UV-VIS diffuse reflectance (HITACHI U-3900H,
HITACHI, Tokyo, Japan) and TiO2 photoluminescence spectra (Edinburgh FLs980) were measured to
explore the optical effect of loading CdIn2S4. Photoluminescence spectra were used to characterize the
recombination rates of photo-induced carriers using a FLS980 Series fluorescence spectrometer (UK).

3.3. Electrochemical Measurements

Each electrode had an exposed area of 1.0 × 1.0 cm2. The Q235 electrodes were sanded with 600,
800, 1000, 2000, and 3000 mesh sandpapers successively before being used.

The photo-induced volt–ampere characteristic curves were realized in a three-electrode
configuration in a 0.35 M Na2SO3 and 0.25 M Na2S solution. The synthesized materials, SCE,
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and Pt electrode were used as the working, reference, and counter electrodes, respectively. The i–V
curves were measured from −1.5 V to 0.5 V with a scan rate of 0.02 V/s and with visible light switched
on and off every 2 s. The working, reference, and counter electrodes were the Q235 electrode, SCE, and
Pt electrode, respectively.

Tafel plots, variations in the potentials, and the current densities under intermittent visible light
were achieved in an H-type electrolytic cell. This cell was divided into the photocell and the corrosion
cell was connected by a Nafion membrane. The electrolyte in the photocell was 0.35 M Na2SO3 and was
placed in a 0.25 M Na2S solution. The synthesized materials connected by a copper wire were placed
in this cell. Meanwhile, the SCE, Pt electrode, and Q235 electrode were placed in the corrosion cell
with a 3.5 wt.% NaCl solution. The Tafel plots for Q235 were obtained at a voltage range of −300 mV
to 300 mV considering the open circuit at a scan rate of 0.166 mV/s, and Q235 was coupled with the
synthesized materials under visible light.

The effect of photocathodic protection was determined by variations in the potential and current
density tests. A Xe lamp and 3.5 wt.% NaCl solution were used to simulate intense solar light and
seawater respectively. These properties were realized in an H-type electrolytic cell. In the variations in
the potential test, Q235 coupled with the synthesized materials, SCE, and Pt electrode were used as the
working, reference, and counter electrodes, respectively. The synthesized materials were irradiated
with visible light every 200 s for 200 s at a time. In the current density test, Q235 was connected to the
ground wire (GND wire), the synthesized materials were connected to the working electrode, and the
counter and reference electrode wires were short connected. The synthesized materials were irradiated
with visible light every 100 s for 100 s at a time.

4. Conclusions

In this work, CdIn2S4/TiO2 NTA nanocomposites were successfully prepared via two-step
anodization of Ti followed by a hydrothermal method. The CdIn2S4 nanoparticles were distributed on
the top surface of the NTAs and the tube walls with a relatively symmetrical octahedral structure. The
optical absorption region was expanded and optical absorption in the visible light region was enhanced
relative to TiO2 NTAs, thereby facilitating the utilization of visible light. The PL curves indicate that
the enhanced photocathodic protection of CdIn2S4/TiO2 NTA nanocomposites can be ascribed to the
formation of an effective n–n type heterojunction electronic field at the interface of CdIn2S4 and TiO2.
This electronic field remarkably improves the separation efficiency of the photo-induced electron-hole
pairs. The feasibility of converting excellent optical properties to electrical properties was examined by
i–V and Tafel curves. The results of the variations in the potentials and the current densities indicates
that CdIn2S4/TiO2 nanocomposites can provide a favorable photoelectrochemical cathodic protection
for the coupled Q235 under visible light in the simulated splash zone.
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