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Abstract: Spherical photocatalyst based on ordered mesoporous carbon and graphitic carbon nitride
with core/shell structure (CS/GCN) was successfully synthesized via facile electrostatic self-assembly
strategy. The photocatalytic properties of the hybrid were evaluated by the decomposition of Acid
Red 18 under simulated solar light irradiation in comparison to the bulk graphitic carbon nitride
(GCN). The results clearly revealed that coupling of carbon nitride with mesoporous carbon allows
the catalyst to form with superior photocatalytic performance. The photoactivity of CS/GCN
was over nine times higher than that of pristine GCN. Introducing mesoporous carbon into
GCN induced higher surface area of the heterojunction and also facilitated the contact surface
between the two phases. The synergistic effect between those two components enhanced the visible
light-harvesting efficiency and improved photoinduced charge carrier generation, and consequently
their proper separation. The electrochemical behavior of the obtained composite was also evaluated
by electrochemical impedance, transient photocurrent response and linear sweep potentiometry
measurements. The results confirmed that transport and separation of charge carriers in the hybrid
was enhanced in comparison to the reference bulk graphitic carbon nitride. Detailed electrochemical,
photoluminescence and radical scavenger tests enabled determination of the possible mechanism
of photocatalytic process. This work presents new insights to design a core/shell hybrid through
the simple preparation process, which can be successfully used as an efficient photocatalyst for the
treatment of wastewater containing dyes under solar light irradiation.

Keywords: graphitic carbon nitride; mesoporous carbon; core/shell structures; dye
removal; photocatalysis

1. Introduction

Recently, graphitic carbon nitride (g-C3N4, GCN) has received huge scientific interest due to
its many advantages, including easy preparation, non-toxicity, high chemical and thermal stability,
and moderate band gap leading to good visible-light response [1–5]. Thus, GCN is considered as
a promising multifunctional catalyst for many processes such as photocatalytic decomposition of
organic and inorganic pollutants, photocatalytic H2 and O2 evolution, CO2 reduction and other energy
conversion processes [4,6]. However, in the case of photocatalytic processes, three main shortcomings
of the bulk GCN seriously limit its wide practical application: (i) ineffective utilization of vis-light
via absorption of narrow part of the solar energy (>460 nm), (ii) fast recombination of photoinduced
carriers, and (iii) quite small surface area [7–9]. The first and second disadvantage can be manipulated
by coupling GCN with narrow band gap semiconductors that possess proper energy levels. In order to
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increase the surface area, the porosity in the structure of GCN can be additionally induced. Mesoporous
photocatalysts received considerable research interest because they contain a special pore network,
which facilitates the diffusion of the reactants and products. Moreover, the large surface area offers
more active sites. Therefore, for an economical utilization of GCN, the researchers should strive to find
the way for enhancing its photocatalytic properties [10,11].

Up to now, different strategies, including introducing foreign elements, designing nanoporous
structures, texturization, supramolecular assembly and creating effective heterojunctions, have been
developed to enhance the photoactivity of GCN [12]. A large number of studies have confirmed that
building a heterojunction system is an effective method to improve the separation efficiency of the
photogenerated electrons and holes which dramatically improves the photocatalytic performance [13].
To form an efficient heterojunction, GCN has been coupled with other semiconductors such as TiO2,
Ag2O, ZnO, CdS, CdS, SnO2, WO3, Cu2O, Bi2S3, AgI, AgBr, MoS2 Ag3PO4, BiOI, etc. [12,14–21].
Unfortunately, the particles (often in the agglomerated form) were usually loaded randomly on the
GCN sheets in composites causing low conjunction of GCN with a semiconductor which consequently
limited charge transfer and separation efficiency. Therefore, it is crucial to design a new class of hybrid
catalysts with a high effective area of the heterojunction because the larger area of heterojunction
will result in higher separation efficiency of the photoinduced carriers. It has been revealed that
formation of core/shell nanostructures is considered as a promising method to increase the contact
surface between the two phases, and as a consequence, to enhance the visible light-harvesting efficiency
and photocatalytic activity of nanostructured catalysts.

There are some reports on the synthesis and physicochemical characterization of core/shell
structures based on GCN and different semiconductors. Some metal semiconductors such as ZnO [22],
BiVO4 [23], SnO2 [24], MoS2 [25] and TiO2 [26] have been investigated as cores for GCN. It has been
stated that these core/shell catalysts exhibit high photostability and higher photocatalytic activity than
that of the pristine core materials and GCN. Y. Yao et al. [27] synthesized CuFe2O3/GCN core/shell
hybrids for vis-light photocatalytic decomposition of Orange II. It was found that CuFe2O4/GCN
with mass ratio of 2:1 exhibited superior activity as compared to a single component of CuFe2O4 or
GCN. This is due to the elevation of the separation efficiency of photogenerated electron–hole pairs,
resulted from the heterojunction between GCN and CuFe2O4. Moreover, it has been proven that
core/shell hybrids exhibit higher activity than that of the mixture of GCN and CuFe2O4, where CuFe2O4

was deposited on GCN. More importantly, the CuFe2O4/GCN could efficiently degrade various
organic pollutants under vis-light irradiation and exhibit an excellent photocatalytic performance
after many cycles without considerable activity loss. Furthermore, researchers have indicated a bright
horizon of increasing graphitic carbon nitride photocatalytic ability through hybridization with carbon
sources. Liu et. al. [28] synthesized carbon spheres with controllable size (200–500 nm), which further
were deposited onto graphitic carbon nitride sheets via hydrothermal process. It was found that all
composites displayed enhanced photocatalytic performance under visible light in degradation of water
contaminants such as methylene blue and antibiotic sulfachloropyridazine. Moreover, it was confirmed
that carbon spheres had the ability to capture the electrons, thus causing better charge carrier separation.
Similarly, g-C3N4-encapsulating carbon spheres (CS/g-C3N4) were produced in facile polymerization
of melamine approach [29]. CS/g-C3N4 displayed nearly five-times higher photocatalytic hydrogen
generation rate in comparison to the pristine graphitic carbon nitride. Despite very promising results,
the coupling of graphitic carbon nitride with carbon spheres, especially mesoporous carbon spheres, is
still the least investigated field.

In this study, the spherical core/shell hybrid (CS/GCN) was prepared via facile chemical route in
which the bulk GCN was protonated using strong oxidant and further deposited on the surface of
mesoporous carbon spheres. The photocatalytic performance of the obtained hybrid (in comparison
to the bulk GCN) was evaluated by Acid Red 18 decolorization process under simulated solar light
irradiation. The electrochemical properties of the obtained samples were also studied. The mechanism
of the photoinduced electron–hole pairs distribution between the individual components of the hybrid
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and the influence of this effect on the AR18 decomposition process have also been discussed in
great detail.

2. Results and Discussion

The atomic force microscope was employed to study the GCN topography (Figure 1). The thickness
of the bulk GCN flakes was in the range of 22–55 nm with the lateral size of 1–4 µm. The theoretical
thickness of g-C3N4 monolayer is estimated at ~0.325 nm [30], which means that the obtained GCN
was composed of about 90 to 170 layers. This result is in full agreement with the literature [30–32].
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Figure 1. Atomic force microscopy (AFM) images and height profiles of graphitic carbon nitride (GCN).

In order to confirm that formation of CS/GCN hybrid occurs through the spontaneous self-assembly
process between carbon core and carbon nitride shell, the zeta potential of CS, GCN, pGCN (GCN
after acid treatment) and CS/GCN was measured (Figure 2). The protonation process modified
the carbon nitride charge surface from negative −20.4 mV (GCN) to positive +49.1 mV (pGCN).
Furthermore, the carbon spheres surface was enriched in oxygen containing functional groups, thus
CS exhibited negative ζ potential value (−24.7 mV). Deposition of carbon nitride onto carbon spheres
surface modified zeta potential of composite to positive (+32.9 mV). These results confirmed that
the stable hybrids were formed through various interactions such as π−π stacking and electrostatic
interactions [33,34].
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Figure 2. Zeta potential of the carbon spheres (CS), GCN, protonated graphitic carbon nitride (pGCN)
and CS/GCN.

Figure 3 shows TEM images of GCN, CS and CS/GCN samples. The graphitic carbon nitride
exhibited few-layered structure (see Figure 3a). The carbon spheres (Figure 3b,c) demonstrated
smooth surface with uniform spherical shape morphology and diameter in the range of 550–650 nm.
The surface of CS/GCN is irregular. Those irregularities were assigned to the graphitic carbon nitride
(Figure 3d–f). No impurities were observed in the sample, thus the CS/GCN undoubtedly consists
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of carbon and tightly anchored GCN on the surface. To confirm this, the elemental compositions of
CS/GCN was examined by Energy-dispersive X-ray spectroscopy (EDS) measurements (Figure 4). EDS
spectrum displays that carbon, nitrogen and oxygen are the only elements in the CS/GCN. Moreover,
the elements are uniformly distributed in the sample.
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To further evaluate the structural properties of the obtained materials, the specific surface area
and pore size distribution were analyzed. The nitrogen adsorption−desorption isotherms at 77 K and
pore size distribution, measured according to density functional theory (DFT method), are shown in
Figure 5. Additionally, Table 1 contains data on specific surface area of the samples and their total pore
volume. In accordance with IUPAC classification, all samples exhibited IV type isotherm with final
saturation plateau of specific length (or merely inflexion point) and typical hysteresis loop caused by
the capillary condensation, characteristic for the mesoporous materials [35–37]. The hysteresis loop for
CS and CS/GCN samples is similar to H2 (a) type hysteresis described by steep desorption branch
assigned to the network effects such as pore-blocking/percolation in a narrow pore necks widths or
evaporation via cavitation [36–38]. The main characteristic features of an H2 hysteresis loop are ink
bottle pores and closed wedge pores [37,39]. Unmodified carbon spheres possess well-developed
Brunauer−Emmett−Teller (BET) specific surface area of 290.34 m2/g. The specific surface area of
CS/GCN (92.09 m2/g) was lower than CS, but still about five times higher than bulk GCN (17.82 m2/g).
The pore size distribution (Figure 5b) indicates the presence of mesopores (2–7 nm) in all samples.
The pore volume of CS/GCN increased to 0.2126 cm3/g from 0.1292 cm3/g (bulk GCN). Therefore,
the conjugation of carbon spheres and graphitic carbon nitride resulted in the formation of unique
composite with significantly improved textural properties.
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Figure 5. N2 adsorption-desorption isotherms (a) and pore size distribution (b) for CS, GCN and
CS/GCN.

Table 1. Characteristic of CS, GCN and CS/GCN.

Sample Brunauer−Emmett−Teller
(BET)Surface Area (m2/g) Total Pore Volume (cm3/g) Band Gap Energy (eV)

CS 290.34 0.23 -

GCN 17.82 0.13 2.72

CS/GCN 92.09 0.21 2.96

XRD patterns of the synthesized samples are illustrated in Figure 6a. The pattern of CS shows two
broad and low intensity peaks at 2θ value of 24◦ and 43◦ corresponding to the (002) and (100) planes of
graphitic carbons [40]. The characteristic peaks associated to graphitic carbon nitride are identified
in GCN and CS/GCN. The GCN exhibits two reflections at 2θ value of 27.4◦ and 13.1◦. Those peaks
can be indexed to the (002) and (100) planes which are related to the inter-planar stacking of aromatic
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systems and in-plane regular arrangement of tri-s-triazine units, respectively [41,42]. For CS/GCN,
the main (002) peak position is shifted of 0.05◦ toward higher angels compared to the bulk GCN. It is
due to the expansion of the interlayer stacking distance of the layers in GCN, and this confirms that
the bulk GCN was exfoliated after acid treatment [33,43]. Moreover, in CS/GCN the diffraction peaks
at 24◦ and 43◦, attributed to carbon, are also detected.
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(f) TGA profiles of CS, GCN and CS/GCN.

Figure 6b depicts the Raman spectra of CS, GCN, and CS/GCN. The Raman responses undoubtedly
confirm efficient synthesis of the hybrid material based on CS and GCN. The existence of the
characteristic bands for GCN are shown, both in bulk material and in the composite. According to the
literature [44–46], the several bands observed in the range of 700–1630 cm−1 are attributed to the bulk
GCN. Moreover, the vibration modes at 753, 977, 1120, 1156, 1236 and 1314 cm−1 are assigned to the
stretching vibration of aromatic C–N heterocycle characteristic to melem. Furthermore, the peaks at
700–1000 cm−1 region were ascribed to the various types of ring breathing modes of s-triazine [28,47].
Moreover, the Raman response of the bulk GCN shows D (1356 cm−1) and G (1560 cm−1) bands which
confirmed the presence of carbon structure in the sample [48,49]. The D (1320 cm−1) and G bands
(1603 cm−1) observed in CS are associated to: (i) sp3 defects derived from the disorder in sp2 bonding
and (ii) in-plane vibrational mode involving sp2-hybridized C–C bonds attributed to graphitic structure
of the carbon spheres, respectively. For CS/GCN, the weak modes of graphitic carbon nitride (708, 753,
771 cm−1) and strong D and G bands of CS are observed. The intensity ratio of D/G of the pristine CS
was 1.36, whereas for CS/GCN it increased to 1.41. It indicates that introduction of carbon nitride to
the hybrid caused formation of more defects in the carbon framework [50]. This result was consistent
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with XRD analysis and confirmed that the fabricated CS/GCN were composed of carbon and graphitic
carbon nitride.

The UV/Vis absorption spectra of the synthesized samples (GCN and CS/GCN) are displayed in
Figure 6c. The band gap energy of GCN and CS/GCN was determined using Tauc plots with linear
extrapolation as shown in Figure 6d and e, respectively. The estimated band gap of the reference
GCN was 2.72 eV. After the deposition of graphitic carbon nitride on mesoporous carbon spheres
(CS/GCN) increasing of band gap value to 2.96 eV was observed. It is due to chemical exfoliation of
GCN occurring in the first stage of CS/GCN synthesis (HNO3 treatment). This result is consistent with
literature [30]. Moreover, the absorption intensity of CS/GCN under visible light increased.

Thermogravimetric (TG) analysis was performed to reveal the thermal behavior of the investigated
materials and the analysis is shown in Figure 6d. In the bulk GCN, a weight loss at 600–750 ◦C was
due to the direct thermal decomposition and complete vaporization of GCN itself, which confirms
its high thermal stability and nonvolatile properties. The total decomposition of GCN occurred at
approximately 750 ◦C. No residues were collected. Carbon spheres began to decompose at ~340 ◦C. At
this temperate amorphous carbon was burnt. However, the steep decline can be observed at 525 ◦C and
the complete combustion of the sample occurred at 700 ◦C. The ash content was 0 wt%, indicating high
purity of CS. The thermal stability of CS/GCN decreased in comparison to the pristine GCN and CS.
Moreover, the lower thermal stability of CS/GCN can be ascribed to the increased defects associated
with the deposition of GCN onto CS surface which is in agreement with Raman study [51–54].

The X-ray photoelectron spectroscopy enabled to investigate the chemical states in composite and
reference material (Figure 7). Three peaks in the fitted C1s spectrum of CS/GCN with their binding
energies at around 284.6, 286.1 and 287.9 eV may be assigned to the presence of sp2 C–C bonds,
C–NHx (x = 1, 2) species and C–N–C, respectively. The deconvolution of N1s spectrum of composite
reveals three peaks with binding energy at 398.3, 399.6 and 400.8 eV related to sp2-hybridized nitrogen
(C–N–C), sp3-tertiary nitrogen (N–[C]3) and NHx groups, which are typical to the heptazine units
of GCN.
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Figure 7. The deconvoluted C1s spectra and (a) N1s spectra (b) of GCN and CS/GCN recorded by high
resolution XPS characterization.

The photocatalytic activity of the obtained samples was determined in the reaction of AR18
decomposition under simulated solar light irradiation at room temperature. As shown in Figure 8a, in
the blank test (i.e., without addition of the photocatalysts), AR18 exhibited negligible self-decomposition,
revealing great stability of the dye in the process. It is known that various processes can be involved in
dye solution decolorization [55,56], therefore adsorption of AR18 on CS/GCN in darkness was also
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performed (Figure 8c). The results revealed that adsorption equilibrium for CS/GCN was achieved
after 1 h. Moreover, the lowest adsorption capacity was demonstrated by the bulk GCN (~3%).
The enhanced adsorption performance of CS/GCN (~15%) is attributed to the higher surface area
(~92 m2/g) and reduced particles agglomeration in respect to GCN. The photoactivity of GCN was
rather low. Only 30% of AR18 removal after 12 h of irradiation was detected. The CS/GCN exhibited
higher photocatalytic activity in the studied reaction: The degree of AR18 decomposition was over 96%.
Figure 8b shows that the photocatalytic degradation of AR18 follows the pseudo first-order kinetics
model, thus the dye removal rate constant k (min−1) was calculated by the following equation:

ln(C/CO) = −kt

Where C0 is the initial concentration of AR18 (10 mg/dm3), C is concentration at proper reaction time
and t is the irradiation time. The calculated rate constants are 0.47 × 10−3 min−1 (R2 = 0.9935) and
0.4 × 10−2 min−1 (R2 = 0.9889) for GCN and CS/GCN, respectively. The rate constant of CS/GCN is over
nine times higher than GCN [33,34,57–60]. Moreover, the comparative study with use of protonated
graphitic carbon nitride (pGCN) as photocatalyst for AR18 decomposition has been performed (data
not shown here). The photocatalytic activity of pGCN is ~3.5 times lower in respect to CS/GCN.
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decomposition of AR18 (d).

To assess long-term utility and durability of the photocatalyst, the CS/GCN was reused three times
in the photocatalytic degradation process. As shown in Figure 8d the hybrid maintains its superior
photocatalytic efficiency after three recycles.

To study the charge transfer at the semiconductor/electrolyte interface, EIS spectroscopy was
measured in darkness and spectra are presented in Figure 9a. The inset in Figure 9a presents an
equivalent model, where R2 is charge transfer resistance (Rct). According to the model, the Rct

decreased in the following direction: GCN > CS/GCN > CS, indicating improved interfacial charge
transfer after graphitic carbon nitride hybridization with carbon spheres.
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GCN, CS and CS/gCN. EIS was performed in darkness, transient photocurrent response and LSV
measurements were conducted with 400–700 nm light irradiation.

To study the optical properties of GCN and CS/GCN, the photoluminescence (PL) spectra were
collected. The PL analysis enables to reveal the main determinants of the photocatalytic reaction
such as charge carrier recombination, transfer and separation. Figure 10a shows that both samples
exhibit emission peak in vis light region. For CS/GCN the PL intensity is almost four times lower
in comparison to the unmodified material, which is in good agreement with the photocatalytic
data. The results show that the interfacial interaction in the CS/GCN composite heterojunction
favors photo-induced charge carriers separation, improving electron shuttling from GCN to CS and
suppressing the electron–hole recombination.

Catalysts 2019, 9, x FOR PEER REVIEW 10 of 17 

 

 

Figure 10. (a) PL spectra of GCN and CS/GCN, (b) effect of scavenger additive on the photocatalytic 

decomposition of AR18 over CS/GCN, and (c) schematic illustration of the mechanism of 

photocatalytic decomposition of AR18 over CS/GCN. 

The decomposition rate of AR18 decreased from 96% (no scavengers) to 46, 33 and 18% with the 

addition of C6H4O2, t-BuOH and C2H8N2O4, respectively. It strongly indicated that all h+, •OH and 

•O2− were the active species involved in the photodegradation process. The degradation of AR18 was 

delayed most significantly in the presence of the holes scavenger (ammonium oxalate) which points 

out that the oxidation reactions occurred mainly via this reactive oxidative species (10). 

The results revealed that carbon spheres play the key role in the enhancement of the 

photoactivity of GCN under simulated solar light irradiation. This is due to the synergistic effect 

between GCN shell and mesoporous carbon core. The carbon core serves as an acceptor of 

photogenerated electrons in conduction band (CB) of GCN, thereby facilitating the separation of 

photoinduced charge carriers. This efficient separation of electron–hole pairs inhibits the rapid 

recombination of charge carriers and extends the charge lifetime, leading to higher activity of 

CS/GCN. The photogenerated electrons after transfer to the carbon core are involved in the formation 

of •OH and •O2− radicals. Additionally, sp2 carbon bonding also possesses high affinity to the 

incident light absorption serving as the support for the efficient dye degradation. The photons are 

absorbed through GCN under visible light irradiation, causing excitation of electrons and their 

transfer from valence band (VB) to conduction band (CB) (1). The holes are generated simultaneously 

in the VB. The ECB of GCN is more negative than O2/•O2− potential (ca. −0.33 eV). Therefore, the 

electrons may react with oxygen adsorbed on the catalyst surface during the transfer to the carbon 

core forming •O2− radicals (2, 3). The holes in VB of GCN are not able to react with OH– to yield •OH 

due to lower potential than +1.99 eV (E0(OH–/•OH) = +1.99 eV/vs. NHE). However, •OH can be 

produced in various independent reactions, namely •O2− radicals could react with H2O2 to form •OH, 

OH− and O2 (5). Peroxide radicals, (HO2•) formed through the reaction between •O2− and H+ (6), could 

transform into hydrogen peroxide (H2O2) (7). Next, H2O2 could decompose into •OH after photon 

absorption from Vis region (8). Thereby, the radicals produced in the above described processes are 

responsible for the dye degradation [33,34,59,61]. 

Figure 10. (a) PL spectra of GCN and CS/GCN, (b) effect of scavenger additive on the photocatalytic
decomposition of AR18 over CS/GCN, and (c) schematic illustration of the mechanism of photocatalytic
decomposition of AR18 over CS/GCN.
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Transient photocurrent response and LSV technique (Figure 9b,c) were used to further investigate
the photogenerated charge carrier transport and separation behavior. Both techniques revealed the
enhanced photocurrent response after graphitic carbon nitride incorporation into carbon spheres. This
confirms improved transport and separation behavior of the nanocomposite in comparison to the bulk
graphitic carbon nitride, which is in good agreement of PL spectroscopy. Despite the suitable band
alignment of the hybrid components, it can be also related to the proper light harvesting owing to sp2

carbon clusters and enhanced active surface area.
In order to propose the possible mechanism of the photocatalytic AR18 degradation, the reactive

oxidative species (ROS), responsible for dye removing, should be assessed. Three scavengers such as
tert-butyl alcohol (t-BuOH), ammonium oxalate (C2H8N2O4) and p-benzoquinone (C6H4O2) were used
as scavengers for hydroxyl radicals (•OH), holes (h+) and superoxide radicals (•O2−) in decolorization
of AR18, respectively. The photocatalytic decomposition of AR18 over CS/GCN and in the presence of
the above-mentioned scavengers is presented in Figure 10b. The proposed mechanism is illustrated in
Figure 10c. Moreover, the possible mechanistic pathways for the degradation of AR18 over CS/GCN
are described in Equations(1)–(10).

The decomposition rate of AR18 decreased from 96% (no scavengers) to 46, 33 and 18% with the
addition of C6H4O2, t-BuOH and C2H8N2O4, respectively. It strongly indicated that all h+, •OH and
•O2

− were the active species involved in the photodegradation process. The degradation of AR18 was
delayed most significantly in the presence of the holes scavenger (ammonium oxalate) which points
out that the oxidation reactions occurred mainly via this reactive oxidative species (10).

The results revealed that carbon spheres play the key role in the enhancement of the photoactivity
of GCN under simulated solar light irradiation. This is due to the synergistic effect between GCN shell
and mesoporous carbon core. The carbon core serves as an acceptor of photogenerated electrons in
conduction band (CB) of GCN, thereby facilitating the separation of photoinduced charge carriers.
This efficient separation of electron–hole pairs inhibits the rapid recombination of charge carriers and
extends the charge lifetime, leading to higher activity of CS/GCN. The photogenerated electrons after
transfer to the carbon core are involved in the formation of •OH and •O2− radicals. Additionally, sp2

carbon bonding also possesses high affinity to the incident light absorption serving as the support for
the efficient dye degradation. The photons are absorbed through GCN under visible light irradiation,
causing excitation of electrons and their transfer from valence band (VB) to conduction band (CB) (1).
The holes are generated simultaneously in the VB. The ECB of GCN is more negative than O2/•O2

−

potential (ca. −0.33 eV). Therefore, the electrons may react with oxygen adsorbed on the catalyst surface
during the transfer to the carbon core forming •O2

− radicals (2, 3). The holes in VB of GCN are not able
to react with OH– to yield •OH due to lower potential than +1.99 eV (E0(OH–/•OH) = +1.99 eV/vs.
NHE). However, •OH can be produced in various independent reactions, namely •O2

− radicals could
react with H2O2 to form •OH, OH− and O2 (5). Peroxide radicals, (HO2

•) formed through the reaction
between •O2

− and H+ (6), could transform into hydrogen peroxide (H2O2) (7). Next, H2O2 could
decompose into •OH after photon absorption from Vis region (8). Thereby, the radicals produced in
the above described processes are responsible for the dye degradation [33,34,59,61].

Moreover, another mechanism of AR18 decomposition is also possible. For dyes showing
absorption in the visible light range, the ability of the dye excitation itself should also be considered.
This phenomenon is known as dye-sensitization, in which electrons of dye are excited by visible
light absorption (11). The excited electrons (12) can be further transferred from the LUMO of dyes
to the conduction band of GCN in CS/GCN composite (13). In this process cationic radicals and
active electrons are formed. They promote O2 reduction and formation of radical oxygen species (14).
Moreover, cationic radicals can undergo further reactions resulting in dye decomposition (15) [62,63].
In order to prove that dye-sensitization is not a main mechanism of photocatalytic AR18 degradation,
the reaction of photocatalytic decomposition of melamine, which shows absorption in UV light range,
over CS/GCN under simulated solar light irradiation was also conducted (Supplementary Materials,
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Figure S1). The results clearly revealed that CS/GCN exhibited photoactivity in the reaction of melamine
decomposition. The melamine removal degree was over 99 % after 16 h of light irradiation.

GCN + hv→ e−GCN,VB + h+GCN,VB (1)

e−GCN,VB → e−CS (2)

e− + O2 → O2−
∗ (3)

h+GCN,VB + HO− → HO∗ (4)

H2O2 + O2−
∗
→ HO∗ + HO− + O2 (5)

O2−
∗ + H+

→ HO2
∗ (6)

2HO2
∗
→ O2 + H2O2 (7)

H2O2 + hv→ 2HO∗ (8)

HO∗ + dye→ products o f dye degradation→ CO2 + H2O (9)

h+GCN,VB + dye→ dye∗ads+ → products o f degradation (10)

dye + hv → dye∗ (11)

dye∗ → dye+ + dyee− (12)

dyee− → e_
GCN,CB (13)

e−GCN,CB + O−2 → O−∗2 (14)

dye+ → products o f degradation (15)

3. Materials and Methods

3.1. Chemicals and Materials

Chemicals were purchased from Sigma Aldrich (melamine, Tetraethyl orthosilicate TEOS ≥99.0%
(GC), Hexadecyltrimethylammonium bromide CTAB ≥98%) or Chempur (nitric acid 65%, ammonia
solution 25%) and used as received.

3.1.1. Preparation of Graphitic Carbon Nitride (GCN)

The bulk GCN was synthesized via thermal polycondensation of melamine (5 g) in a muffle
furnace at the temperature of 550 ◦C for 2 h with a heating rate of 2 ◦C/min in air atmosphere. Then,
the furnace was cooled down to room temperature and the obtained yellow product was collected and
grounded into the powder. The yield of GCN synthesis was ~35%.

3.1.2. Preparation of Mesoporous Carbon Spheres (CS)

The mesoporous carbon spheres were prepared via chemical vapor deposition (CVD) method
using mesoporous silica spheres (mSiO2_CTAB) as template. mSiO2_CTAB were synthesized via
sol-gel reaction. Briefly, 60 mL of C2H5OH (99.8 %), 1.1 mL of NH4OH (25 %) and 300 mg of CTAB were
sonicated for 0.5 h and further mixed for another 0.5 h. Then 0.4 mL of TEOS was added dropwise to the
solution and the mixture was stirred at room temperature for 12 h. Finally, the obtained silica spheres
were centrifuged, washed with ethanol and distilled water and dried at 80 ◦C for 24 h. In a typical
CS synthesis, the as-prepared SiO2_CTAB template was placed in the alumina boat and introduced
into the center of a horizontal quartz tube in the horizontal furnace. The furnace was heated under
flowing argon (100 sccm) up to 800 ◦C. When the temperature was reached, ethylene was introduced
with a flow rate of 30 cm3/min. CVD reaction time was 4 h. Afterwards, the furnace was cooled down
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to room temperature in Ar. Finally, the obtained sample was treated with HF to remove the silica
template, washed with distilled water and ethanol and dried at 80 ◦C for 24 h.

3.1.3. Preparation of CS/GCN Core/Shell Hybrid

First, the mixture of bulk GCN (1 g) and HNO3 (60 mL, 65 wt %) was placed in a flask fitted with
a reflux condenser and refluxed at 70 ◦C for 3 h. After that, 100 mg of CS was added into the above
suspension and refluxed for additional 2 h. The solid product was washed several times with distilled
water and heated at 250 ◦C for 2 h and the CS/GCN core/shell material was obtained. The schematic
illustration of CS/GCN preparation is presented in Figure 11.
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3.2. Photocatalytic Tests

Acid Red 18 (AR18) was selected as a model dye to evaluate the photoactivity of the synthesized
samples under simulated solar light irradiation (150 W xenon lamp with cut-off light filters of natural
solar condition, Air Mass 1.5G). Typically, in a photocatalytic experiment, 30 mg of photocatalyst
was dispersed in 100 mL of AR18 aqueous solution (10 mg/dm3) and placed in a quartz glass reactor.
In order to avoid evaporation of reaction solution, water cooling of reactor was applied. Before
irradiation the suspension was stirred in the darkness for 1 h to achieve the adsorption–desorption
equilibrium. Afterwards, the mixture was irradiated for 48 h. At regular intervals, about 2 mL of
the reaction mixture was taken from the suspension and the absorbance was measured by UV-vis
spectrophotometer (Helios alpha, Thermo Fisher Scientific, Waltham, MA, USA). The degree of AR18
decomposition was calculated according to the equation C/C0 where C0 is the initial concentration of
the dye solution and C is the concentration at time t.

3.3. Characterization

The morphology and structure of the obtained materials was analyzed by transmission electron
microscopy using an FEI Tecnai G2 F20 S Twin with an accelerating voltage of 200 kV (Frequency
Electronics Inc., Thermo Fisher Scientific, Waltham, MA, USA) and scanning electron microscopy
(TESCAN, VEGA SBU3), acquired at 30 kV acceleration voltage. The atomic force microscope (AFM)
study was carried out using atomic force microscope (Nanoscope V Multimode 8, Bruker AXS,
Mannheim, Germany). Powder X-ray diffraction (XRD) patterns were recorded using an X’Pert Philips
PROX-ray diffractometer employing CuKα radiation (X’Pert PRO Philips diffractometer, Almelo,
The Netherland). The optical properties of the produced materials were investigated by diffuse
reflectance (DR) UV-vis technique using a Jasco spectrometer (Tokyo, Japan). Raman spectra were
recorded via Renishaw In Via Raman spectroscope with excitation wavelength of 785 nm (New Mills,
Kingswood, Wotton-under-Edge, UK). The room temperature photoluminescence spectroscopy (PL)
measurements at 650 nm excitations were performed using fluorescence spectrophotometer F7000
(Hitachi). The specific surface area of nanomaterials was calculated by the Brunauer–Emmett–Teller
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(BET) method using Micromeritics ASAP 2010M apparatus (Norcross, USA). The potential value of
water-based suspension of the samples was revealed in Zeta potential measurements performed via
Zeta Sizer (ZS NanoMalvern Panalytical, Malvern, UK). Electrochemical impedance spectroscopy was
investigated using BioLogic VMP-3 potentiostat (Bio-Logic Science Instruments, Seyssinet-Pariset,
France) station with a standard three-electrode system. A saturated calomel electrode Hg|Hg2Cl2,
KCl(sat.) (SCE) was used as a reference electrode and a platinum wire (surface area ~5 cm2) as a
counter electrode. To prepare the working electrode (WE, 5 mm diameter glassy carbon disk in PEEK
polymer case, ALS Co., Ltd., Japan), 2 mg of catalyst was sonicated in isopropanol, loaded onto WE
surface (5 µL) and dried for 12 h. The electrochemical measurement was examined in water solution of
redox salts K3[Fe(CN)6]/K4[Fe(CN)6], 2.5 mM/2.5 mM with 0.5 M sodium sulfate as base electrolyte.

Linear Sweep Potentiometry (LSV) and Photocurrent response measurements
(Chronoamperometry) were recorded by Autolab PGSTAT302N potentiostat (Herisau, Switzerland) in
a three-electrode test cell with a platinum wire as counter electrode and saturated calomel electrode as
reference. A 60 W LED with 400–700 nm filter was used as a light source. A total of 2 mg of catalyst was
sonicated in ethanol–water solution (volume ratio 1:3) and 25 µL of Nafion solution (5 wt%) for 15 min.
50 µL of obtained homogenous solution was drop-casted onto FTO (Fluorine-doped Tin Oxide) glass
slide (Sigma Aldrich). As-prepared working electrode was placed inside the test cell. 0.5 M sodium
sulfate was used as the electrolyte in all electrochemical measurements. LSV test was performed from
0.15 V to 1.4 V versus SCE with 50 mV/s scan rate. Photocurrent test was measured at 0.5 V versus SCE.

4. Conclusions

In summary, the spherical core/shell hybrid based on ordered mesoporous carbon and graphitic
carbon nitride was prepared via simple and reproducible approach. The as-synthesized non-metal
hybrid exhibited superior photocatalytic activity toward organic dye decomposition under vis-light
irradiation. The synergistic effect caused by above-mentioned components heterojunction improved
carbon nitride properties and successfully eliminated the major drawbacks which hindered its industrial
application. The photocatalytic performance of CS/GCN was nine times higher in comparison to
the bulk GCN. The catalyst also showed high stability after three recycles. The electrochemical tests
enabled confirmation that charge carrier generation and retardation of the electron–hole recombination
were significantly enhanced. The results allowed us to understand how mesoporous carbon spheres
influenced the photocatalytic activity of graphitic carbon nitride. Basing on detailed characterization
of the materials, we found that coupling g-C3N4 with mesoporous carbon affected modification in
the band alignment of the hybrid, which had an effect on the mechanism of reactive oxidative species
formation that was involved in the photodegradation process. This study presents the preparation
route for anew superb metal-free hybrid, which can be suitable for the dye wastewater treatment under
visible light.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/12/1007/s1,
Figure S1: The photocatalytic degradation of melamine over CS/GCN under simulated solar light irradiation.
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