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Abstract: Iron oxide/carbon nanocatalysts were successfully synthesized by the calcination of
ferrocenium at high temperatures ranging from 500 to 900 ◦C. Then the synthesized nanocomposites
were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy), VSM
(Vibrating-Sample Magnetometry), BET (Brunauer-Emmett-Teller surface area measurements), TGA
(Thermogravimetric Analysis), XPS (X-Ray Photoelectron Spectroscopy), EPR (Electron Paramagnetic
Resonance), and CHN elemental analysis. The prepared nanocatalysts were applied for the
decomposition of methylene blue as a model in wastewater treatment. It was unexpected to
discover that the prepared nanocatalysts were highly active for the reaction with methylene blue
in the dark even though no excess of hydrogen peroxide was added. The nanocatalyst calcined at
800 ◦C exhibited the rod shape with the best catalytic activity. The nanocatalysts could be reused for
12 times without the significant loss of the catalytic activity.

Keywords: iron oxide/carbon; ferrocenium; decomposition; methylene blue

1. Introduction

The increasing population and rapid growth of urbanization has led to the increasing shortage of
clean water and a higher demand for wastewater treatment [1,2]. Many methods such as chemical
oxidation, coagulation, flotation, reverse osmosis, photochemical degradation, membrane filtration,
ozonation, electrochemical treatment, and adsorption have been used to eliminate organic and inorganic
components from wastewaters [3–6]. Methylene blue (MB) is an important basic dye widely used in
textile and paper industries [7,8]. This dye leads off eye burns, breathing disorders, heart rate increases,
shock, cyanosis, jaundice, quadriplegia, tissue necrosis, nausea, vomiting, mental confusion, painful
micturition, and methemoglobinemia [9]. In this work, MB was selected as a representative to be
removed from wastewater.

Advanced oxidation processes have been developed as innovative tools involving in the highly
reactive oxygen species for the treatment of wastewater [10–14]. The Fenton reaction [15] is a reaction
between Fe (II) and hydrogen peroxide that generates Fe (III) hydroxide and hydroxyl radicals, and
is commonly studied for the Fenton-like reagents (Fe (III)) [16–18] and photocatalysts (TiO2) [19–24],
and it can also generate hydroxyl radicals to eliminate pollutants. Iron(III) or iron oxide catalysts were
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widely used for Fenton-like degradation or decolorization of methylene blue, such as SnO2/Fe2O3 [25],
γ-Fe2O3 nanocrystals-anchored macro/meso-porous graphene [26], zinc–iron mixed oxide/carbon
nanocomposites [27], ferrocenated compounds [28,29], Fe-doped Sr2Bi2O5 [30], Fe3O4–wheat straw [31],
iron oxide (Fe3O4, γ-Fe2O3, α-Fe2O3)/cellulose [32], α-Fe2O3/TiO2 [33], α-Fe2O3/MCM-41 [34], Fe (II)Fe
(III)-LDHs [35], ZrFe2O5 [36], and α-Fe2O3/Bi2MoO6 [37]. Recently, the paper mill sludge-derived
magnetically separable heterogeneous catalyst for the Fenton-like reaction by degradation of MB was
studied; the Fe-loaded sludge was calcined in air at 380 ◦C for 2 h into the paper mill sludge-derived
Fe-loaded nanocomposite. These catalysts can show reusability and stability in five repeated
runs [38]. However, these catalysts for the degradation of MB required the use of H2O2 as an
oxidant. Hydroxyl radicals are the key intermediates in those processes. Even though photocatalysts
are attractive, they require light irradiation and also high solar energy conversion. Therefore, new
catalysts with improved activities will be needed for sustainable development.

Ferrocene [39] is a redox active species that can react with hydrogen peroxide to generate
hydroxyl radicals for the oxidation of organic compounds [40,41]. In addition, ferrocene has been
used as a precursor for the synthesis of iron oxide nanoparticles and carbon nanotubes [42–44].
Iron oxides are stable, abundant and available on earth and very attractive for catalysis [45–47].
Herein, novel ferrocene-derived iron oxides/carbon nanocatalysts showing high activities for the
MB decomposition in the dark condition without the addition of H2O2 will be demonstrated.
In addition, the catalysts were characterized by transmission electron microscopy (TEM), X-ray
photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), electron paramagnetic resonance
(EPR) spectroscopy, Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis
(TGA), vibrating sample magnetometer (VSM) and carbon, hydrogen and nitrogen (CHN) elemental
analysis. The products or MB solutions were analyzed by Ultraviolet-Visible (UV-VIS) spectroscopy,
flame atomic absorption spectroscopy (FAAS), and electrospray ionization mass spectroscopy (ESI–MS).

2. Results and Discussion

Ferrocenium [(C5H5)2Fe]+ was simply prepared by the reaction of ferrocene with concentrated
sulfuric acid [39,48,49]. Then the calcination of ferrocenium in a closed crucible was carried out in a
furnace under atmospheric condition at a specific temperature ranging from 500–900 ◦C as shown in
Scheme 1.
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distinctive showing the hexagonal phase of α-Fe2O3 (JCPDS no. 33-0664) [50,51]. α-Fe2O3 is known as
an active catalyst for the photocatalytic activity [52–54]. Moreover, the average crystallite sizes in the
samples were calculated from the XRD line broadening using the Scherrer’s formula [55]. The results
of 400, 500, 600, 700, 800 and 900 ◦C were 26, 47, 56, 59, 67 and 67 nm, respectively. As shown in
Figure 2 (TEM), it was obviously that the prepared samples were nanocomposites in which the particle
sizes of samples were 100, 66, 28, 28 and 43 nm obtained from the calcination at 400, 500, 600, 700,
and 900 ◦C, respectively. In addition, the 800 ◦C sample exhibited a rod shape with 555 nm length and
60 nm width. The particle size of the prepared nanocomposites was smallest for the calcination at 600
and 700 ◦C. Therefore, calcination temperatures affect the size of the particles, which increases the
temperature 400–700 ◦C to a small particle size and high temperatures of 800–900 ◦C to a large particle
size due to particle agglomeration.

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 16 

 

distinctive showing the hexagonal phase of α-Fe2O3 (JCPDS no. 33-0664) [50,51]. α-Fe2O3 is known as 
an active catalyst for the photocatalytic activity [52–54]. Moreover, the average crystallite sizes in the 
samples were calculated from the XRD line broadening using the Scherrer’s formula [55]. The results 
of 400, 500, 600, 700, 800 and 900 °C were 26, 47, 56, 59, 67 and 67 nm, respectively. As shown in 
Figure 2 (TEM), it was obviously that the prepared samples were nanocomposites in which the 
particle sizes of samples were 100, 66, 28, 28 and 43 nm obtained from the calcination at 400, 500, 600, 
700, and 900 °C, respectively. In addition, the 800 °C sample exhibited a rod shape with 555 nm length 
and 60 nm width. The particle size of the prepared nanocomposites was smallest for the calcination 
at 600 and 700 °C. Therefore, calcination temperatures affect the size of the particles, which increases 
the temperature 400–700 °C to a small particle size and high temperatures of 800–900 °C to a large 
particle size due to particle agglomeration. 

  

Figure 1. XRD patterns of nanocomposites synthesized by the calcination of ferrocenium at different 
temperatures. (a) 400 °C, (b) 500 °C, (c) 600 °C, (d) 700 °C, (e) 800 °C, and (f) 900 °C. 

 
Figure 2. TEM images of nanocomposites synthesized at (a) 400 °C, (b) 500 °C, (c) 600 °C, (d) 700 °C, 
(e) 800 °C, and (f) 900 °C. 

Previously, the pyrolysis of ferrocene was performed at high temperature (1050 °C) in a closed 
reactor in a sophisticated furnace under an inert atmosphere to yield a mixture of carbon and iron 
[51]. Then the oxidation of the mixture was carried out under a constant air flow to obtain carbon-
coated α-Fe2O3. In our experiment, a simple experiment to produce iron oxide from ferrocene was 

Figure 1. XRD patterns of nanocomposites synthesized by the calcination of ferrocenium at different
temperatures. (a) 400 ◦C, (b) 500 ◦C, (c) 600 ◦C, (d) 700 ◦C, (e) 800 ◦C, and (f) 900 ◦C.

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 16 

 

distinctive showing the hexagonal phase of α-Fe2O3 (JCPDS no. 33-0664) [50,51]. α-Fe2O3 is known as 
an active catalyst for the photocatalytic activity [52–54]. Moreover, the average crystallite sizes in the 
samples were calculated from the XRD line broadening using the Scherrer’s formula [55]. The results 
of 400, 500, 600, 700, 800 and 900 °C were 26, 47, 56, 59, 67 and 67 nm, respectively. As shown in 
Figure 2 (TEM), it was obviously that the prepared samples were nanocomposites in which the 
particle sizes of samples were 100, 66, 28, 28 and 43 nm obtained from the calcination at 400, 500, 600, 
700, and 900 °C, respectively. In addition, the 800 °C sample exhibited a rod shape with 555 nm length 
and 60 nm width. The particle size of the prepared nanocomposites was smallest for the calcination 
at 600 and 700 °C. Therefore, calcination temperatures affect the size of the particles, which increases 
the temperature 400–700 °C to a small particle size and high temperatures of 800–900 °C to a large 
particle size due to particle agglomeration. 

  

Figure 1. XRD patterns of nanocomposites synthesized by the calcination of ferrocenium at different 
temperatures. (a) 400 °C, (b) 500 °C, (c) 600 °C, (d) 700 °C, (e) 800 °C, and (f) 900 °C. 

 
Figure 2. TEM images of nanocomposites synthesized at (a) 400 °C, (b) 500 °C, (c) 600 °C, (d) 700 °C, 
(e) 800 °C, and (f) 900 °C. 

Previously, the pyrolysis of ferrocene was performed at high temperature (1050 °C) in a closed 
reactor in a sophisticated furnace under an inert atmosphere to yield a mixture of carbon and iron 
[51]. Then the oxidation of the mixture was carried out under a constant air flow to obtain carbon-
coated α-Fe2O3. In our experiment, a simple experiment to produce iron oxide from ferrocene was 

Figure 2. TEM images of nanocomposites synthesized at (a) 400 ◦C, (b) 500 ◦C, (c) 600 ◦C, (d) 700 ◦C,
(e) 800 ◦C, and (f) 900 ◦C.



Catalysts 2019, 9, 948 4 of 16

Previously, the pyrolysis of ferrocene was performed at high temperature (1050 ◦C) in a closed
reactor in a sophisticated furnace under an inert atmosphere to yield a mixture of carbon and iron [51].
Then the oxidation of the mixture was carried out under a constant air flow to obtain carbon-coated
α-Fe2O3. In our experiment, a simple experiment to produce iron oxide from ferrocene was successfully
carried out by the transformation of ferrocene to ferrocenium first, and then the calcination of the
synthesized ferrocenium in a closed crucible inside a furnace under ambient atmosphere. The ionic
character of ferrocenium in the mixture enhanced the thermal stability in which the mixture started to
be decomposed at 500 ◦C and completed the decomposition of organic moieties at 600 ◦C as shown in
Figure 3 and Table 1. The prepared nanocomposites exhibited the magnetic properties using VSM
analysis as shown in Figure 4 and Table 2. It can be found that the magnetic saturation (Ms) values
of 500–900 ◦C were 4.43, 6.71, 4.65, 5.86, and 0.28 emu g−1, respectively. The 500–800 ◦C samples
exhibited super-paramagenetic behavior that observed the narrower loop, while the broad loop at
900 ◦C showed the ferromagenetic behavior. The difference between the ferromagenetic behavior
and super-paramagenetic behavior is primarily determined by the size of the particle. CHN analysis
provided the carbon percentages at 25.1, 25.8, 28.2, 6.5, and 1.5 for the samples calcined at 500, 600, 700,
800, and 900 ◦C, respectively, and the hydrogen percentages were low for all samples.
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ferrocene and ferrocenium salt.

Table 1. Show weight lost in percentage and in milligram in three parts.

Samples
Part I (350–450 ◦C) Part II (450–550 ◦C) Part III (550–800 ◦C) Sample

Weight
(mg)

Weight
Loss (%)

Weight
Loss (mg)

Weight
Loss (%)

Weight
Loss (mg)

Weight
Loss (%)

Weight
Loss (mg)

500 ◦C 5.675 0.376 60.293 3.997 34.032 2.256 6.630
600 ◦C 8.127 0.548 54.717 3.693 37.156 2.508 6.750
700 ◦C 2.980 0.199 37.962 2.535 59.058 3.943 6.678
800 ◦C 2.249 0.145 17.360 1.125 80.391 5.212 6.484
900 ◦C 0.386 0.028 0.188 0.013 99.426 7.280 7.323
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Figure 4. Hysteresis curve of nanocatalysts synthesized at different calcination temperatures. (a) 500 ◦C,
(b) 600 ◦C, (c) 700 ◦C, (d) 800 ◦C, and (e) 900 ◦C.

Table 2. Shows the coercivity (Hci), magnetization (Ms), and retentivity (Mr).

Samples Coercivity (G) Magnetization (emu/g) Retentivity (emu/g)

500 ◦C 198.73 4.4323 1.1041
600 ◦C 45.677 6.7054 0.35029
700 ◦C 48.933 4.6540 0.24313
800 ◦C 238.11 5.8552 1.6709
900 ◦C 3878.3 0.27934 0.11349

The XPS spectra of nanocomposites also confirmed the presence of iron oxide and carbon in the
samples as shown in Figure 5. Considering the XPS spectra of Fe 2p from nanocomposites calcined at
500–900 ◦C (Table 3), there was a tendency to detect species at lower binding energies for the calcination
at 600 ◦C, indicating the higher ratio of iron (II) and iron (III) [56–59]. The presence of the iron (II)
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species was probably derived from the reduction of iron (III) by carbon, indicating the close contact of
iron oxide and carbon in the nanocomposites. The C 1s spectrum at the binding energies were assigned
to the C–C, C–O, O–C=O, and O–C=OH, shown in Figure 5. The Fe3C-based materials were potential
Fenton-like catalysts [60], that was found at 283.8 eV in the 700 and 800 ◦C nanocatalysts. The curves
fitting of O 1s for 500–900 ◦C nanocatalysts found the binding energies at 530 eV that were assigned to
Fe–O, while the 700 and 800 ◦C nanocatalysts were OH− of FeOOH (530.8 eV) and Fe–OH (532 eV).
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Figure 5. XPS spectrum of Fe 2p, O 1s, and C 1s of nanocomposites synthesized at different
calcination temperatures.

Table 3. The XPS assignments from binding energies.

Binding Energy (eV) Assignments
500 ◦C 600 ◦C 700 ◦C 800 ◦C 900 ◦C

- - - - 710.0 Fe2+2p3/2 of FeO
710.2 710.9 710.4 710.4 711.3 Fe3+2p3/2 of Fe2O3
711.9 712.4 711.9 711.9 - Fe3+ of FeOOH
713.9 714.2 713.7 713.7 713.2 Fe2+2p3/2 of Fe2O3

- - - - 723.3 -
724.9 724.4 723.8 723.8 724.4 Fe3+2p1/2 of Fe3O4
725.9 725.9 725.1 725.1 726.3 Fe3+2p1/2 of Fe2O3
727.7 727.7 727.1 727.1 - Fe3+2p1/2 of Fe2O3

- - 529.7 - 530.1 Fe–O
530.5 530.4 - - - Fe–O

- - 530.8 530.8 - –OH of FeOOH
532.2 532.2 - - 531.4 O=C

- - 532.2 532.1 532.0 Fe–OH
- - - 533.4 532.9 O–C

533.7 533.7 533.7 - 533.7 C–OH

- - 283.8 283.8 - Fe3C
284.9 285.0 285.0 285.0 284.8 C–C

- - - - 285.9 C–O
286.7 286.6 286.6 286.6 286.7 O–C=O
287.9 - 287.9 - - C=O

- 288.4 - 288.2 288.4 O=C–OH
289.2 289.6 289.2 289.3 289.3 O=C–OH

- 290.6 - - - CO3
2−
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The decomposition of MB was selected for testing the catalytic activity of iron oxide/carbon
nanocomposites. First, 100 cm3 of 1 × 10−5 mol/dm3 of methylene blue solution was added into a
container and then 100 mg of nanocatalyst was added. The mixture became acidic at pH of 3. It was
allowed to be stirred for 5 min for adsorption and desorption equilibrium. The solution was sampled
every 10 min and the percentages of the decomposition of the solution were calculated after being
measured by UV-VIS spectroscopy by monitoring the absorbance at 662 nm, as shown in Figure 6.
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First, the decomposition of methylene blue in the presence of iron oxide/carbon nanocomposites
was carried out under UV irradiation and hydrogen peroxide was added to the reaction.
However, the color of methylene blue disappeared suddenly when hydrogen peroxide was added.
As shown in Figure 7, the control experiment showed the inactive decomposition. The iron oxide/carbon
nanocomposites synthesized by the calcination of ferrocenium at 500–800 ◦C were very highly active
nanocatalysts for the decomposition of methylene blue, even though no UV irradiation was applied.
However, the catalytic activity of iron oxide/carbon nanocomposites in the dark was slightly lower
than the catalytic activity under UV irradiation. The most active nanocatalysts were nanocomposites
calcined at 800 ◦C, which exhibited the rod shape of particle size, specific surface area 49.5 m2/g
(Table 4) and the high concentration of iron (II) in the sample while the nanocomposites calcined 900 ◦C
exhibited the low activities. The 500–700 ◦C nanocatalysts showed the comparable percentage of carbon
while the 800 and 900 ◦C nanocatalysts showed very low percentage of carbon. The decomposition
of methylene blue was very slow and incomplete in the presences of nanocatalysts without carbon.
However, the low percentage of carbon in the 800 ◦C nanocatalyst showed a significant increasing of
the catalytic activity. Therefore, this indicated the synergistic activity of iron oxide and carbon in the
decomposition of methylene blue. The other catalysts such as Fe0/Fe3O4 [61], iron oxide/silica [62,63],
iron oxide/MCM-41 [34], and iron-based or iron oxide/carbon nanocomposites [64–66], have been
reported for the decomposition of dyes with the excessive amount of hydrogen peroxide while the
other catalysts such as Cu2(OH)2NO3/ZnO [67], pyrite (FeS2) [68], and Fe/Fe2O3 [69,70] have also been
reported for the effective decomposition of dyes without the excess of hydrogen peroxide.

As shown in Figure 8, different amounts of nanocatalysts exhibited different catalytic activities.
The decomposition efficiency is increased with the increasing amount of catalyst. This indicated the
active species must be derived from nanocatalysts, not from other sources. However, the catalytic
activity could not be differentiated at the higher amount of nanocatalysts (more than 100 mg) due
to probably the limiting diffusion of oxygen gas. By assuming the pseudo-first-order reaction of the
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decomposition of methylene blue, the decomposition rate constants may be able to be extracted from
these curves. A linear relationship between the decomposition rate constants and the amount of
nanocatalysts was obtained indicating that the active species must be derived from nanocatalysts
(see Figure 9).
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Table 4. Showing the analysis of surface area of nanocatalysts synthesized at different
calcination temperatures.

Samples Specific Surface Area (m2/g) Total Pore Volume (cc/g) Pore Size (nm)

500 ◦C 210.5 2.107 × 10−1 400.3
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Figure 9. (a) The second order kinetic studies of methylene blue decomposition in the presence of
iron oxide/carbon nanocomposites at different amounts; (b) plot of rate constant and the amount
of nanocatalysts.

As shown in Figure 10, the EPR spectra of DMPO adducts in the presence of nanocatalysts
confirmed that the active species was superoxide radicals (see Table 5) for EPR parameters simulated by
WinSim [71]. However, DMPO-OOH has very short lifetime and it can readily decompose to hydroxyl
radical. Therefore, the EPR signals of DMPO-OH adduct were also observed. Moreover DMSO is an
inhibitor which can react with DMPO to give EPR signals [72].
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Figure 10. (a) Experimental and (b) simulated EPR spectra of DMPO-OOH adducts observed in the
presence of the 800 ◦C nanocatalyst in phosphate buffer 7.4.
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Table 5. EPR parameters in phosphate buffer for simulated spectrum by WinSim.

Adduct
Hyperfine Splitting Constant (G)

Percentage
aN aHβ aHγ

500 ◦C
DMPO-OOH 15.668 23.372 0.384 83.190

DMPOX 14.729 - - 11.322
DMPO-OH 14.208 15.903 2.780 5.487

600 ◦C
DMPO-OOH 15.478 23.580 0.950 68.626

DMPOX 14.700 - - 25.754
DMPO-OH 14.589 16.539 2.828 5.620

700 ◦C
DMPO-OOH 15.646 22.866 0.501 79.773

DMPOX 14.846 - - 14.184
DMPO-OH 14.382 16.434 2.636 6.042

800 ◦C
DMPO-OOH 15.622 23.037 0.491 80.189

DMPOX 14.706 - - 14.013
DMPO-OH 14.406 15.302 2.685 5.797

900 ◦C
DMPO-OOH 15.631 23.324 0.466 82.237

DMPOX 14.753 - - 12.835
DMPO-OH 13.984 15.762 2.717 4.927

ESI–MS of methylene blue decomposition was performed to check the possible structures of
decomposition products before and after the leaching test as shown in Scheme 2. Before the leaching
test, it was observed at m/z of 284 which was attributed to original MB. The new results appeared
at m/z of 301, 221, 161, and 149 after leaching (5–125 min) indicate that MB was decomposed due to
the breaking of the MB molecule [73,74]. The detected low molecular weight species confirmed the
decomposition of methylene blue in the presence of iron oxide/carbon nanocatalysts. The mechanism
of methylene blue decomposition in the presence of iron-oxide/carbon nanocomposites may be due
to the attack of hydroxyl radicals as proposed in the previous report [18,68,75]. This nanocatalyst
was attractive because it provided reusability for decomposition of methylene blue up to 12 times
without loss of catalytic activity as shown in Figure 11. In addition the catalytic activity in the
second cycle became more highly active than the first cycle due to high crystallinity of nanocatalysts.
The nanocomposites showed the leaching of iron into solution at 21.6 mg/dm3 when checked by
atomic absorption spectroscopy. This system showed the comparable leaching of iron species to the
amorphous catalyst in other reports [76,77].



Catalysts 2019, 9, 948 11 of 16Catalysts 2019, 9, x FOR PEER REVIEW 11 of 16 

 

 

Scheme 2. Electrospray Ionization–Mass Spectrometry (ESI–MS) of methylene blue after 
decomposition by the 800 °C catalyst at reaction time (a) stock methylene blue solution 1 × 10−5 mol 
dm−3, (b) 5 min, (c) 15 min, (d) 25 min, (e) 125 min. 

 

Figure 11. The recycling of the 800 °C nanocatalyst in the decomposition of methylene blue. 

3. Materials and Methods  

3.1. Chemicals 

Ferrocene was procured from Acros organic, sulfuric acid was used by BDH chemical Ltd., and 
methylene blue (MB) was from Merck. 

Scheme 2. Electrospray Ionization–Mass Spectrometry (ESI–MS) of methylene blue after decomposition
by the 800 ◦C catalyst at reaction time (a) stock methylene blue solution 1 × 10−5 mol dm−3, (b) 5 min,
(c) 15 min, (d) 25 min, (e) 125 min.

Catalysts 2019, 9, x FOR PEER REVIEW 11 of 16 

 

 

Scheme 2. Electrospray Ionization–Mass Spectrometry (ESI–MS) of methylene blue after 
decomposition by the 800 °C catalyst at reaction time (a) stock methylene blue solution 1 × 10−5 mol 
dm−3, (b) 5 min, (c) 15 min, (d) 25 min, (e) 125 min. 

 

Figure 11. The recycling of the 800 °C nanocatalyst in the decomposition of methylene blue. 

3. Materials and Methods  

3.1. Chemicals 

Ferrocene was procured from Acros organic, sulfuric acid was used by BDH chemical Ltd., and 
methylene blue (MB) was from Merck. 

Figure 11. The recycling of the 800 ◦C nanocatalyst in the decomposition of methylene blue.

3. Materials and Methods

3.1. Chemicals

Ferrocene was procured from Acros organic, sulfuric acid was used by BDH chemical Ltd.,
and methylene blue (MB) was from Merck.

3.2. Preparation of Nanocomposites

Ferrocene 3.0 g (0.016 mol) was mixed with 2.5 cm3 of concentrated sulfuric acid and the mixture
was stirred until the color changed to dark blue. The mixtures were first heated at 100 ◦C for 1 h
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and followed by at a specific temperature (400, 500, 600, 700, 800 and 900 ◦C) for 5 h in a CoorTM

high-alumina crucible, capacity 100 cm3.

3.3. Decomposition of Methylene blue

The catalyst at 25, 50, 100, 150, and 200 mg of 500–900 ◦C was added into the methylene blue
solution 1 × 10−5 mol/dm3 (methylene blue dissolved in DI-water) in a 100 cm3 beaker made from
Pyrex glass. H2O2 is not necessary. The methylene blue was continuously stirred for 5 min in the dark
for adsorption-desorption equilibrium. The methylene blue was sampled at the first 5 min for 3 cm3

and poured into a centrifuge tube, and then centrifuged at 3300 rpm for 7 min. After sampling the
MB at the first 5 min it was continually stirred. The MB was sampled every 10 min until 120 min and
then centrifuged. After that, the MB solution was measured by UV-VIS spectroscopy from 400–700 nm
(run DI-water as blank). Finally the MB solution which was sampled at the times of 5, 15, 25 and
125 min was characterized by ESI–MS. Moreover, the reusability of the catalyst was investigated.
The percent of decomposition was defined as the Equation (1) where A0 and At were absorbances at
the starting point and a specific time:

Percent decomposition = [(A0 − At) × 100]/A0 (1)

3.4. Instruments

Transmission electron microscopy (TEM) was performing using FEI, TECNAI T20 G2 Acc. Voltage
160 kV. The chemical composition of the sample surface was investigated by X-ray photoelectron
spectrometer (XPS; AXIS ULTRADLD, Kratos analytical, Manchester UK.) The base pressure in
the XPS analysis chamber was about 5 × 10−9 torr. The samples were excited with X-ray hybrid
mode 700 × 300 µm spot area with a monochromatic Al Kα 1,2 radiation at 1.4 keV. X-ray anode
was run at 15kV 10 mA 150 W. The photoelectrons were detected with a hemispherical analyzer
positioned at an angle of 45◦ with respect to the normal to the sample surface. X-ray diffraction
spectroscopy (XRD) was performed on Rigaku, Miniflex II, Japan. Thermal gravimetric analysis
(TGA) was performed on METTLER-TOLEDO, model SDTA 851. Vibrating sample magnetometry
(VSM) was performed on Lakeshore, 7404. Electron paramagnetic resonance spectroscopy (EPR)
was performed on JEOL, JES-RE2X. A catalyst (3.04 mg) was dissolved in phosphate buffer solution
(prepared by mixing Na2HPO4 120.6 mg and NaH2PO4 51 mg in deionized water 25 cm3) 2 cm3 and
DMPO 5,5-Dimethyl-1-pyrroline N-oxide (7.637 µL), sonicated for 10 min and then pipetted into an
EPR tube. EPR signals were simulated by Winsim program. UV-visible spectroscopy was performed
on Jasco Model V-530. BET was performed by Autosorb-1, Quantachrome. CHN elemental analysis
was performed by Perkin Elmer 2400 Series II CHNS/O Analyzer. ESI–MS was performed by Bruker
MicroTOF. FAAS was perform on Perkin Elmer AA 3310, using Fe lamp (wavelength = 248.3 nm), flow
rate 4 ml/min, and prepared standard Fe at 1, 2.5, 5, and 9 ppm (standard Fe 1000 ppm prepared from
Fe (Cl2), 6H2O amount 4.9398 g in 20 cm3 in concentrated HNO3, diluted with H2O).

4. Conclusions

Iron oxide/carbon nanocomposites were successfully prepared from the calcination of ferrocenium.
This method was simple without sophisticated instruments such as a closed reactor and an inert
atmosphere. Then the decomposition of methylene blue was tested for the catalytic activity of iron
oxide/carbon nanocomposites. The decomposition of methylene blue was achieved by trapping
molecular oxygen as hydroxyl radicals surrogate without UV irradiation. The active species were
superoxide radicals derived from iron-oxide/carbon nanocomposites. This method can be applied in
the water treatment without the requirement of added hydrogen peroxide.
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