

1 Article

2 Supporting Information

3

4 Cleanup and Conversion of Biomass Liquefaction

5 Aqueous Phase to C₃ – C₅ Olefins over Zn_xZr_yO_z

6 Catalyst

7 Stephen D. Davidson¹, Mathew Flake¹, Juan A. Lopez-Ruiz¹, Alan R. Cooper¹, Yaseen Elkasabi²,

8 Marco Tomasi Morgano³, Vanessa Lebarbier Dagle¹, Karl O. Albrecht⁴, Robert A. Dagle^{1*}

- 9 ¹ Energy and Environment Directorate, Institute for Integrated Catalysis Pacific Northwest National Laboratory,
- 10 Richland, WA 99352, USA
- 11 ² USDA-ARS Eastern Regional Research Center, Wyndmoor, PA 19038, USA
- 12 ³ ARCUS Greencycling Technologies GmbH, Ludwigsburg, Germany
- 13 ⁴ Archer Daniels Midland Company, James R. Randall Research Center, Decatur, IL 62521, USA
- 14 * Corresponding author: robert.dagle@pnnl.gov
- 15 Received: date; Accepted: date; Published: date
- 16
- 17

18 S1. Composition of aqueous phase feedstocks at different steps of the clean up protocol

19

- 20 **Table S1** LC analysis of USDA-FP feedstock after key steps of clean up protocol. Water is assumed
- 21 to be the remaining mass balance of the samples.

Compound	Initial	Carbon-	Raffinate ^a	Refined	Pre-	Final
		Treated		Extract ^a	distillation ^b	Feedstock ^b
% Carbon	100	73.2	15.1	21.7	21.7	15.1
Retained						
% Carboxylic	100	88.9	24.8	53.5	53.5	45.9
Acid Retained						
	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]
Sorbital	0.155	0.021	0.023	-	-	
Xylitol	0.086	-	-	-	-	-
Glycoladehyde	0.152	0.019	0.100	0.014	-	-
Glycolic acid	0.475	0.214	0.194	0.349	-	-
Levoglucosan	0.724	0.318	0.288	0.327	-	-
Formic acid	0.351	0.120	0.106	0.963	0.163	0.187
Acetic acid	4.78	3.07	1.45	39.6	8.52	9.24
Ethylene Glycol	0.178	0.132	0.134	0.188	-	-
Levulinic Acid	0.062	0.010	0.013	0.110	-	-
Propionic acid	2.89	1.95	1.47	9.23	1.79	1.68
Methanol	2.11	1.35	1.22	0.319	0.162	0.137
1,2-butandiol	0.033	-	-	0.026	-	-
Ethanol	1.38	0.718	0.538	3.603	0.630	0.674
Acetone	0.162	0.049	0.034	-	-	0.157
Methyl acetate	0.692	-	-	0.424	-	-
1-propanol	0.056	-	-	0.103	-	-

3-methyl-2-	0.100	-	-	0.002	-	-
cyclopentene-1-						
one						
Furfual	0.186	-		0.002	-	-
MTBE	-	-	2.69	20.9	3.29	0.161

- ^a Aqueous (raffinate) and organic (extract) phases formed by the addition of MTBE in order to
- 23 perform the LLE.

^bWater was added to the Organic mixture in order to mitigate process equipment corrosion and

- 25 achieve desirable steam/carbon ratios.
- 26
- 27 Table S2 LC analysis of KIT-SP feedstock after key steps of clean up protocol. Water is assumed to
- 28 be the remaining mass balance of samples.

Compound	Initial	Carbon-	Raffinate ^a	Refined	Pre-	Final
		Treated		Extract ^a	distillation ^b	Feedstock ^b
% Carbon	100	30.4	11.7	14.9	14.9	11.8
Retained						
% Carboxylic	100	33.5	6.55	22.2	22.2	22.4
Acid Retained						
	[wt%]	[wt%]	[wt%]	[wt%]	[w.%]	[wt%]
Sorbital	0.215	0.338	0.360	-	0.050	0.022
Xylitol	0.072	-	0.163	-	-	-
Glycoladehyde	0.274	0.196	1.06	0.279	0.570	0.222
Glycerol	0.910	0.487	0.544	0.159	0.064	0.051
Levoglucosan	3.53	3.41	2.40	1.50	0.328	0.122
Formic acid	0.589	0.466	0.317	1.30	0.655	0.607
Acetic acid	9.68	6.62	1.80	34.3	16.41	20.1
Ethylene Glycol	0.264	0.291	0.238	0.294	-	-
Levulinic Acid	0.130	0.040	0.021	0.127	-	0.010
Propionic acid	2.72	2.07	1.39	5.42	0.441	2.98
Methanol	2.99	2.37	1.88	1.11	0.736	0.688

1,2-butandiol	0.060	0.022	-	0.035	-	-
Ethanol	0.575	0.244	0.089	1.10	0.428	0.666
Acetone	0.216	0.090	0.046	-	-	-
Methyl acetate	0.817	0.059	-	-	-	-
1-propanol	0.032	-	-	-	-	-
3-methyl-2-	0.269	-	-	-	-	-
cyclopentene-1-						
one						
1-butanol	1.30	-		-	-	-
MTBE	-	-	2.39	35.2	5.13	0.071

29 a Aqueous (raffinate) and organic (extract) phases formed by the addition of MTBE in order to

30 perform the LLE.

31 ^b Water was added to the Organic mixture in order to mitigate process equipment corrosion and

32 achieve desirable steam/carbon ratios.

33

34	Table S3 ICP anal	sis of USDA-FF	feedstock after	key steps	of clean up	protocol.
----	-------------------	----------------	-----------------	-----------	-------------	-----------

Compound	Initial	Carbon-	Raffinate ^a	Refined	Pre-	Final
		Treated		Extract ^a	distillation ^b	Feedstock ^b
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
Al	13.4	2.46	1.73	-	-	-
Ca	115	84.0	77.4	6.77	-	3.20
К	12.3	1560	1450	85.2	24.4	17.2
Mg	17.6	117	94.2	6.85	-	-
Mn	38.4	-	2.12	_	-	-
Na	9.30	202	147	18.3	13.4	12.8
Р	11.3	95.1	120	-	-	-
Sr	-	-	-	-	-	-
Si	67.0	43.0	34.3	33.1	_	2.65
S	10.6	65.1	44.9	-	-	-

35 ^a Aqueous (raffinate) and organic (extract) phases formed by the addition of MTBE in order to

36 perform the LLE.

- 37 ^b Water was added to the Organic mixture in order to mitigate process equipment corrosion and
- 38 achieve desirable steam/carbon ratios.
- 39

Compound	Initial	Carbon-	Raffinate ^a	Refined	Pre-	Final
		Treated		Extract ^a	distillation ^b	Feedstock ^b
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
Al	-	2.85	2.73	7.48	1.55	-
Са	-	169	181	-	16.3	15.1
K	15.7	4050	1420	20.5	12.8	12.8
Mg	-	288	236	-	-	-
Mn	-	2.75	2.84	-	-	-
Na	28.2	446	365	7.96	10.0	9.64
Р	-	252	406	-	-	-
Sr	-	3.15	3.03	-	-	-
Si	-	111	124	38.1	19.1	3.85
S	56.5	68.5	-	-	-	-

40 **Table S4** ICP analysis of KIT-SP feedstock after key steps of clean up protocol.

41 a Aqueous (raffinate) and organic (extract) phases formed by the addition of MTBE in order to

42 perform the LLE.

43 ^b Water was added to the Organic mixture in order to mitigate process equipment corrosion and

44 achieve desirable steam/carbon ratios.

45

Catalysts 2019, 9, 923

47 Figure S1 KIT-SP feedstock A) Initial B) During Carbon Treatment, After Third Carbon Treatment
48 ~72 h C) After All Carbon Treatment, Five Carbon Treatments ~120 h

49 S2. Composition of diluted aqueous phase feedstocks at different steps of the clean up protocol50

51 In addition to the USDA-FP and KIT-SP feedstocks, two additional aqueous phases generated 52 via Catalytic Fast Pyrolysis (CFP) of Pine and Loblolly Pine were also studied for cleanup using 53 continuous LLE, see Table 5. These two samples had lower concentration of organics (5 wt%) than 54 the previously discussed samples, however, the composition profile remained similar with the 55 carboxylic acids being the most abundant compounds. Following continuous LLE, the concentration 56 of acetic acid increased from 0.49 to 13.5 wt% for the Pine sample and from 1.57 to 20.0 wt% for the 57 Loblolly Pine sample. While these values are low compared to the more concentrated feedstocks, they 58 are at levels that are reasonable to process.

59

60 **Table S5** Summary of dilute feedstock cleanup

	Pine CFP			Loblolly Pine CFT		
	Initial	Raffinate	Extract	Initial	Raffinate	Extract
		(Aqueous)	(Organic)		(Aqueous)	(Organic)
Acetic Acid	0.492	0.241	13.5	1.569	0.392	20.0
[wt.%]						
Propionic	0.131	0.047	1.36	1.147	0.416	2.78
Acid [wt.%]						
Methanol	0.268	0.166	BDL	0.983	0.317	0.791
[wt.%]						
Ca [ppm]	2.67	22.7	BDL	12.99	49	BDL

Na [ppm]	7.24	130	15.6	6.16	138.0	BDL
K [ppm]	4.23	1327	96.9	4.47	1401	18.5
P [ppm]	15.84	102	BDL	BDL	89.09	BDL
S [ppm]	3.51	BDL	BDL	BDL	BDL	BDL

61 62