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Abstract: The achievement of new economically viable chemical processes often involves the
translation of observed lab-scale phenomena into performance in an industrial reactor. In this work,
the in silico design and optimization of an industrial ethanol dehydration reactor were performed,
employing a multiscale model ranging from nano-, over micro-, to macroscale. The intrinsic kinetics of
the elementary steps was quantified through ab initio obtained rate and equilibrium coefficients. Heat
and mass transfer limitations for the industrial design case were assessed via literature correlations.
The industrial reactor model developed indicated that it is not beneficial to utilize feeds with
high ethanol content, as they result in lower ethanol conversion and ethene yield. Furthermore, a
more pronounced temperature drop over the reactor was simulated. It is preferred to use a more
H2O-diluted feed for the operation of an industrial ethanol dehydration reactor.

Keywords: diffusion; ab initio; industrial design; H-ZSM-5; multiscale modeling; adiabatic reactor;
zeolite catalysis

1. Introduction

Since their initial discovery in the late 1970s, the conversion processes of oxygenates have been
gaining importance rapidly as an alternative route for the production of fuels and chemicals [1–3].
Most industrial focus has been given to the conversion of methanol to hydrocarbons, with products
ranging from light olefins to gasoline. Both fixed and fluidized bed reactors are in use in the industry.
A fluidized bed reactor with SAPO-34 catalysts offers the advantage of adequately coping with rapid
catalyst deactivation and the high exothermicity of the methanol-to-olefins (MTO) reaction. However,
the corresponding setbacks are its notable catalyst attrition and low single-pass methanol conversion
in addition to its high investment cost. A fixed bed variant, on the other hand, is simple in construction
and can easily be operated, certainly in adiabatic operation.

The first records on ethanol dehydration date back to the 18th century, and several plants have
been in operation in the course of the 20th century. In contrast to the MTO reaction, ethanol dehydration
is an endothermic process typically operated in a multitubular, isothermal reactor at temperatures
exceeding 623 K. Such a reactor configuration, which employs indirect heating via a heating fluid, has
disadvantages in both its technical and its economic aspects, resulting in a shift towards adiabatic fixed
bed reactors [4]. Initially, the catalyst employed was alumina or silica–alumina, while, more recently,
also zeolites have been considered for this process [5].

A schematic overview of an ethanol dehydration plant is shown in Figure 1 [6]. When starting from
a fermentation broth, i.e., bioethanol, a distillation column (1) is required to partly remove the water
from this ethanol–water mixture. The ethanol feedstock is subsequently mixed with unreacted ethanol
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from the purification section. Next, a heat exchanger (2) allows heat recovery from the reactor effluent,
i.e., the latent heat of the effluent is used to vaporize the ethanol feedstock, which is subsequently
pressurized (3). In a subsequent heat exchanger (4), the ethanol feedstock is superheated. Finally, a
furnace (5) is installed to bring the feed to the temperature of the first ethanol dehydration reactor (6).
The effluent from the first reactor is sent to the next ethanol dehydration reactor (8) via an additional
furnace (7). The number of reactors in series depends on the reaction conditions and the intended
conversion. The effluent of the second reactor undergoes a series of heat exchanges as described above
to ensure maximum heat recovery. Downstream of the reactor, the effluent is separated in a distillation
column (9) into an ethene top stream and a bottom stream comprising water, side products, and
unreacted ethanol. The latter is sent to a second separation column (10) and results in three streams:
side products, i.e., by-products (C3+ olefins and oxygenates), water, and unconverted ethanol, which
can be recycled.

Figure 1. Flow sheet of an ethanol dehydration plant [6] consisting of (1) a pretreatment distillation
column, (2) and (4) heat exchangers, (3) a compressor, (5) and (7) heating furnaces, (6) and (8) ethanol
dehydration reactors, and (9) and (10) gas/liquid separation columns.

The capability of accurately simulating the behavior of a chemical reaction over a broad range of
process conditions opens up perspectives for the design and optimization of industrial chemical reactors.
The current reactor models described in literature typically rely on simplified kinetic models [7]. Efforts
have already been undertaken to extend such models towards more complex reaction networks based
on elementary steps [8–11]. However, employing model parameter values that have been determined
by regression to experimental results, potentially jeopardizes the extrapolative capabilities of the model.
Indeed, it is not guaranteed that all the kinetically relevant reactions are accounted for in the most
adequate manner. In contrast, ab initio developed models incorporate information on the level of the



Catalysts 2019, 9, 921 3 of 21

active site and truly represent the intrinsic kinetics of the investigated reactions within the constraints
under which the corresponding calculations have been performed.

In multiscale industrial reactor modeling, the chemical reaction rates are described via a kinetic
model embedded within a suitable reactor model, which accounts for all relevant physical transport
phenomena. Ab initio reactor modeling has already been successfully applied for thermal processes [12],
but because of the complexity of heterogeneous catalyzed reactions, only few examples of simulations
of catalytic processes solely based on ab initio obtained rate and equilibrium coefficients are reported,
e.g., NH3 synthesis [13] and benzene hydrogenation [14]. For zeolite catalysis, a successful simulation
of an industrial reactor would provide a proof of principle that reliable ab initio modeling of catalytic
reactions is possible from molecular to industrial scale.

A reactor model provides guidelines for the design, optimization, and operation of industrial
reactors. Alwahabi and Froment [15] developed a conceptual reactor design for the MTO reaction using
a SAPO-34 catalyst and compared three different configurations: a multi-tubular quasi-isothermal
reactor, a multi-bed adiabatic reactor with intermediate heat exchangers, and a bubbling fluidized
bed reactor with internal heat exchanger. The advantages of relying on a fundamental kinetic model
was already demonstrated by Park and Froment [16], who explored the use of a multi-bed adiabatic
reactor for maximizing the propylene yield over H-ZSM-5 yield during the MTO reaction. CFD-ased
models for a fixed bed [17] and a fluidized bed [18] using lumped kinetics have also been proposed.
However, so far, no industrial reactor simulation model has been developed for the dehydration of
ethanol on zeolites.

In the present work, a multi-bed adiabatic reactor model was developed for the dehydration of
ethanol on H-ZSM-5 with Si/Al ratio 140 and acid site concentration of 0.003 mol kg−1. The model
also accounts for intermediate heat exchange between the fixed beds. The kinetics implemented in
the reactor model are solely based on quantum chemically obtained rate and equilibrium coefficients.
A comparison of the ab initio modeling-based reactor simulation results with data found in patent
literature provides the ultimate test of the model validity and methodology presented in this work.
The benefits of accurate reaction and reactor model are illustrated by exploration of the water
content effect.

2. Assessment of Internal and External Mass and Heat Transfer Limitations

A key factor in the development of an adequate reactor model is to assess the extent to which
mass and heat transfer inside the catalyst particle and between the fluid bulk in the reactor and the
catalyst surface impact on the overall performance, i.e., a determination of the occurrence of internal
and external heat and mass transport limitations [19].

The most extensively investigated catalyst for ethanol dehydration is H-ZSM-5, which is composed
of pentasil units. It consists of elliptical straight channels (0.53 nm× 0.56 nm) and near-circular sinusoidal
channels (0.51 nm × 0.55 nm) that perpendicularly intersect [20]. This pore network is located in small
crystallites with a diameter (dc) ranging between 10−7 and 10−5 m. These crystallites are typically
embedded in a binder when applied industrially, to increase the mechanical strength and allow the
formation of larger pellets (dp = 10−3

− 10−2 m), so to limit the pressure drop over the catalyst bed.
Therefore, two different length scales for internal mass transport limitations exist. An assessment of
the relative importance of these limitations can be made using the Weisz–Prater criterion [21]:

(n + 1)
2

d2ρpRobs
i

6De,iCs
i
< 0.08 (1)

in which n is the apparent order of reaction, d is the diameter of either the catalyst crystallite (dc) or the
catalyst pellet (dp), ρp is the density, De,i is the effective diffusion coefficient of component i (m2 s−1),
and Cs

i is the concentration of component i at the catalyst surface.
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The Carberry number [22] (Ca) allows verifying the absence of external mass transfer limitations.
It expresses the fractional concentration difference between the concentration of component i in the
bulk phase, Cbl

i , and the concentration of component i on the external surface, Cs
i :

Ca =
Cbl

i −Cs
i

Cbl
i

=
Robs

i

kfiasCbl
i

<
0.05

n
(2)

where Robs
i is the observed reaction rate per unit of catalyst mass, kfi is the external mass transfer

coefficient of component i which can be calculated via correlations, as is the specific external surface
area of the catalyst, i.e., 6/dp for spherical particles, Cbl

i an Cs
i refer to the bulk and surface concentration

of component i, respectively, and n is the reaction order.
Mears [22] proposes criteria to assess external (Equation (3)) and internal heat transfer limitations

(Equation (4)), similar to external mass transfer limitations, stating that the observed reaction rate
should not deviate more than 5% from the rate under isothermal conditions:

∆Tfilm =
Robs

w,i ρp dp |−∆Hr|

6 α Tbl

Ea

R Tbl
< 0.05 (3)

∆Tpellet =
Robs

w,i ρp d2
p |−∆rH|

60 λp Tbl

Ea

R Tbl
< 0.05 (4)

where |−∆Hr| corresponds to the reaction enthalpy, α is the heat transfer coefficient inside the film, i.e.,
the boundary layer between fluid and catalyst surface, λp is the catalyst pellet heat conductivity, Tbl is
the bulk temperature, and Ea is the apparent activation energy of the reaction.

Table 1 shows the results of the transport limitations assessment for ethanol dehydration in an
industrial reactor using H-ZSM-5. It can be seen that the catalyst particle is practically isothermal,
which is consistent with the results of Froment et al. [23]. In addition, external transport limitations
can also be neglected.

Table 1. External and internal heat and mass transport limitations in an industrial ethanol
dehydration reactor.

Heat Transport Limitations

External Equation (3) |∆Tfilm| 0.012 <2.35

Internal Equation (4)
∣∣∣∆Tpellet

∣∣∣ 0.736 <2.35

Mass transport limitations

External Equation (2) Ca 0.00764 <0.05

Internal Equation (1) See Figure 2

The results obtained by applying the Weisz–Prater criterion are shown in Figure 2 for a wide range
of pellet and crystallite diameters and effective diffusion coefficients. The area below the black line,
which indicates the limit of 0.08, is the region where internal diffusion limitations will occur. Above
that line, no internal diffusion limitations will occur. It can be seen that, under the conditions and
catalyst studied in this work, internal mass transfer limitations are only expected at the pellet scale.
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Figure 2. Internal mass transfer limitations assessed by the Weisz–Prater criterion (Equation (1)) in
an industrial ethanol dehydration reactor as a function of particle diameter d, which can correspond
either to the crystallite diameter, i.e., dc, or to the pellet diameter, i.e., dp, and the effective diffusion
coefficient De,i. The black line indicates the criterion limit of 0.08. Boxes indicate the typical ranges of
diffusion coefficient and diameter for either crystallite or pellet. (Green: no internal mass transport
limitations; red: internal mass transport limitations).

3. Industrial Reactor Model for Ethanol Dehydration

3.1. Reactor Model

A graphical representation of the reactor model and the phenomena that are taken into
consideration are given in Figure 3. The reactor model consists of a tubular fixed bed reactor
with specified length and diameter, i.e., Lr and dr. The molar inlet flow rate of ethanol and water, as
well as the inlet temperature and pressure, are specified. The reactor is operated in adiabatic mode.
The pressure drop over the fixed bed along the axial reactor coordinate is also taken into account.
Further, the reactor model explicitly includes intraparticle mass transfer limitations which lead to a
typical concentration profile, as shown below the catalyst pellet.
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Figure 3. Graphical representation of the fixed bed reactor for ethanol dehydration.

3.1.1. Macroscale: The Reactor

The reactor is described by continuity equations for the conservation of mass, energy, and
momentum. The reactor is considered to be in steady state and, hence, no accumulation term has
to be added. A one-dimensional heterogeneous reactor model with ideal plug flow was considered.
The continuity equation for component i in the gas phase, e.g., ethanol, is given by:

dFi

dW
= Ri (5)

in which Fi is the molar flow rate of gas phase component i (mol s−1), W is the catalyst mass (kg), Ri is
the net rate of formation of gas phase component i (mol s−1 kg−1).

As the reactor is operated adiabatically, no heat exchange with the wall is occurring, and thus, the
energy equation for the gas phase is given by:

dT
dW

=
1

Gcp

ncomp∑
i=1

∆Hf,iRi (6)

T is the temperature (K), ∆Hf,i is the standard formation enthalpy of component i (J mol−1), G is
the total mass flow rate (kg s−1), cp is the heat capacity of the gas (J kg−1 K−1). The latter is determined
via the method of Chung et al. [24]. The standard formation enthalpy can be determined via a group
additivity method such as Benson’s or directly taken from the literature [24].

Momentum can be lost throughout the reactor because of friction of the gas with the packed bed
and is accounted for by:

dpt

dW
= −f

G2

ρbρfA
3
r dp

(7)

where pt is the total pressure in the reactor (Pa), ρfl is the density of the fluid (kg m−3), ρb is the bed
density (kg m−3), Ar is the cross-sectional surface area of the reactor tube (m2), and dp is the diameter
of the catalyst pellet (m).
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The friction factor f is determined by a correlation proposed by Hicks [25]:

f = 6.8
(1− εB)

1.2

ε3
B

Re−0.2
p (8)

where εB is the bed porosity, and Rep is the pellet Reynolds number, which is given by:

Rep =
ρbusdp

µ(1− εB)
(9)

where us is the superficial velocity (m s−1), and µ is the dynamic viscosity of the gas phase mixture
(Pa s), which is determined according to the method of Chung et al. [24]. The bed porosity εB can be
found via the correlation of Haughey and Beveridge [26]:

εB = 0.38 + 0.073

1 +

(
dt
dp
− 2

)2

(
dt
dp

)2

 (10)

where dt is the diameter of the reactor (m).
The initial conditions for this set of differential equation (Equations (6)–(8)) are given by:

Fi = F0
i

T = T0

pt = p0
t

 at W = 0 (11)

3.1.2. Microscale: The Catalyst Pellet

A one-dimensional mass balance for each gas phase component i over an infinitesimal volume of
the catalyst pellet is considered:

∂Ci

∂t
= Riρs −

4

d2
p

(
s
ξ

De,i
∂Ci

∂ξ
+
∂De,i

∂ξ
∂Ci

∂ξ
+ De,i

∂2Ci

∂ξ2

)
(12)

Here, ρs is the solid density of the catalyst (kg m−3), Ci is the concentration of the gas phase
component i inside the catalyst pellet (mol m−3), ξ is the position coordinate within the pellet, s is the
pellet shape factor, i.e., 0, 1 or 2 for, respectively, a slab, a cylinder, and a sphere, Ri is the net rate of
formation of component i (mol s−1 kg−1), and De,i is the effective diffusion coefficient for gas phase
component i (m2 s−1).

For this set of differential equations, the following initial conditions were considered:

Ci = Cs
i ξ = 1

dCi
dξ = 0 ξ = 0

(13)

In contrast to a homogeneous medium, the porous pellets consist of interconnected non-uniform
pores, inside which the gaseous components move. This internal void fraction of the porous material
and the tortuous nature of the pores are taken into account by using the effective diffusivity for
component i, i.e., De,i:

De,i =
εp

τp
Di (14)

where εp is the porosity, i.e., the fraction of the volume occupied by the pores, and τp is the tortuosity.
The diffusion coefficient Di is given as the sum of two resistances by the so-called Bosanquet

equation [27], which is composed of the diffusion coefficient, corresponding to intermolecular collisions,
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i.e., Di,m, and the Knudsen diffusion coefficient, i.e., Di,K, corresponding to the collisions of the molecules
with the pore wall:

1
Di

=
1

Di,m
+

1
Di,K

(15)

The molecular diffusion coefficient Di,m is preferably calculated using the rigorous Stefan–Maxwell
model [28,29], but this can be computationally demanding. The bulk diffusivity of gas phase component
i in a gas mixture, Dm,i, is therefore calculated from the individual binary diffusion coefficients, using
the Wilke equation [30]:

Di,m =


∑

j = 1
j , i

yj

Dij



−1

(16)

where yi is the molar fraction of component i in the gas phase.
The Wilke equation assumes diffusion in a stagnant mixture and is valid when using dilute

systems. Solsvik and Jakobsen [31,32] compared the rigorous Stefan–Maxwell model to the simpler
Wilke model and concluded that it is appropriate to use the Stefan–Maxwell model in the simulation of
a fixed packed-bed methanol synthesis reactor. Good results have been obtained by applying
the Wilke–Bosanquet combination for the determination of diffusivity in multicomponent gas
mixtures at low pressures in combination with complex reactions such as the MTO reaction [33]
and hydrodesulphurization [9].

The molecular binary diffusion coefficient of component i in component j, Di,j, is calculated using
the Füller–Schettler–Giddings relation [34], which is recommended by Reid et al. [35]:

Di,j = 1× 10−7 T1.75

pt

(
1

Mi
+ 1

Mj

)−1/2(
(Σv)

1/3
i + (Σv)

1/3
j

)2
(17)

where Mi is the molecular mass of component i (mol kg−1), and (Σv)i is the atomic diffusion volume
for component i, which was found to be 51.77 cm3 for ethanol, 41.04 cm3 for ethene, 92.81 cm3 for
di-ethyl ether, and 13.10 cm3 for water.

The Knudsen diffusion coefficient of component i, Di,K, is given by:

Di,K =
2
3

dpore

2

√
8RT
πMi

(18)

Due to the second-order nature of the balances to be solved over the catalyst pellet, see Equation (12),
a meaningful solution is not guaranteed. Therefore, the set of differential equations originating from
Equation (12) was solved by integration from an initial to a steady state, rather than by directly solving
the steady-state mass balance. A finite difference method was used for solving these second-order
differential equations, i.e., the pellet diameter was discretized over a user-defined number of mesh points,
nmesh. Every partial differential equation was rewritten as a set of nmesh ordinary differential equations.

The net production rate of component i in case of diffusion limitations, i.e., Ri, can be determined via:

Ri =

∫ V

0
RidV (19)
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In practice, its value was obtained by averaging the pointwise net rate of formation of component
i at position ξ of the catalyst pellet. A number of equidistant grid points was defined, and a trapezoidal
discretization produce was followed for integration:

Ri =

∫ V

0
RidV =

s + 1
2ngrid

ngrid∑
j=1

[
Ri

(
rp,j

)
rs

p,j + Ri

(
rp,j+1

)
rs

p,j+1

]
(20)

where ngrid is the number of grid points, Ri

(
rp,j

)
is the net production rate of component i at a location

rp,i inside the pellet, and V is the pellet volume.
The catalyst effectiveness factor is calculated as the ratio of the reaction rate in the presence

of pore diffusion resistance to the reaction rate in the absence of diffusion limitations, i.e., at gas
bulk concentrations:

η =
Ri

Rs
i
=

∫ V
0 RidV

Rs
i

(21)

The catalyst effectiveness factor as a function of the number of mesh points is nearly constant
after 25 mesh points. In this work, 35 mesh points were used for the simulations.

3.1.3. Nanoscale: The Active Site

A fully ab initio reaction network [36,37] consisting of 15 elementary steps was used for describing
the intrinsic kinetics of ethanol dehydration and is shown in Figure 4. Three different reaction pathways
were identified and are given below along with the corresponding reaction enthalpies:

C2H5OH → C2H4 + H2O ∆Hr = 46 kJ mol−1
EtOH (22)

2 C2H5OH → (C2H5)2O + H2O ∆Hr = −12 kJ mol−1
EtOH (23)

(C2H5)2O → C2H4 + C2H5OH ∆Hr = 70 kJ mol−1
EtOH (24)

The monomolecular pathway (Equation (22)) describes the direct dehydration of ethanol to ethene,
which is endothermic. The alternative route towards ethene comprises the bimolecular dehydration of
ethanol to di-ethyl ether (Equation (23)) and its subsequent decomposition into ethanol and ethene
(Equation (24)). The former is slightly exothermic, while the latter is endothermic. The mechanism for
the production of C3+ hydrocarbons from ethanol is still a matter of debate [38–40]. Therefore, it was
opted to include the dimerization of ethene to 1-butene, which serves as a representation of higher
hydrocarbons formation:

2 C2H4 → C4H8 ∆Hr = −53 kJ mol−1
C2H4 (25)
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Figure 4. Reaction network used for the simulation of the industrial reactor (red: monomolecular
dehydration, green: bimolecular dehydration, blue: di-ethyl ether decomposition, magenta: ethene
dimerization). Modified from Alexopoulos et al. [36].

The following net rates of formation were applied for the surface species k and gas phase
components i, complemented with a site balance:

Rk = Ct

∑
j

vjkrj = 0 (26)

Ri = Ct

∑
j

vjirj (27)

θH+ +
∑

k

θk = 1 (28)

where rj is the turnover frequency of elementary step j, vji and vjk are the stoichiometric coefficient of
gas phase component i or surface species k in the elementary step j. The forward reaction rate of a
typical elementary step j can be written as:

rj = kjθ
n
kpm

i (29)

where θk is the fractional occupancy of surface species k, and pi is the partial pressure of gas phase
component i.

Equilibrium coefficients for each elementary reaction were obtained using the following formula:

Kj = exp
(
−

∆H0
− T∆S0

RT

)
= exp

(
−

∆G0,#

RT

)
(30)
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where R is the universal gas constant, ∆H0 is the standard enthalpy of the reaction, ∆S0 is the standard
entropy of the reaction, and ∆G0 is the standard Gibbs free energy of the reaction. The rate coefficients
for each elementary reaction were calculated on the basis of the transition state theory:

kj =
kBT

h
exp

(
∆S0,‡

R

)
exp

(
∆H0,‡

RT

)
=

kBT
h

exp
(
−

∆G0,‡#

RT

)
(31)

where kB is the Boltzmann constant, h is the Planck constant, ∆H0,‡ is the standard enthalpy of activation,
∆S0,‡ is the standard entropy of activation, and ∆G0,‡ is the standard Gibbs free energy of activation.
Arrhenius pre-exponential factors (Af) and activation energies (Ea(f )), as well as values for ∆S◦ and
∆H◦, were determined on the basis of the computational work discussed by Alexopoulous et al. [36]
and reported in Table 2.

Table 2. Standard reaction enthalpy (∆H0
r in kJ mol−1), standard reaction entropy (∆S0

r in J mol−1 K−1),
activation energy (Ea(f) in kJ mol−1), and pre-exponential factor (Af in s−1 or 10−2 kPa−1 s−1) of the
forward reaction for the elementary steps, numbered as indicated in Figure 4. The activation steps are
indicated in bold.

Elementary Steps ∆H0
r ∆S0

r Ea(f) Af

1 EtOH(g) + *↔M1 −122 −167 - -
2 M1 ↔M2 14 7 - -
3 M2 ↔ Ethoxy + H2O(g) 77 146 118 4.0 1013

4 Ethoxy↔ Ethene(ads) 44 60 106 9.4 1012

5 Ethene(ads) ↔ C2H4(g) + * 48 99 - -
6 M1 + EtOH(g) ↔ D1 −99 −162 - -
7 D1 ↔ D2 44 24 - -
8 D2 ↔ DEE(ads) + H2O(g) 16 125 92 3.5 1012

9 DEE(ads) ↔ DEE(g) 139 165 - -
10 DEE(ads) ↔ C1 114 51 145 4.6 1013

11 C1 ↔ Ethene* + EtOH(g) 59 175 - -
12 Ethoxy + Ethene↔ C2 −33 −113 - -
13 C2 ↔ 1-butene(ads) −82 −25 81 1.7 1012

14 1-butene(ads) ↔ 1-butene + * 90 159 - -
15 W↔ H2O(g) + * 83 151 - -

4. Multi-Scale Reactor Model Validation

A survey of publicly available information yielded the following patent US 2013/0090510 [6] as
the most relevant one for assessing the adequacy of the model developed in this work. The operating
conditions and catalyst properties for this design case are presented in Table 3. The process configuration
comprised two adiabatic reactors in series with intermediate heating, having a combined catalyst mass
amounting to 6 ton. The inlet temperature and pressure for the first adiabatic reactor amounted to
673 K and 590 kPa, while 679 K and 530 kPa were used for the second one. The considered feedstock
was an aqueous ethanol mixture containing 26 wt.% ethanol which considerably exceeded the ethanol
content of the fermentation broth, i.e., 10 wt.%. The yearly ethanol processing capacity was estimated
at 360 kton.
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Table 3. Experimental operating conditions: catalyst mass (Wt), inlet temperature (T0), and pressure
(pt,0) for each adiabatic reactor and the annual ethene production capacity (GC2H4) and inlet water
content for the first reactor (xEtOH,0).

Operating condition Reactor 1 Reactor 2

W (ton) 3 3
T0 (K) 673 679

pt,0 (kPa) 590 530
FC2H5OH,0 (kton y−1) 360

xEtOH,0 0.26

Catalyst property

dp (m) 4 10−3

εp (-) 0.6
τ (-) 5

ρp (kg m−3) 700
Ct (mol kg−1) 0.003

The performance results for the configuration comprising two adiabatic reactors are given in
Table 4. Herein, the ethanol conversion (XEtOH) and yield of gas phase component i (Yi) are defined as:

XEtOH =
F0

EtOH − FEtOH

F0
EtOH

(32)

Yi =
Fi

F0
EtOH

(33)

in which F0
EtOH is the molar inlet flow rate of ethanol, and Fi is the molar flow rate of gas phase

component i.

Table 4. Performance results, i.e., conversion (XEtOH), ethene, oxygenates, and C3+ olefin yield
(respectively, YC2H4, Yoxy, Yole), temperature (T), and pressure (pt), as described in Coupard et al. [6].

XEtOH (-) YC2H4 (-) Yoxy (-) Yole(-) T (K) pt (kPa)

Outlet reactor 1 0.71 0.69 0.02 0.00 591 560

Outlet reactor 2 0.99 0.97 0.00 0.01 653 500

According to the results described in patent US 2013/0090510 [6], an ethanol conversion amounting
to 0.71 was observed, with a corresponding ethene yield of 0.69 in the first reactor. The by-product
at the reactor outlet was said to consist of oxygenates, which are represented in the kinetic model by
di-ethyl ether. A temperature drop over the first catalyst bed of more than 80 K was observed. At the
end of the second reactor, almost complete ethanol conversion was achieved, with a high yield of
ethene (0.97). Table 4 indicates that in this case, the by-products were higher olefins, represented in the
kinetic model employed in this work by 1-butene. A less pronounced temperature drop of 26 K was
observed over the second catalyst bed.

Figure 5 shows the calculated conversion and yield profiles along the axial reactor position. Ethene
was the most abundant product throughout the reactor. At the end of the first catalyst bed, around 2%
oxygenates product was observed, which is accurately described by the kinetic model with di-ethyl
ether as a representative product. At the end of the second bed, no more di-ethyl ether was present as a
consequence of its decomposition into ethene and ethanol, while the formation of higher hydrocarbon
by-products, here represented by 1-butene, was observed. The reactor model hence provides a detailed
picture of the product evolution throughout the reactor and allows assessing the effects of temperature
and pressure.
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Figure 5. Ethanol conversion (XEtOH, blue), ethene, di-ethyl ether, and butene yield (green:
YC2H4; black : YDEE; magenta; YC4H8), and temperature profiles (T) as a function of catalyst mass.
The inset shows the pressure drop (pt) as a function of catalyst mass. Calculations were made by
integration of Equations (5)–(7) and (12) and simultaneously solving Equations (26) and (28) with the
corresponding net production rates as defined in Equation (27), with parameters taken from Table 2
and the experimental conditions given in Table 3. Square symbols indicate the experimental points
from [4] given in Table 4.

A monotonous temperature decrease with increasing catalyst mass was observed in Figure 5,
indicating that the monomolecular pathway (Equation (18)) was the most dominant along the entire
reactor axis. Downstream of the first bed, the temperature of the outlet flow was increased via
intermediate heating prior to sending the effluent to the subsequent reactor. Although the temperature
showed good agreement at the end of the first reactor, a discrepancy between the simulated and the
reported temperature was observed at the end of the second reactor. A total temperature drop of 116 K
was simulated, while a temperature drop of only 107 K was observed. This can be compared to the
total maximum adiabatic temperature drop calculated by:

∆Tad,max =
F0

EtOH

(
−∆H0

r

)
G cp

(34)

This maximum adiabatic temperature drop was found to be 119 K and was closer to the simulated
temperature drop than to the experimentally determined one. The pressure drop was also described
adequately, as shown in the inset in Figure 5.

The catalyst effectiveness factor along the first reactor bed is shown in Figure 6 and was found to
increase from 0.21 to 0.42. A concentration profile along the dimensionless catalyst pellet diameter is
shown in the inset, indicating that severe diffusion limitations existed at the catalyst pellet scale.
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Figure 6. Catalyst effectiveness factor, calculated by Equation (21), as a function of catalyst mass.
The inset shows the relative concentration profile along the dimensionless catalyst pellet diameter.
Calculations were made by integration of Equations (5)–(7) and (12) and simultaneously solving
Equations (26) and (28) with the corresponding net production rates as defined in Equation (27), with
parameters taken from Table 2 and the experimental conditions given in Table 3.

5. Optimization of an Industrial Ethanol Dehydration Reactor

As good agreement was achieved between the model and the reported values, the model was
considered to provide reliable predictions and, hence, was used to investigate and optimize an industrial
ethanol dehydration reactor. Key process parameters for industrial operation are the amount of water
added to the feed and the operating temperature. The thermodynamic equilibrium composition as
a function of temperature was investigated by minimization of the Gibbs free energy. Three cases
were considered:

(I). Dehydration of pure ethanol, i.e., no additional water added in the feed, which considers ethanol,
ethene, di-ethyl ether, and water in the product mixture.

(II). Dehydration of aqueous ethanol, i.e., 90 mol% water contained in the feed, which corresponds to
the lower limit of ethanol content obtained via biomass fermentation. This case also considers
ethanol, ethene, di-ethyl ether, and water in the product mixture.

(III). Dehydration of aqueous ethanol, i.e., 90 mol% water in the feed, with dimerization of ethene
included as a model reaction for the formation of higher hydrocarbons. In addition to the
compounds mentioned above, 1-butene was also added to the calculation.

The dehydration of pure ethanol was found to be complete at 600 K, as shown in Figure 7. At low
temperatures, the major product was di-ethyl ether, which gradually decreased with the temperature
in favor of ethene. It was possible to achieve 100% selectivity towards ethene, i.e., no thermodynamic
constraints were encountered in the industrial implementation of this process. The addition of water
at the reactor inlet resulted in lower ethanol conversion and higher selectivity towards ethene at lower
temperatures. Nevertheless, the ethanol conversion was still complete at temperatures exceeding
650 K.
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Figure 7. Thermodynamic equilibrium of ethanol conversion (blue) and selectivity towards ethene
(green), di-ethyl ether (black), and 1-butene (magenta) as a function of temperature. Full line: ethanol
dehydration (Equations (22)–(24)) with no additional water (case I); dashed line: ethanol dehydration
(Equations (22)–(24)) with 90 mol% water (case II); dotted line: ethanol dehydration with ethene
dimerization (Equations (22)–(25)) including 1-butene as a product (case III).

Taking into account ethene dimerization as a representative for the formation of higher
hydrocarbons, it was shown that ethanol conversion remained complete over the entire temperature
range shown in Figure 7. However, 1-butene was now the major product when solely considering
thermodynamics. Only at temperatures exceeding 650 K, ethene became the principal product. This
illustrates the existing competition between ethanol dehydration and the subsequent formation of
higher hydrocarbons.

The effect of the ethanol content in the feed on the maximum adiabatic temperature drop is
illustrated in Figure 8. The higher the ethanol content, the higher the maximum adiabatic temperature
drop over the reactor. This is related to changes in the mixture heat capacity due to changes in feed
composition. At 673 K, a pure ethanol feed would result in a total temperature drop amounting to 400 K,
while the aqueous conditions investigated in this work only resulted in a temperature drop of 119 K.
As heat is consumed along the reactor with increasing ethanol conversion due to the endothermicity of
monomolecular ethanol dehydration, a higher water content has a higher heat buffering effect that
can be utilized throughout the reaction. At low ethanol content, the reactor inlet temperature effect
on the maximum adiabatic temperature drop can be neglected. However, at high ethanol content, a
substantial difference can be observed: a temperature difference of 70 K was found between 573 K
and 773 K for a feed with no additional water. Hydrous ethanol is a particularly attractive feedstock
because the production of anhydrous ethanol is very energy- and cost-intensive. In the context of
zeolites, water can influence the kinetics of alcohol dehydration, potentially by competing with alcohol
reactants for Brønsted acid sites, by shifting the dehydration–hydration equilibrium, and by inducing
potentially different solvation strengths in all states along the reaction coordinates in zeolite [41].
Previously, it was reported that water in the ethanol feed enhances the steady-state catalytic activity of
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H-ZSM-5 and the selectivity for ethylene formation by possibly moderating the acidity of the catalytic
sites, resulting in less extensive deactivation due to coking [42,43].

Figure 8. Maximum adiabatic temperature drop (Equation (34)) as a function of molar ethanol fraction
in the feed for three different reactor inlet temperatures (full line: 573 K, dashed line: 673 K, dotted line:
773 K) and the process conditions indicated in Table 3.

The effect of varying water contents on conversion, ethene yield, and temperature is shown in
Figure 9. The highest conversion and ethene yield were obtained in the range of high water content.
This high water content also resulted in the lowest adiabatic temperature drop, as shown in Figure 8,
and, hence, in overall higher reaction rates compared to less diluted ethanol feeds. However, this can
only be assessed when also the size and cost of the other pieces of equipment (compressors) are taken
into account.

Decreasing the water content resulted in a decreased ethanol conversion and, remarkably, also a
decreased ethene yield (Figure 9). At high water content, the ratio between ethene yield and ethanol
conversion was close to one, but decreasing the water content decreased this ratio. Instead, di-ethyl
ether was produced in higher quantities, which lowered the ethene production. Higher ethanol partial
pressures favored the formation of di-ethyl ether and decreased ethene selectivity. Dimerization of
ethene to 1-butene was not observed to a significant extent in any of the case studies. The temperature
drop observed in the reactor was not as pronounced as shown in Figure 9, which is related to ethanol
conversion to di-ethyl ether, i.e., a mildly exothermic reaction. A less pronounced temperature drop
due to high water content automatically resulted in a higher conversion, as can be seen in Figure 9.

These simulation results are in line with patent literature showing the necessity of introducing a
heat carrying fluid in the reactor when working with a pure ethanol feed. The use of water vapor has
been proposed. This water may come from an external source or be produced internally in the process
and recycled from the effluent [4]. Without effluent separation into ethane and water, the latter is not
advisable as ethane recycling towards the reactor inlet affects the thermodynamic equilibrium of the
dehydration reaction. Ethene also participates in the subsequent conversion to higher hydrocarbons,
which will increase the yield of secondary products.
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Figure 9. Ethanol conversion (XEtOH, blue), ethene yield (YC2H4, green), and temperature (T, red) as a
function of water inlet content. Calculations were made by integration of Equations (5)–(7) and (12) and
simultaneously solving Equations (26) and (28) with the corresponding net production rates as defined
in Equation (27), with parameters taken from Table 2 and the experimental conditions given in Table 3.

6. Conclusions

A fully ab initio reaction network for ethanol dehydration on H-ZSM-5 was used to simulate an
industrial multi-bed adiabatic reactor. Internal transport limitations inside the catalyst pellet needed
to be explicitly accounted for, while no external transport limitations nor internal heat transport
limitations were diagnosed at the conditions investigated in this work. Good agreement was found
with the literature results, i.e., temperature, pressure, and outlet flow rates. The industrial reactor
model developed indicated that it is not beneficial to utilize feeds with high ethanol content, as they
result in a lower ethanol conversion and ethene yield. Furthermore, a more pronounced temperature
drop over the reactor was simulated. It is preferred to use a vapor feed more diluted with water for
the operation of the industrial ethanol dehydration reactor. Of course, in order to properly assess an
economically optimal configuration and reasonable feedstock properties, the investment and operating
costs of the entire facility should be taken into account.
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List of Symbols

Roman symbols
* free acid sitessur
Ar face area of the cross section of the reactor [m2]
cp specific heat capacity [J kg−1 K−1]
Cp specific molar heat capacity [J mol−1 K−1]
Ci concentration of component i in the pellet [mol kg−1

cat

]
Ct acid site concentration [molH+ kg−1]
d diameter [m]
De,i effective diffusion coefficient of component i [m2 s−1]
f friction factor [-]
Fi molar flow rate of gas phase component i [mol s−1]
G mass flow rate [kg s−1]
∆G Gibbs free energy of reaction [J mol−1]
h Planck constant = 6.63. 10−34 m2 kg s−1

∆H enthalpy of reaction [J mol−1]
kB Boltzmann’s constant = 1.38. 10−23 m2 kg s−2 K−1

kj rate coefficient of elementary step j [variable]
M molecular mass [kg mol−1]
n apparent order of reaction
ncomp number of components
Ni molar flux of i with respect to a fixed plane [mol m−2 s−1]
pi partial pressure of component i [Pa]
pt total reactor pressure [Pa]
us superficial velocity [m s−1]
r radius of the catalyst pellet [m]
R universal gas constant = 8.31 J mol−1 K−1

Ri net production rate of component i [mol molH+
−1 s−1]

Si selectivity of component i [mol mol−1]
∆S entropy of reaction [J mol−1 K−1]
T temperature [K]
v stoichiometric coefficient
V volume [m3]
W catalyst mass [kg]
Xi conversion of component i [mol mol−1]
yi molar fraction of component i in the gas phase [mol mol−1]
Yi yield of component i [mol mol−1]
Greek symbols
ε porosity [-]
η catalyst effectiveness [-]
µ dynamic viscosity [Pa s]
ρ density [kg m−3]
ξ dimensionless distance [-]
θk fractional coverage of surface species k [-]
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Subscripts
b catalyst bed
bl bulk
f formation
fl fluid
i gas phase species
j elementary step
k surface species
p catalyst pellet
pore pore
m mixture
r reaction
r reactor
s surface
v volumetric
Subscripts
− average
‡ activation
◦ inlet
◦ standard
C2H4 ethene
EtOH ethanol
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