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Abstract: In higher plants, the lipoxygenase enzymatic pathway combined actions of several enzymes
to convert lipid substrates into signaling and defense molecules called phytooxylipins including
short chain volatile aldehydes, alcohols, and esters, known as green leaf volatiles (GLVs). GLVs
are synthesized from C18:2 and C18:3 fatty acids that are oxygenated by lipoxygenase (LOX) to
form corresponding hydroperoxides, then the action of hydroperoxide lyase (HPL) produces C6
or C9 aldehydes that can undergo isomerization, dehydrogenation, and esterification. GLVs are
commonly used as flavors to confer a fresh green odor of vegetable to perfumes, cosmetics, and food
products. Given the increasing demand in these natural flavors, biocatalytic processes using the
LOX pathway reactions constitute an interesting application. Vegetable oils, chosen for their lipid
profile are converted in natural GLVs with high added value. This review describes the enzymatic
reactions of GLVs biosynthesis in the plant, as well as the structural and functional properties of the
enzymes involved. The various stages of the biocatalytic production processes are approached from
the lipid substrate to the corresponding aldehyde or alcoholic aromas, as well as the biotechnological
improvements to enhance the production potential of the enzymatic catalysts.

Keywords: lipoxygenase pathway; lipoxygenase; hydroperoxide lyase; green leaf volatiles; natural
flavor production; biocatalytic processes; bioconversion; biotechnological application

1. Introduction

Green leaf volatiles (GLVs) are important contributors to the characteristic flavors of fruits,
vegetables, and green leaves [1-3]. GLVs include short carbon chain aldehydes, alcohols, and esters
produced in higher plants during the lipoxygenase (LOX) pathway [1-6]. The LOX pathway is activated
during plant development or in response to biotic or abiotic stresses and implements the sequential
action of several enzymes to transform polyunsaturated fatty acids (PUFAs) into signaling and defense
molecules called phytooxylipins [5-9]. Phytooxylipins include, in particular jasmonates, traumatic
acid, epoxy-hydroxy fatty acids, divinyl ethers, as well as GLVs [2,3,6,8,10,11]. GLVs are metabolized
from C18-PUFAs. First, the LOX catalyzes regiospecific dioxygenation of C18-PUFAs, including linoleic
and linolenic acids, to form 9- or 13-PUFA hydroperoxides. Subsequently, hydroperoxide lyase (HPL)
acts on these PUFA hydroperoxides to produce volatile C6 or C9 aldehydes and a 9- or 12-oxo acid.
Finally, isomerization, dehydrogenation, and esterification reactions of aldehydes can occur to produce
aldehydes with different isomeric forms, alcohols, and esters.

Saturated and unsaturated volatile C6 and C9 aldehydes, alcohols, and their esters are associated
with the green note odor and are widely used as aromas and food additives in the cosmetics and
perfumes industry as well as in the food industry.
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Their industrial production by chemical synthesis is environmentally unfriendly. Indeed, the
processes use metal catalysts and are based on naphtha which arise from fractional distillation
petroleum. Thus, it is desirable to switch to bioproduction including extraction from natural sources
and bioconversion of natural precursor using enzymes. In addition, today’s consumers have a strong
preference for naturally synthesized additives and flavors.

Given the high demand for such natural flavors and the difficulty of extracting compounds from
plants, efficient biocatalytic processes using the enzymes of the LOX pathway have to be developed
for large scale production. In these processes, vegetal oils containing C18:2 and C18:3 fatty acids
are hydrolyzed by a lipase, and then the PUFAs released are converted by LOX and HPL into green
note aldehydes. Large-scale conversion of triacylglycerols from vegetable oils into hydroperoxides
has been successfully accomplished [12,13]. Since lipases and LOXs are commercially available,
genetic engineering approaches focus on the production of recombinant HPL, the limiting enzyme for
biocatalytic processes.

Thus, interest in the lipoxygenase pathway and its products is growing, not only from a
physiological point of view but also from a technological point of view. In this review, first the steps of
the biosynthesis of GLV by the LOX pathway in the plant is studied as well as the enzymes involved,
and then to approach the use of enzymes of the LOX pathway as biotechnological tools for the industrial
production of natural GLVs.

2. The Lipoxygenase Pathway in Higher Plants: Activation and Description of the
Enzymatic Cascade

The presence in plants of an enzymatic mechanism responsible for the oxidation of lipids has been
known since 1932 [14]. This metabolic pathway is now commonly referred as the lipoxygenase pathway.

The first step, in the LOX pathway is the action of a lipoxygenase on polyunsaturated fatty acids,
preferably linoleic acid (LA, 18:2, w6) and a-linolenic acid (ALA, 18:3, w3) [15,16]. Generally, these
PUFAs have been previously released from membrane phospholipids or galactolipids by phospholipases
or galactolipases [3,8,17]. LOX catalyzes regiospecific dioxygenation of the position 9 or 13, of the
C18 PUFAs, either LA or ALA to form relevant 9- or 13-hydroperoxyoctadecadi(tri)enoic acids [6,18].
PUFA hydroperoxides are highly reactive molecules and are readily converted by various enzymes
into a series of signaling and defense molecules called phytooxylipins [7,10,11,15,19] (Figure 1).

PUFA hydroperoxides are mainly metabolized by three enzymes: Allene oxide synthase (AOS),
divinyl ether synthase (DES), and hydroperoxide lyase, grouped together in the CYP74 subfamily
of cytochromes P450 (Figure 2). AOS dehydrates the PUFA hydroperoxides to unstable allene
oxides, which are cyclized by allene oxide cyclase (AOC), or spontaneously hydrolyzed into «- and
v-ketols [20-22]. The cyclized product of AOC derived from ALA, 12-ox0-(10Z,15Z)-phytodienoic acid
(12-OPDA), can be reduced and then undergo three cycles of 3-oxidation to form jasmonic acid (JA) and
its derivatives, including methyl jasmonate (MeJA) [20-24]. DES synthesizes divinyl ethers of PUFAs
such as colneleic or colnelenic acids and etheroleic or etherolenic acids [25,26]. The action of HPL leads
to the cleavage of the C-C backbone of the PUFA hydroperoxides yielding C6 or C9 volatile aldehydes
and 9-oxononanoic acid or 12-0x0-(9Z)-dodecenoic acid, a precursor of traumatin [20,27-29]. The
volatile aldehydes can then be converted into the corresponding alcohols or esters. Other enzymes also
metabolize PUFA hydroperoxides produced by LOX: A reductase can reduce the PUFA hydroperoxides
to fatty acid hydroxides [30], which are less reactive, a peroxygenase (POX) or an epoxy alcohol
synthase (EAS) can transform the PUFA hydroperoxides to epoxy-hydroxy fatty acids [31], and, under
oxygen-poor conditions, LOX can catalyze cleavage of the O-O bond of the PUFA hydroperoxides to
form alkoxy radicals which rearrange themselves in ketodienes [32].
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Figure 1. The lipoxygenase pathway in plants. The substrates and products of the reactions are
represented in black, and the enzymes involved appear in red (allene oxide synthase (AOS); divinyl
ether synthase (DES); epoxide alcohol synthase (EAS); hydroperoxide lyase (HPL); lipoxygenase
(LOX); and peroxygenase (POX)). The reactions catalyzed by the enzymes of the CYP74 subfamily are

stained yellow.
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Figure 2. Phytooxylipins produced from 13-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13-HPOT)
by the enzymes of the CYP74 family. 13-HPOT can be metabolized by CYP74 family enzymes.
AOS produces an unstable allene oxide: (12,13)-epoxyoctadecatrienoic acid (12,13-EOT), which
can hydrolyze spontaneously to - and y-ketols, or be cyclized by allene oxide cyclase (AOC) to
12-Ox0-(10Z,15Z)-phytodienoic acid (12-OPDA), which can be converted into jasmonates after three
cycles of B-oxidation. DES generates the etherolenic acid. HPL produces an aldehyde: (3Z)-hexenal,
and an oxoacid: 12-oxo0-(9Z)-dodecenoic acid which is the precursor of traumatin.

The regulation of these various enzymatic branches of the LOX pathway competing for the same
PUFA hydroperoxides constitutes an important control point for the plant. The reaction cascade
triggered in response to these stimuli leads to the production of phytooxylipins adapted to fight the
stress undergone.

In the plant, the LOX pathway can be induced by a variety of biotic stresses such as wounding
caused by herbivorous insects or animals, and fungal or bacterial pathogen infection [3,5,6,9,30,33-35].
Plants can detect the presence of a pathogen or herbivore through the intermediary of specific eliciting
molecules [36]. Abiotic stresses including mechanical wounding, water deficiency and osmotic stress,
UV exposure, suboptimal light, and temperature, can also trigger the biosynthesis of oxylipins [37-42].

Several studies have highlighted the role of oxylipins in plant defense against a variety of
pathogens. Prost et al. [43] screened numerous oxylipins for antimicrobial activity and found that most
of the oxylipins were active against eukaryotic microbes. C6 and C9 aldehydes, especially (2E)-hexenal
and (3Z)-hexenal, have bactericidal activity against both Gram-positive and Gram-negative bacteria [44].
Croft et al. [45] showed the lethal effect of (2E)-hexenal on the phytopathogenic bacterium Pseudomonas
syringae pv phaseolicola. Other molecules such as epoxy, hydroxy, divinyl ethers, and alcohols have
antimicrobial properties [8,46]. The volatile aldehydes produced by HPL also exhibit antifungal
activity. Matsui et al. [47] and Kishimoto et al. [46] have demonstrated the role of these molecules
in defense against Botrytis cinerea and Fusarium oxysporum. After mechanical wounding or attack by
herbivores the injured leaves activate the oxylipin pathway [48]. Traumatin and traumatic acid also act
as wound hormones to stimulate cell multiplication around the wound, resulting in the formation of
protective calluses that impede the entry of pathogens [49]. In response to herbivories, plants produce
direct defense molecules, which act as toxins and repellents, as well as indirect defense molecules [50].
The jasmonates are indispensable metabolites in mediating the wound-induced expression of direct
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defense molecules such as proteinase inhibitors that inactivate the proteolytic enzymes of the digestive
tract of herbivores [10,51,52]. On the other hand, C6 aldehydes and alcohols and hexenyl acetate, a
C6 aldehyde-derived compound, are wound-inducible volatile signals that mediate indirect defense
responses by directing tritrophic (plant-herbivore-natural enemy) interactions [3,50]. In fact, attack by
herbivores induces plants to emit sets of volatile compounds that differ depending on the herbivore
species [53,54]. These volatile compounds attract natural enemies of the herbivore, such as carnivorous
insects or parasitic wasps [36,55]. Phytooxylipins can also act as signal molecules to induce genes
associated with the defense response, and thus provide a feedback loop for amplification of the
signal [5]. Thus, JA and MeJA can induce upregulation of the LOX pathway [56]. C6 and C9 volatiles
and MeJA serve as signals of stress within a plant as well as between neighboring plants within a plant
community [57]. Under stress-related conditions such as herbivories, pathogen attack, and abiotic
stimuli, these volatiles can be formed very rapidly at the wound site and travel through the air thereby
potentially serving as signal molecules to distal sites in the plant, or acting as allelopathic molecules
activating the expression of genes related to direct and indirect defenses of nearby plants [5,58-62].
Treatment of Arabidopsis tissue with LOX-derived C6-volatiles induce defense genes, suggesting that
these compounds might be a signal for alerting other plants in the surroundings [5,63]. The profiles of
oxylipins vary depending on the stimulus perceived by the plant [6]. These molecules will be thereby
adapted to fight directly or indirectly against the source of the stimulus.

Furthermore, phytooxylipins produced by the LOX pathway especially JA and meJA from the
AOQOS branch, are phytohormones involved in physiological processes such as flower development,
seedling growth, pollen formation tuberization, and fruit maturation [3,9,64]. Traumatin and traumatic
acid also act as growth promoters.

The C6 and C9 aldehydes, alcohols and their esters are known as “green-leaf volatiles’, because
they embody the typical odor of damaged leave and have a characteristic green and fruity smell.
These volatile compounds are important constituents of the flavor and fresh green aroma in fruits and
vegetables and impart a characteristic odor to each plant.

3. Biosynthesis of GLVs: The HPL Branch of the LOX Pathway

3.1. Lipase Activity

The degradation of membrane lipids occurs under normal conditions during physiological and
developmental processes in plants and may be initiated by biotic and abiotic stresses [52,65,66].
Polyunsaturated fatty acids converted into oxylipins by the LOX pathway are generally
derived from the hydrolysis of membrane phospholipids by phospholipases or galactolipids by
galactolipases [3,17,67] Phospholipids and galactolipids, especially monogalactosyldiacylglycerols
(MGDG) and digalactosyldiacylglycerols (DGDG) present in chloroplast membranes, constitute the
major part of the plant cell membrane. Phospholipase A (PLA) activity was found to be induced by
wounding [68] and phospholipase D was found to play regulatory roles in diverse plant processes
and stress responses [69]. Some studies have elucidated the role of PLA enzymes in the release
of free PUFAs, which are the substrates for the oxylipin pathway. For example, defective anther
dehiscence 1 (DAD1) and dongle (DGL) possess PLA1 activity and release ALA for the biosynthesis of
JA in Arabidopsis [17,70]. Yang et al. [71] reported that a family of patatin-related phospholipases A
(pPLA) is involved in the release of free fatty acids and monoacylglycerol through the hydrolysis of
membrane glycerolipids. Glycerolipase Al (GLA1) in Nicotiana attenuata is thought to be involved in
JA biosynthesis during herbivorous and mechanical wounding in leaves, but not during Phytophthora
parasitica infection [72]. Accordingly, it is assumed that there must be stimuli-specific lipases that are
responsible for JA formation [64].

Although the involvement of lipolytic enzymes in the oxylipin synthesis pathway is not
questioned, oxylipins linked to complex lipids have, however, also been discovered; thus, a novel
oxylipin pathway which does not require the action of a lipase is envisaged. MGDG or DGDG
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containing 12-OPDA molecules (called arabidopsides) have been identified in Arabidopsis thaliana [73].
Galactolipids containing divinyl ether residues (linolipins) or precursors of traumatic acid have also
been detected [74,75]. These particular oxylipins would result from the direct action of enzymes
of the LOX pathway (LOX, AOS, or HPL) on esterified PUFAs without prior release by a lipolytic
enzyme [22,74,76]. The phospholipases or the galactolipases could act in a later phase, to release the
oxylipins linked to the complex lipids [75].

3.2. LOX Activity

LOXs (linoleate oxygen oxidoreductase; EC 1.13.11.12) are nonheme iron-containing dioxygenases
widely distributed in plants and animals [16,77]. In plants, they have been identified in different organs
such as: Leaves, fruits, roots, and seeds [78,79]. LOXs can be localized in chloroplasts, either in the
stroma or associated within the envelope, as well as in lipid bodies, in vacuole, or in cytosol [6,79,80].

LOXs catalyze the regio- and stereo-specific hydroperoxidation of PUFAs with a (1Z,
47Z)-pentadiene system to produce corresponding fatty acid hydroperoxides [2,81,82]. Generally,
these enzymes act on free PUFAs [82], but studies have shown that they are also able to oxygenate
esterified PUFAs within complex lipids like galactolipids, phospholipids, triacylglycerols [16,22,83,84],
or sterol esters [85]. In plants, LA and ALA are the most common substrates for LOX [77].

Plant LOXs are usually classified into 9-LOX and 13-LOX, depending on the regio-specific
oxygenation, which can occur at carbon-9 or at carbon-13 of the hydrocarbon backbone of
linoleic acid, to generate the corresponding 9- or 13-hydroperoxides [86] (Figure 3). A few
non-traditional/conventional plant LOXs with dual positional specificity produce 9-hydroperoxides
and 13-hydroperoxides (both in melange) with a ratio ranging from 10:1 to 1:10, and were
therefore named respectively 9/13-LOXs or 13/9-LOXs [35,87-89]. LA or ALA are oxygenated
to produce linoleic acid hydroperoxides, such as 13-hydroperoxy-(9Z,11E)-octadecadienoic
acid (13-HPOD) and 9-hydroperoxy-(10E,12Z)-octadecadienoic acid (9-HPOD), or linolenic
acid hydroperoxides such as 13-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13-HPOT) and
9-hydroperoxy-(10E,12Z,15Z)-octadecatrienoic acid (9-HPOT) [79].
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Figure 3. Biosynthesis of green leaf volatile compounds following the LOX pathway. (A) 9-LOXs
produce 9-hydroperoxy-(10E,12Z)-octadecadienoic acid (9-HPOD) and 9-hydroperoxy-(10E,12Z,15Z)-
octadecatrienoic acid (9-HPOT). 9-HPLs act on 9-hydroperoxides to form C9 aldehydes and a 9-oxoacid.
(B) 13-LOXs produce 13-hydroperoxy-(9Z,11E)-octadecadienoic acid (13-HPOD) and 13-HPOT. 13-HPLs
act on the 13-hydroperoxides to form C6 aldehydes and a 12-oxoacid. Finally, isomerization,
dehydrogenation, and esterification reactions of aldehydes can occur to produce aldehydes with
different isomeric forms, alcohols, and esters. Isomerization can occur spontaneously or through the
action of an isomerase. The enzymes involved appear in red, the fatty acids are colored in orange, the
hydroperoxides are colored in yellow, and the oxoacids are colored gray. The aldehydes and alcohols
produced are colored respectively in green and in blue. ADH: Alcohol dehydrogenase.

In most plants, several isoforms of LOX have been detected (for example six isoforms, LOX-1
to LOX-6, in Arabidopsis) [90]. LOX isoforms are distinguished by their optimal reaction pH or their
specificity of products and substrates [91].

From a structural point of view, plant LOXs are monomers of approximately 100 kDa, folded
into two domains, (i) an N-terminal domain composed of four 3-sheets organized into a (3-barrel
potentially involved in membrane binding, and (ii) a larger C-terminal domain including the catalytic
site and composed predominantly of x-helices. The iron atom is located in the C-terminal domain
and coordinated by five highly conserved amino acid residues (three histidine, an isoleucine, and an
asparagine) and a water molecule in the absence of substrate [92,93]. LOX in its native form contains
Fe?*(OH,) and must first be activated by oxidation by its own hydroperoxide product to the LOX
Fe3*(OH").

The reaction mechanism of plant LOXs begins with the stereospecific abstraction of a hydrogen
atom carried by the C11 of LA or ALA [7,86] (Figure 4). This step correspond to a proton-coupled
electron transfer: The proton is transferred from the substrate to the oxygen of the OH™ while the electron
is transferred from the C9-C13 pentadiene system to Fe** in a concerted proton tunneling-electron
tunneling process [94]. Concomitantly, the Fe®* is reduced to Fe?* and a water molecule is produced.
The intermediate fatty acid radical formed by the abstraction of hydrogen on the central carbon is
a pentadienyl radical whose electrons are delocalized throughout the pentadiene system. Then, a
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molecule of dioxygen binds to the pentadiene radical to form a hydroperoxyl radical. The oxygen can
be inserted only at position {+2} or {-2} [7,82]. Consequently, when hydrogen is abstracted at C-11,
oxygen insertion occurs at C-13 or C-9 of the C18 PUFA, to form a peroxyl radical [6]. The two double
bonds are conjugated, acquiring the configuration (Z, E) [18]. The peroxyl radical is then reduced to
the peroxide anion by an electron from Fe?* which resumes its active and oxidized Fe3* form [82]. The
anion is finally protonated and a 9- or 13-hydroperoxide of LA or ALA is released from the active site
of the enzyme [77,81].

5
S
O

HO——

Figure 4. Reaction mechanism of vegetable lipoxygenases. R and R’ respectively represent the
carboxylate and methyl ends of the fatty acid. The abstraction of hydrogen on the C11 of the (1Z,
47)-pentadiene system of linoleic or «-linolenic acid, induces an electronic delocalization on the five
carbons of the pentadiene system. The antarafacial insertion of molecular dioxygen at the position {n+2}
(left part) or {n—2} (right part) leads to the formation of a peroxide anion, which is finally protonated to
give a 9- or 13-hydroperoxide.

Two models were proposed to explain the reaction mechanism of positional specificity of LOXs: A
space-related hypothesis assumes that the fatty acid substrate would penetrate the active site generally
with its methyl end first. Then, the depth of the substrate-binding pocket (related with the steric
hindrance of amino acids at the bottom of the active site) limits its penetration and thus determines the
relative alignment of the pentadiene system with the catalytic iron atom. So, the positional specificity
of molecular oxygen insertion depends on the position of the substrate in the active site [95-97].
According to a second hypothesis, the regiospecificity of the LOXs would be dependent on how the
substrate enters the active site, i.e., by its carboxylate for 9-LOXs or methyl end for 13-LOXs [98,99].
Consequently, a radical rearrangement at either {n+2} or {n—2}, respectively, may be facilitated in both
cases by the same mechanism within the active site. At least for some plant LOXs, a combined version
of both models could occur because the inverse orientation of the substrate is determined by the space
available in the substrate-binding pocket [6,99].
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The carbon carrying the hydroperoxide function is an asymmetric carbon. There are therefore two
stereoisomers, (S) or (R), of the PUFA hydroperoxide formed. In plants, LOXs synthesize high levels of
(S) diastereoisomer (95%), by contrast with spontaneous auto-oxidation, which is not stereospecific and
produces racemic (R, S) mixture of isomers [100-102]. However, LOXs responsible for the formation of
the (R) epimer have been described [16,87,89].

3.3. HPL Activity

Hydroperoxide lyase is a member of the CYP74 subfamily of cytochrome P450. HPL has been
found in many plant species, and in various organs, both in photosynthetic and non-photosynthetic
tissues, such as tomato [103] and mint leaves [104], sunflower hypocotyls [105], olive [106-108], green
bell pepper fruit [109,110] and cucumber [111], soybeans [112], and rice [113].

HPL substrates must meet several structural requirements: (i) they must be a long fatty acid chain
(more than 12 carbons) with a terminal carboxyl group, (ii) they must have a hydroperoxyl group on
C9 or C13, and (iii) they must have a conjugated diene system (Z, E) with the double bond adjacent to
the carbon carrying the hydroperoxide function [1,103,114,115]. Studies have shown that only the (S)
isomer of mixtures of 13(R)- and 13(S)-hydroperoxides is converted by HPL [112,116]. The number
and position of unsaturations have an influence. HPL activity increases with the number of carbons
for fatty acids up to 22 carbons, and decreases thereafter [114]. The hydroperoxides of y-linolenic acid
(6Z,9Z,127)-octadecatrienoic acid) are only slightly converted by HPL and the 15-hydroperoxides of
arachidonic acid (15-hydroperoxy-(52,8Z,11Z,13E)-icosatetraenoic acid, 15-HPETE) is not a substrate
of the enzyme [1,114,117]. The presence of the carboxyl group on the substrate influences HPL
activity: Its substitution by a methyl ester or an alcohol halves the activity of HPL [1,117]. Finally,
the 9- and 13-hydroperoxides obtained from LA (9-HPOD and 13-HPOD) or from ALA (9-HPOT or
13-HPOT) are the main natural substrates of HPLs (Figure 3). The 9-hydroperoxides are converted into
a 9-oxononanoic acid and a C9 aldehyde, which is (3Z)-nonenal from 9-HPOD and (3Z,6Z)-nonadienal
from 9-HPOT [7,118-121]. The 13-hydroperoxides are converted into 12-oxo-(9Z)-dodecenoic acid,
a precursor of traumatin, and a C6 aldehyde, which is hexanal from 13-HPOD or (3Z)-hexenal from
13-HPOT [7,106,119,122-124]. HPL would also be able to convert esterified fatty acid hydroperoxides
into MGDGs [74].

Depending on the specificity of the substrate, plant HPLs have been classified into three types:
9-HPL, 13-HPL, and 9/13 HPL. The majority of plant HPLs are specific for 13-hydroperoxide substrates;
13-HPLs have been identified, especially, in tomatoes [125,126], sunflowers [105], potatoes [127], sugar
beet [128], watermelon [129], and olive [106,107]. On the contrary, 9-HPLs have been identified
from a few plant species, such as pear [118] and almond [121]. 9/13-HPLs acting on both 9- and
13-hydroperoxides, have been found especially in rice [113], melon [120], cucumber [111], medicago
spp. [130], and grape berries [131]. 13-HPLs are classified as CYP74B, while 9-HPLs and 9/13 HPLs are
classified as CYP74C. The presence of 9- or 13-HPL activity can vary according to the organs of the
same plant. For example, in the cucumber, cotyledons show a predominant 13-HPL activity, whereas
in the roots, 9-HPL activity predominates [132].

Most HPLs are membrane-bound [4,7,15,115,133]. 13-HPLs such as those present in olive [106],
tomato [134], and Arabidopsis thaliana [135] are integrated into chloroplast envelope membranes. A
chloroplast transit peptide located at the N-terminal end of the enzyme have been identified in 13-HPLs
from olive [107,108] and Arabidopsis thaliana [135], whereas this signal peptide is absent in tomato
13-HPL [134,136]. Maucher et al. [137] and Froehlich et al. [136] hypothesized that the presence or
absence of the chloroplast transit peptide would involve different targeting pathways that route the
enzymes to different membranes of the chloroplast envelope. 9- and 9/13-HPLs are found in the
membranes of the Golgi apparatus and the endoplasmic reticulum [78] or in lipid bodies [121,130].
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HPLs are trimers [103,110,138] or tetramers [105,139] of about 170-250 kDa [109,122,140,141]. Most
of HPL genes code for a subunit of 50-60 kDa [139,141-144]. Like all CYP74, HPL is a heme protein
with 2.2 mol of heme b per mol enzyme [105,138,145]. Circular dichroism analysis demonstrated that
the protein secondary structure is composed of approximately 13% o-helix, 32% (3-sheet, 21% turns,
and 31% unordered coils [146,147].

Until now, there is no crystal structure of HPL, and there are only X-ray crystal structures of two
CYP74s: Arabidopsis thaliana CYP741 [148] and Parthenium argentatum (guayule) CYP742 [149], each
an AOS classified as CYP74A. Investigations of the structure-function relationships of other CYP74
enzymes, particularly HPL, are generally based on the analysis of these X-ray crystal structures and/or
in silico studies using molecular modeling tools. In fact, the amino acid sequences of HPL, AOS,
and DES have an identity level of between 38% and 57%, depending on the enzymes [135,150]. The
catalytic activity of CYP74 enzymes can be modified by single point mutations. The S297A mutant
of tomato AOS [151] and the mutant F137L of Arabidopsis thaliana AOS [148] showed HPL activity.
In addition to the study of crystalline AOS structures, Lee et al. [148] and Li et al. [149] analyzed
protein sequence alignments of different CYP74s and performed alignments of crystalline structures
of AOS with modeled structures of other CYP74s Moreover, a tridimensional model of truncated
alfalfa HPL was constructed by Hughes et al. [152], by homology with cytochrome P450, a rabbit
monooxygenase (CYP25C). These studies helped to advance the understanding of the structure and
reaction mechanism of CYP74s and made possible to bring out similitudes but also some functional
and structural differences between CYP74s and other P450s. The six substrate recognition sites (SRS)
described in P450s are found in CYP74s, both in AOS and in HPL [148,149,153]. CYP74s have a major
ax-domain which is predominantly alpha-helical and contains a conserved structural core around heme,
and a small 3-domain which is predominantly composed of beta-sheets with two «-helices A and A’ in
the N-terminus, and a 310 helix B [148,149]. The o-helices and (3>-sheets were labelled by analogy with
those of the P450s. The heme prosthetic group is located mainly between helices I and L. Cysteine
acts as the fifth ligand for the heme iron. Helix I contains residues essential for catalysis [148,153,154].
In the central region of this helix, an asparagine conserved in all CYP74s pointing to the heme may
interact with the 13-hydroperoxyl group of the substrate, suggesting a critical role in catalysis [148,153].

In the proposed reaction mechanism of HPL [27-29], the substrate displaces the water molecule
that served as the sixth ligand of the heme iron (Figure 5 step 1 and 2). The iron (II) is then coordinated
with the terminal oxygen atom of the hydroperoxide function of the substrate. Hydrogen bonds are
established between the amide group of asparagine and the two oxygen atoms of the hydroperoxide
function [148]. This results in the homolytic cleavage of the O-O bond of the hydroperoxide, giving
rise to an alkoxy radical (ROe) and a protonated ferryl species Fe(IV)-OH [124] (Figure 5 step 3). The
hydrogen bonds between asparagine and oxygen are maintained. A rearrangement of the double
bond between C11 and C12 of the substrate creates a cyclization around the oxygen atom of the radical,
resulting in the abstraction of hydrogen on the C11. A 12,13-epoxide with a carbon-centered radical
(Ce) at C11 is thus generated [148] (Figure 5 step 4). Since this epoxycarbinyl radical is not stabilized,
the bond between C12 and C13 is split off. A double bond is established between C11 and C12, and the
radical formed at C13 undergoes oxygenation by iron-catalyzed oxygen transfer [28] (Figure 5 step 5).
An unstable hemiacetal is thus generated (Figure 5 step 6), and then cleaves spontaneously to form a
C6 or a C9 aldehyde and an oxoacid [27,29] (Figure 5 step 7).
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Figure 5. Schematic diagram of the proposed reaction mechanism of HPL [148]. In the absence of

substrate, the iron atom of the heme is coordinated with a cysteine residue and a molecule of water
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of water (2). After cleavage of the O-O bond of the hydroperoxide function of the substrate (3), an
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Based on alignments of AOS and HPL sequences, Lee et al. [148] found the substitution of a
phenylalanine in AOS (F137 Arabidopsis thaliana AOS) by leucine in HPL. The involvement of the
residue at this position in the catalytic mechanism and the reactive specificity of AOS and HPL has
been discussed [148]. Indeed, the first steps (Figure 5 steps 1 to 4) of the catalytic mechanisms of the
two enzymes are identical and both lead to the formation of an epoxide with a radical at C11 [148,154].
However, they differ subsequently, mainly depending on the presence of the phenylalanine or leucine
residue. Lee et al. [148] suggest that in AOS, the presence of the phenylalanine residue having an
aromatic ring stabilizes the radical at C11 and makes possible its oxidation. The carbocation formed is
stabilized by cation-7r interactions with the phenylalanine residue, which favors the formation of an
allene oxide. On the other hand, in HPL, the presence of a leucine residue does not lead to stabilization
of the radical, leading to the cleavage of the bond between the carbons C12-C13 of the epoxy group,
and thus orienting the mechanism towards the formation of an unstable hemiacetal. The substitution
of phenylalanine 137 residue of Arabidopsis thaliana AOS by a leucine residue (mutant F137L) exhibit
HPL activity [148]. Similarly, the substitution of phenylalanine 92 by leucine in rice AOS (mutant
F92L), allowed the production of 12-oxoacid by the enzyme [148,155].

The action of HPL on HPOs is carried out at an optimum pH of between 5.5 and 8 [20,106,109,
118,127,140,156], and at an optimal temperature ranging from 20 to 45 °C [107,127,133,144]. When the
amount of HPOs is in excess of that of HPL, the reaction velocity gradually deceased and finally stopped
before all available substrate was used [125,126]. Only a secondary addition of fresh enzyme induced
renewed reaction [125]. This is typical of mechanism-based inhibition or suicide inactivation which is a
phenomenon commonly found in cytochromes P450. Studies by Matsui et al. [157], Matsui et al. [125],
and Suurmeijer et al. [126] concluded that hydroperoxides specifically recognized by the active site
of HPL are transformed into radical species responsible for the oxidation of the sulfhydryl group
of the cysteine involved in binding with the catalytic iron atom. Dithiothreitol (DTT) and organic
antioxidants such as o-tocopherol, butylhydroxyanisole, and butylhydroxytoluene protect HPL against
this inactivation [125,157].

HPL is not inhibited by the direct products of its action (such as hexanal or (3Z)-hexenal) but by
the o, 3-unsaturated aldehydes obtained after isomerization (in particular (2E)-hexenal), which can
bind to the sulfhydryl group [126,144].

HPL can be inhibited by metal chelators such as salicylic acid and deferoxamine mesylate (Desferal),
known to inhibit heme enzymes [105,125,126]. Nordihydroguaiaretic acid (NDGA) inactivates HPL by
reducing the active form Fe (III) of catalytic iron to its inactive form Fe (II) [144,158].

3.4. Isomerization, Dehydrogenation and Esterification Reactions of HPL Products

The C6 and C9 aldehydes produced by the HPL branch of the LOX pathway, as well as the
corresponding alcohols and esters are commonly called green leaf volatiles. When produced by HPL,
the short-chain aldehydes are only into Z conformation, but then they can be isomerized to the isomeric
form E. Isomerization can occur spontaneously depending on the physical factors of the medium (pH,
temperature), or be promoted by an isomerase activity [7,81,159] (Figure 3). The aldehydes can also be
reduced to alcohols by an NAD-dependent alcohol dehydrogenase (ADH, EC 1.1.1.1) [75,133,160,161].

The action of a 13-HPL on a 13-HPOD leads to the formation of hexanal, which can be converted
into hexanol by ADH [21]. The action of a 13-HPL on a 13-HPOT results in the release of (3Z)-hexenal,
which can be reduced to (3Z)-hexenol by ADH, or isomerized in (2E)-hexenal, and then converted by
ADH to (2E)-hexenol [1,10].

From 9-HPOD, 9-HPL produces (3Z)-nonenal that can be reduced to (3Z)-nonenol by ADH, or
isomerized to (2E)-nonenal, then converted by ADH into (2E)-nonenol. If the substrate is 9-HPOT,
(3Z,6Z)-nonadienal is produced and then reduced to (3Z,6Z)-nonadienol by the ADH, or isomerized at
(38E,6Z)-nonadienal, then converted by ADH to (3E,6Z)-nonadienol [21,81,162].
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The short-chain carbon alcohols thus produced can be esterified by an alcohol acetyl transferase
(AAT), using acetyl coenzyme A [61,75]. AAT catalyzes particularly the synthesis of (3Z)-hexenyl
acetate from (3Z)-hexenol [61].

4. Industrial Purpose and Use of GLVs

4.1. Flavoring Interest of GLV's

In addition to their biological activities on plants, herbivores, and microorganisms, GLVs including
C6 or C9 aldehydes, alcohols, and esters, have interesting flavoring properties, which make them
widely used in industry (Table 1).

Table 1. Odor qualities attributed to green leaf volatiles (GLVs) formed by the lipoxygenase pathway.

FONCTION COMPOUND ODOR
hexanal Green, apple, cut grass
(8Z)-hexenal Green leaves, grassy, green, apple-like, leaf-like, cut grass
(2E)-hexenal Green, fruity, sweet
ALDEHYDES (3Z)-nonenal Cucumber-like, green
(2E)-nonenal Fatty, cut grass
(3Z,6Z)-nonadienal Cucumber-like, melon odor
(2E,6Z)-nonadienal Cucumber-like
hexanol Fruity, aromatic, soft, cut grass
(3Z)-hexenol Banana, leaf-like, green-fruity, pungent
(2E)-hexenol Green, grassy, fruity, fatty, pungent
ALCOHOLS (3Z)-nonenol Fresh, waxy, green melon odor
(2E)-nonenol Melon odor, waxy, green odor
(3Z,6Z)-nonadienol Watermelon odor
(2E),(6Z)-nonadienol Cut grass, cucumber-like
ESTERS Hexyl acetate Sweet, fruity, floral

Green-banana, fruity, Green,

B2yl ez green leaves, floral, ester

GLVs produced from linoleic acid. GLVs produced from linolenic acid.

These volatile compounds are responsible for the fresh smell of green leaves and cut grass referred
as “green note” in the field of aromas and fragrances [2,162]. They are important constituents of the
flavor and fresh green aroma in fruits and vegetables and they give a distinctive odor to every plant
and consequently to processed agri-food products [2,133,163].

The key aromatic compounds that contribute to the green and grassy odor note of guava fruit are
(3Z)-hexenal and hexanal [164]. The volatile alcohols, (3Z)-hexenol and (2E)-hexenol, and the aldehydes,
hexanal and (2E)-hexenal, with their green, grassy, sweet, fruity odor, are the major contributors of
the sensory characteristics in different tea varieties [165,166]. C6 compounds, particularly hexanal,
(2E)-hexenal and hexanol, are the most abundant volatiles in either red or white grapes and give a grassy
smell to grapes, which is crucial to grape berry flavor [131]. When grape berries get injured or crushed,
GLVs are quickly generated and released. Thus, such steps as destemming and crushing in the process
of winemaking can directly affect the generation of C6 compounds and consequently the flavor of the
produced wine [167]. C6 aldehydes (hexanal, (3Z)-hexenal and (2E)-hexenal) and alcohols (hexanol,
(3Z)-hexenol and (2E)-hexenol), and their acetyl esters (hexyl acetate and (3Z)-hexenyl acetate), are the
most important quantitative (80% of total volatile compounds) and qualitative compounds in virgin
olive oil aroma, with (2E)-hexenal being the most prominent component [168-170]. The biosynthesis
of these C6 compounds depend upon the availability of PUFAs, especially ALA, and the enzymatic
activity of the LOX/HPL system when tissues are disrupted during physical procedures (milling,
malaxation) of the oil extraction process [106,107,160,171,172]. Thus, the GLVs synthesized during the
olive fruit crushing are incorporated into the oil conferring their fresh green odor.
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4.2. Industrial Use of GLV's

Because of the blend of green, fresh and fruity aromas, GLVs are widely used in perfumes and
flagrances, food products like chewing gums, soft drinks, and also in prepared meals, to impart a green
character as well as a feeling of freshness. The natural ‘fresh green’ aroma of fruits and vegetables,
which is lost during industrial processing or sterilization processes, can be reconstituted through
the addition of HPL-generated volatiles. GLVs are also used to improve the shelf-life and safety of
processed foods due to their antifungal and antibacterial activities against both Gram-negative and
Gram-positive bacteria [173]. Among GLVs, (2E)-hexenal is highly bactericidal, essentially because of
its o, 3-unsaturated carbonyl moiety that has high reactivity [174,175].

Each of the compounds has a characteristic fragrance and a specific use (Table 1). The separate
use of one or more of these flavors is highly sought after.

GLVs share a major part of the global flavors and fragrances market (F&F market), which is valued
at approximately US $26.3 billion in the worldwide market in 2017*. This amount represents a growth
of 1.1% compared to the previous year and it is expected that F&F market will continue to increase
steadily year in year out. The production of GLVs is therefore an important issue for the industry.

4.3. Production of GLVs: Synthetic versus Natural Flavors

The GLVs market mainly comprises the synthesis of artificial flavors, of which mainly C6 aldehydes
and alcohols [176]. Indeed, chemical synthesis is the easiest way to produce large amounts of stable C6
or C9 aldehydes and alcohols. The production method is inexpensive and provides high yields for a
final product 95% pure. The synthesis begins with the production of C6 alcohols from a combination
of ethylene molecules and directed oxidation. Ethylene is produced from naphtha from fractional
distillation of petroleum. Additional directed oxidation is then performed to obtain the aldehydes.
After distillation, pure mixtures with more than 95% of aldehydes or alcohols can be marketed at about
25-50$ per liter, depending on the molecule synthesized.

However, in recent years, consumers are increasingly demanding natural products including
flavor, which they consider more healthy and safer than synthetic ones [19,176]. Furthermore, this
approach also allows substitution of petrochemical resources by renewable agrochemical resources
since natural processes are based on natural raw materials or renewable resources and are therefore
environmentally friendly and sustainable.

The EU regulation (EC) No 1334/2008 on flavorings and food ingredients with flavoring properties
defines in the articles 3.2(c) “natural flavoring substance” as “a flavoring substance obtained by
appropriate physical, enzymatic or microbiological processes from material of vegetable, animal or
microbiological origin either in the raw state or after processing for human consumption by one or
more of the traditional food preparation processes (including drying, roasting and fermentation)”.
Biotechnologically produced flavors are also covered by the term “natural”. The regulation also states
that “natural flavoring substances correspond to substances that are naturally present and have been
identified in nature”. All flavorings considered natural in the EU should also be considered natural in
the USA; however, the reverse is not necessarily true [177].

Actually, natural GLVs are the most valuable flavor class commonly sold in natural food industry
but its large-scale synthesis remains a great challenge for producers. Natural GLVs are high value-added
compounds which can be marketed at about 750-3000% per liter [176,178], depending on the molecule,
but their production is more complex and expensive than that of artificial flavors.

To produce a natural aroma, the initial substrate must be of plant or animal origin. This means
that extracts from natural sources as well compounds produced by biotechnological processes may be
considered as natural aromas.

Due to the growing demand and the low abundance of compounds in plants, the extraction of
GLVs directly from plants is unprofitable and very expensive.

Therefore, in order to meet market requirements, efficient biotechnological processes of GLVs
synthesis are developed for large scale production. These processes reproduce in vitro the reactions
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of the LOX pathway for GLVs biosynthesis (Figure 6). Vegetable oils rich in C18 PUFAs are the best
initial substrates for GLVs production because they are inexpensive and available in large quantities.
The enzymatic reactions of the LOX pathway are carried out successively on this substrate in order
to obtain the GLVs: The triacylglycerols from the vegetable oil are first hydrolyzed by the action of
a lipase, then the released PUFAs (C18:2 and C18:3) are converted by the actions of a LOX and then
a HPL into GLVs. Plant material in the form of flours, or crushed leaves or pulps are often used as
a source of LOX or HPL. The process ends with the extraction of the volatile molecules to obtain a
sufficiently pure product.

Lipase HPL source

Vegetable

oil 0, :33
¥ v

I i

Free fatty acids Fatty acid hydroperoxides GLVs
production synthesis synthesis

Figure 6. Biotechnological process of GLVs production in bioreactor. Biotechnological processes are
based on the reactions of the LOX pathway. First, a vegetable oil in emulsion is hydrolyzed by the
action of a lipase to release the fatty acids. Then, a lipoxygenase catalyzes the dioxygenation of the
polyunsaturated fatty acids into hydroperoxides. HPL acts on these hydroperoxides to produce C6 or
C9 aldehydes that are GLVs.

Several patents have described the production of natural GLVs from vegetable oils using plant
material containing the enzymatic activities of the lipoxygenase pathway. Formerly, the described
processes used a single plant source to perform all processing steps. Kanisawa and Itoh [179] patented
a method for preparing green flavors using crushed soybean seeds with or without additional lipase
activity. Representative examples of substrate have been used such as soybean, flax, olive, rapeseed,
maize, wheat, sesame, nut, grape seed, palm, and coconut oils. The compounds produced are
considered as natural flavoring substances. In another patent, Goers et al. [180] have described a
process for producing C6 aldehydes and alcohols using strawberry leaves as a source of biocatalysts.
In a bioreactor, linoleic acids or hydrolyzed linseed oil are converted to GLVs by the actions of LOX,
HPL, and ADH present in the leaves. However, yields remain low because, in many cases, not all the
enzymes of interest have sufficient activities in the same organism at the same stage of development.
The activity of HPL is, for example, very low during the development of soybeans [181] and decreases
rapidly during storage, unlike LOX [182]. One of the advantages of biosynthesis, compared to the
extraction of compounds, is precisely the possibility of using enzymatic activities from different plant
sources to perform successive reactions. Therefore, in many biotechnological processes, soybean
is preferentially used as a source of LOX and must be coupled to another source of HPL. Several
biotechnological processes will be described in more details in part V.2.
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Nevertheless, the use of plant extracts has disadvantages. Large quantities of plant material
whose supply depends on the harvest period and climatic hazards, are necessary and a lot of waste is
generated. For example, a biotechnological process requiring the use of fresh guava fruit, has to be
implemented in a country where fresh guava fruits are available cheaply and freely, but even when such
a site is found, availability is limited to the growing season of the fruit [183]. Another disadvantage is
that the desired enzyme activities are rather dilute in the sources employed. Furthermore, plant extracts
contain many enzymes that use the same substrates as LOX and HPL, leading to undesired products
and loss of substrate. Besides, LOX and HPL of different regiospecificities are present, generating a
mixture of C6 and C9 compounds, while industrials often seek a separate use of these flavors.

These drawbacks can be circumvented by using purified and regiospecific enzymes such as
recombinant enzymes, allowing efficient and highly selective (chemo, regio, and stereo) production of
the desired volatile compound(s) through directed synthesis. It also helps to overcome the dependence
on plants, which offers technical advantages for plant material supply and waste treatment. The use
of recombinant enzymes also allows the qualification of the molecules being produced as natural
flavoring substances and the possibility of making such a claim on the product label and the list
of ingredients.

5. Potential of the Use of the LOX Pathway for Biotechnological Production of Natural GLVs

Biotechnological production processes of natural GLVs involves various steps with the sequential
or simultaneous (coupling) use of the enzymatic biocatalysts, in order to convert the FAs of a vegetable
oil into HPOs and then into GLVs. The various steps are described in the following paragraphs and
some data of the biocatalytic reactions are detailed in Table 2.

5.1. Release of Fatty Acids from Triacylgycerols

The first step in GLVs synthesis is the production of free PUFAs from complex lipids. So, it is
necessary to benefit from a lipid source rich in interesting FAs. Vegetable oils such as sunflower,
linseed, colza, olive, or soybean oils rich in C18 PUFAs can be used as a raw material substrate for
the biotechnological processes. Fu et al. [184] showed that the more PUFAs in the oil, the faster is the
hydrolysis of triacylglycerols. The choice of the oil determines the class of HPOs produced and thus
the class of GLVs synthetized. Generally, biotechnological processes use lipase to hydrolyze olive oil or
sunflower oil rich in LA for subsequent HPOD production, and linseed oil rich in ALA for subsequent
HPOT synthesis.

Release of FAs can be performed by chemical hydrolysis of the oils. The use of water or ethanol
in this hydrolysis is compatible with agri-food regulations (Directive 2009/32/EC of the European
parliament and of the council). But the drastic conditions of hydrolysis require an achievement of this
step separately from the later steps of the process, because they would cause denaturation and loss of
activity of all the enzymes subsequently involved in the synthesis.

Enzymatic hydrolysis is an opportune choice of reaction because this process is one of those
accepted for the production of natural flavoring substances. For industrial purposes, microbial lipases
are often used to produce large amounts of free FAs [185]. Commercially available lipases usually
obtained from microorganisms can be used as potential biocatalysts. In order to reduce the cost of
the enzymatic process, several studies have successfully evaluated the effectiveness of immobilized
lipases, which allows the reuse of the enzyme to be considered [186,187].

The hydrolysis of triacylglycerols from the oil produces diacylglycerols, monoacylglycerols, and
glycerols with release of FAs at each step. Triacylglycerols are insoluble in water but can be solubilized
in organic solvents like hexane or octane [184,188]. Several organic/aqueous biphasic systems are used
for lipid hydrolysis [184,189-192]. The hydrolytic reaction catalyzed by lipases takes place generally
at the interface between the organic and aqueous phases (in particular oil/water interface). The free
FAs produced by the hydrolysis of triacylglycerols are poorly soluble in water and this characteristic
depends on the nature of the carbon chain and environmental conditions (pH and temperature).
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Nevertheless, the use of certain organic solvents is problematic for food applications, unlike the
production of a perfume aroma. The alternative solution is the production of a stable oil emulsion in
an aqueous solution by high speed mixing and addition of emulsifying molecules [193,194].

5.2. Transformation of Polyunsatured Fatty Acids into Hydroperoxides

The production of HPOs is the second step towards the synthesis of GLVs. HPOs synthesis
involves (i) PUFAs in particular LA or ALA or a mix of both, (ii) a source of LOX, to produce 9- or
13-HPOs, and (iii) oxygen as cofactor of the reaction. The actions of lipases and LOX can be carried out
successively or coupled within the same bioreactor.

If the LOX step is processed separately the reaction is carried out in aqueous medium. Nevertheless
in order to consider lipase/LOX coupling, the ability of LOX to catalyze the oxygenation of PUFAs in a
medium containing both an aqueous phase and a non-aqueous phase has been the subject of several
studies [12,195,196]. Drouet et al. [12] investigated the potential of soybean LOX for the synthesis of
HPOs in a biphasic medium (octane;borate buffer, pH9.6) and showed an improvement (23-45%) of the
reaction yield (compared to an aqueous system) at very high concentrations of substrate (2040 g/L). In
accordance with the regulations, for perfume aromas production, biphasic reactors (containing aqueous
phase and organic solvent) can be used to combine lipase and LOX reactions. In these bi-enzymatic
systems in biphasic medium, the FAs released by the lipase remain in the organic phase which serves
as substrate tank for the LOX, while the lipoxygenation of FAs with (1Z,4Z)-pentadiene system takes
place in the aqueous phase. HPOs are hydrophilic and therefore remain in the aqueous phase [197,198].
In the coupling system, the conversion rate is essentially controlled by the mass transfer. Gargouri
and Legoy [199] used a numerical integration program to model the two-enzyme system in the
heterogeneous biphasic media. The model was based on results obtained in separate studies with
following three phenomena: Hydrolysis in biphasic media, mass transfer, and lipoxygenation in an
aqueous media. The model simulates the evolution of the component concentrations in the system as
a function of time and confirms that catalysis and transfer influenced each other reciprocally. There
is a catalytic advantage of the proximity between the enzymes and their substrates. The presence of
the second enzyme accelerates and increases the consumption of the first substrate (triacylglycerols),
since the LOX reacts with the PUFAs produced by the first reaction [188,197,199]. This system makes it
possible to couple the production of free FAs and HPOs but it requires extraction of the HPOs before
subsequent reactions.

Numerous studies showed that the immobilization of LOX allows a high recovery and reuse of
the enzyme, a better stability and protection of the enzyme during storage, but the enzymatic activity
remains lower than that of the free enzyme [200-202]. The limiting factor to the use of immobilized
LOX would be a problem of diffusion of the substrate in active site of the enzyme [81].

Biotechnological processes that focus on C6 aldehydes production often use soybean (Glycine max)
as source of LOX for 13-HPOs production from free PUFAs. Soybean has been reported to contain
in its seeds sufficiently high and stable LOX activity for an industrial application [81]. Fauconnier
and Marlier [13] described the conversion of ALA contained in linseed oil to 13-HPOT using soybean
LOX and obtained high transformation yields (71.5%) in a 10 L bioreactor without addition of any
solvent or surfactant. In soybean seeds, different isoforms of LOXs (at least six including three main
ones) have been described, on the basis of differences in pH optima, substrate specificity, and their
product formation [81,203]. LOX1 differs from other isoenzymes in its optimum pH (9-9.5 instead
of 6-7) and at this optimum pH LOX1 produces 13-HPOs with LA as preferential substrate [203].
Soybean seeds flour is often used as a source of LOX for the production of 13-HPOs in biotechnological
processes [128,204,205]. Although the LOX1 content is higher than the levels of other LOX isoforms in
soybean seeds, the reaction conditions should maximize the action of the selected LOX isoenzyme.
For example, to favor the action of LOX1 and thus the formation of 13-HPOs, Marczy et al. [206] as
Fauconnier and Marlier [13] chose to work at low temperature and basic pH. In this way, LA (100 mM)
was converted by soybean LOX1 in presence of O; into 13-HPOD (68.7 mM) with a yield of 72%.
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Specific heat treatments can also reduce the activity of other LOX isoforms to maximize the production
of desired HPOs [207]. Otherwise, partially purified soybean LOXs (with different degrees of purity)
are commercially available and can be successfully used for the conversion of PUFAs into HPOs.

For C9 aldehydes production, LOX extracts from potato can be used to convert PUFAs into 9-HPOs
since a high 9-LOX activity has been reported in potato [208,209]. Gargouri and Legoy [210] described
the use of a two-enzyme system involving a lipase from a Pseudomonas sp. and an extract of potato
tubers containing LOXs to convert triacylglycerols into 9-HPOs. Otherwise, partially purified potato
LOXs are commercially available.

Kerler et al. [211] patented a production process of C6 and C9 GLVs using as initial substrate
particularly linseed o0il and sunflower oil, and placing at pH7 for the lipoxygenation step, to promote
the action of the LOX2 isoform of soybean flour to produce both 9 and 13-HPOs. These HPOs were
subsequently heated (in the range 90 to 180 °C) under acidic conditions to promote Hock fragmentation
(or rearrangement) of the HPOs, leading to aldehydes [211,212]. The oxidation of linseed oil produced
C6 aldehydes, mainly (2E)-hexenal (20,150 ppm) and its less stable isomer, (3Z)-hexenal (10,380 ppm)
and C9 aldehydes including (2E,6Z)-nonadienal (8900 ppm). When the sunflower oil was used as the
substrate, (3Z)-hexenal (125 ppm) and hexanal (5250 ppm) were produced.

5.3. GLVs Synthesis

First, production of specific GLVs compounds (C6 or C9 GLVs) is directed by the selection of
adequate substrates (i.e., the use of a sufficiently pure substrate either 9- or 13-HPOs) and adequate
HPL activity (i.e., 9- or 13-HPL activity). HPL activity is effective in various plant sources. The plant
source must be selected for industrial transformation capabilities such as optimal reaction conditions
(pH and temperature), availability, specificity, and concentration. Due to its low concentration in plants,
seasonal variation, suicide inactivation phenomena, low storage and process stability, difficulty to
purify, and unavailability of the enzyme in commerce, HPL is the limiting component for the industrial
conversion of FAs into GLVs. Several plants with HPL activity have been tested and many methods of
producing GLVs mixing a lipid substrate with plant material containing the biocatalysts have been
described and attempted to be optimized.

Marczy et al. [206] described a process for producing natural C6 aldehydes in two steps: First,
oxygenation of LA (100 mM) contained in hydrolyzed sunflower oil has been performed by LOX1
from soybean flour to form 13-HPOD (68.7 mM) (72% yield); then, the 13-HPOD (15 mM) was cleaved
by HPL isolated from spinach leaf resulting in 8.2 mM hexanal (54% yield). Nemeth et al. [207]
used almost the same system: (i) LOX1 from soybean flour was chosen to oxygenate ALA (100 mM)
contained in hydrolyzed linseed oil to form 13-HPOT (57 mM) (62% yield); and (ii) the 13-HPOT
(20 mM) was cleaved by HPL of a homogenate from green bell pepper fruits, resulting in 5.9 mM
(8Z)-hexenal and 1.6 mM (2E)-hexenal (37% yield for the hexenal isomers together). Hexenals were
isolated from the reaction mixture by repeated steam distillations. During distillation, the molar
ratio of the two isomers (2E)-hexenal:(3Z)-hexenal increases from 0.27 to 7.86 following the heat
treatment. Rabetafika et al. [128] developed a one step process in which all reactions performed
in a same bioreactor. One liter of reaction mixture contained 3 g soybean flour and 3 g linseed oil
previously hydrolyzed by immobilized Thermomyces lanuginosa lipase. pH was kept at 9.0 to ensure
maximal activity of soybean LOX1 isoenzyme in order to favor 13-HPOs formation. After the LOX
reaction, the pH was adjusted to 6.7 and a homogenate from crushed sugar beet leaves containing
HPL activity was used to perform the conversion of 13-HPOT to (3Z)-hexenal with a maximum
yield of 80% reached after only 2 min. The stability of (3Z)-hexenal was improved by acidifying the
reaction medium. According to Brunerie [213], which used crushed radish hay as a source of HPL
to produce volatile aldehydes, excellent selectivity in producing (3Z)-hexenal over (2E)-hexenal is
marked for temperatures between 0 and 20 °C. Gargouri et al. [104] described a process using a mint
leaf homogenate as source of HPL activity for the synthesis of hexanal and hexenals respectively from
13-HPOD and 13-HPOT (themselves obtained through the action of commercial soybean LOX on LA
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and ALA respectively). They observed a very limited isomerization of (3Z)-hexenal to (2E)-hexenal,
since the reaction and the volatile purge were carried out successively in the same flask without delay
or any contact with the atmosphere. Schade et al. [214] reported a process for the production of hexanal
using immobilized enzymes extracted from different plant sources (carnation petals and strawberry
and tomato leaves). These enzymes were immobilized in an alginate matrix and used as a biocatalyst
in a packed-bed bioreactor. The use of immobilized enzymes extracted from one gram of tomato leaves
produced 80.2 ug of hexanal at 25 °C. They report that this production was 112 times greater than the
amount of hexanal extracted from 1 g of plant tissue, which shows the interest of biocatalytic processes.
Continuous product recovery was achieved using a hollow-fiber ultrafiltration unit.

Once synthesized, aldehydes can be converted into the corresponding alcohols through the
action of ADH. The parameters of the synthesis define the nature of the products obtained. Indeed,
depending on the reaction time between the actions of HPL and ADH, the (3Z) or (2E) isomers can be
selected. Several authors [104,207] have shown that the isomerization of (3Z)-aldehydes in (2E) is not
instantaneous, but requires several minutes or hours. By choosing the moment of addition of the ADH,
it is possible to convert one or the other product in the form of alcohol. Indeed, by delaying the addition
of ADH to the action of HPL, the (3Z)-aldehyde undergoes isomerization to the (2E) isomer before
the start of the ADH reaction, resulting in a predominant production of (2E)-alcohol by reduction of
the corresponding aldehyde. On the contrary, the ADH activity can be mixed simultaneously with
that of HPL to primarily convert (3Z)-aldehyde to (3Z)-alcohol, avoiding isomerization of the double
bond. Akacha et al. [215] simulated (using the MATLAB program) the conversion of 13-HPOT to
hexenal and hexenol in a two-enzyme system involving successive action of HPL from mint and yeast
ADH. The aim of the model was to predict the steady-state performance of the kinetics in terms of
conversion. The simulation was based on Michaelis-Menten equations and experimentally determined
parameters. This model simulates the evolution of the component concentrations in the system as a
function of time. The model predicts total disappearance of initial substrate in few minutes (~20 min)
leading progressively to the production of hexenal that rapidly disappears in order to form hexenol.
Gargouri et al. [216] and Akacha et al. [215] showed that when coupling HPL activity to ADH activity,
the second reaction catalyzed by ADH could favor the first one catalyzed by HPL, resulting in an
increase of the conversion rate of the initial substrate (HPOs). Akacha and Gargouri [217] proposed an
enzymatic liquid/gas reactor, where the synthesis of C6 compounds was coupled to their extraction
(which acted by their removal with carrier gas Nj). First, 13-HPOT is produced from chemically
hydrolyzed linseed oil by the action of LOX of a homogenate from soybean seeds. Then, (3Z)- and
(2E)-hexenals (up to 0.36 g'kg™! of reaction medium) are produced from 13-HPOT in presence of
HPL of homogenate from olive leaves (50% yield). Finally, the hexenals are successfully reduced into
their corresponding alcohols ((3Z)-hexenol up to 3.54 g-kg™! of olive leaves with a yield of 47.7%) by
adding yeast cells Saccharomyces cerevisiae containing ADH activity to the same reactor. Baker’s yeast
containing ADH is the most commonly used for C6 and C9 alcohols production from aldehydes in
biotechnological processes. Muller et al. [204] patented a process using sunflower or linseed oil as initial
substrate, soybean flour as LOX source, guava homogenate containing HPL, and S. cerevisiae yeast with
ADH activity. Steam distillation and/or extraction with an inert organic solvent is used in recovery
of the aldehydes and alcohols. Depending on the lipid source providing FAs, the reaction cascade
and the experimental design chosen, various GLVs can be produced: Hexanal, hexenol, (3Z)-hexenal,
(3Z)-hexenol, (2E)-hexenal, or (2E)-hexenol. The yields obtained are for example 5 g-kg_l of reaction
medium for hexanal, 4.2 g-kg‘1 for (3Z)-hexenol and 1.5 g-kg_1 for (2E)-hexenal [204].

For C9 GLVs production, Hausler et al. [218] patented a process that uses Candida cylindracea
lipase to hydrolyze flaxseed oil, and then shreds of violet leaves to obtain C9 aldehydes, which can be
reduced to alcohol using baker’s yeast cells. This process resulted in 661 mg-kg ™' of plant material for
(2E,6Z)-nonadienal and 44 mg-kg_1 of plant material for (2E,6Z)-nonadienol.
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Short chain alcohols can subsequently be transformed into esters which have a reduced aromatic
power, but a very high chemical stability [219]. The synthesis of esters such as (3Z)-hexenyl acetate can
be performed by the AAT.

Despite efforts to develop high GLVs production systems, yields remain low for industrial
purposes and in many cases stability and specificity of the biocatalysts have to be optimized to improve
the productivity.

In fact, one of the main problems for HPOs transformation into GLVs using plant extracts is
the abundance in plants of HPOs metabolizing enzymes other than HPL, resulting in undesirable
products and loss of substrate. Among these enzymes, AOS is highly concentrated in some plants
organs [136]. Brunerie and Koziet [220] have optimized a method using shredded leaves and baker’s
yeast to produce C9 alcohols, by adding salicylic acid. The use of salicylic acid could inhibit the
secondary metabolic pathway leading to the jasmonic acid derivatives from the HPOs produced by the
LOX activity, and thus favor the pathway leading to the aldehydes and alcohols. In the presence of
salicylic acid (1 mM), the concentration of (3Z)-hexenol produced is of 425 ppm, which represents a
24% increase compared to the control without salicylic acid. Another alternative to circumvent the
problem is to consider the (at least partial) purification of HPL. A purification method of tomato leaves
HPL developed by Fauconnier et al. [103], involving selective precipitation with different PEG6000
amounts, ultracentrifugation and chromatography on DEAE column permitted to obtain a 120 fold
concentrated pure extract. Suurmeijer et al. [126] obtained better results for the purification of tomato
fruit HPL, successively by filtration, concentration, ultrafiltration, and purification on a Sephadex G100
column and finally, chromatography on a DEAE column, since the enzymatic extract has been purified
more than 300 fold.

However, another main problem is that the biotechnological application of HPL is limited by its
low stability [133,221,222]. Suurmeijer et al. [126] show that partially purified tomato HPL is inactivated
after 24 h at 4 °C. Itoh and Vick [105] reported a 50% loss of sunflower HPL activity after storage for 48
h at 4 °C. After five weeks of storage at 4 °C, only 12% of the initial activity of a HPL enzymatic extract
from mint leaves is found [222]. In addition, the enzyme is sensitive to freezing [222,223]. The activity
of HPL from Amaranthus tricolor leaves decreased by 31.4% after 24 h storage at —20 °C [223].

Nevertheless, addition of selected stabilizing additives, including salts, sugars/polyols, and
polymers to the enzymatic extracts has been considered as an efficient mean for the stabilization of
biocatalysts as well as for the enhancement of their activities. Compounds such as glycerol [126,223],
sucrose [126], or dithiothreitol [224], can be used as cryoprotectants. Lyophilization of HPL enzymatic
extracts of mint leaves and Penicillium camemberti in the presence of KCl preserved enzymatic activity
for more than four weeks [221,222]. The protective effect of several additives was attributed to the
modification of the enzyme’s microenvironment, specifically its water activity and/or to the molecular
interactions between proteins and additives [225,226]. Koeduka et al. [226] showed that the addition of
2MKCl, 1 M NaCl, or 0.5 M NaySOy in the reaction medium increase the specific activity of barley HPL
(five-fold increase with 1 M KCI). Glycine also appears to be an effective additive since its presence at
10% (w/v) increases the catalytic efficiency of a mint leaves HPL extract by 2.5 times [222].

Furthermore, immobilization could also be considered to improve enzyme stability. The thermal,
operational, and storage stabilities of 13-HPL from Amaranthus tricolor leaves were significantly
improved after immobilization, as well as the tolerance against its substrate and product inhibitions [227].
13-HPL was first partially purified from A. tricolor leaves, then the 1,6-hexamethylenediamine attached
chitosan-carrageenan with biomimetic hydrophobic surface was proved to be the most suitable
carrier [227]. Using the immobilized enzyme as the catalyst, the maximum hexanal concentration
obtained was 3560 (+130) mg/L in a packed-bed reactor [228]. In the packed-bed reactor, continuous
addition of low amounts of substrate and removal of reaction mixture containing products slowed the
enzyme inactivation and prolonged the operating time.

The industrial production of GLVs by biotechnological processes using plants is subject to
environmental as well as technical constraints since large amounts of raw materials are required and
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the batch processing in large quantities generates a large amount of residual organic matter. Thereby
considerable efforts have been made to clone and produce this enzyme with enhanced stability and
activity. Recombinant expression is an excellent way to increase the availability of HPL used in
biotechnological processes.

HPLs of different plant species have been cloned and expressed in prokaryotic or eukaryotic
organisms, with the aim of producing large amounts of enzyme. Alfalfa, potato, sugar beet, and
olive 13-HPL and almond 9-HPL were cloned and expressed in Escherichia coli [107,121,127,133,205].
Noordermeer et al. [205] have described a biocatalytic process for the production of C6 aldehydes from
hydrolyzed safflower and linseed oils using soybean flour containing 13-LOX and alfalfa recombinant
13-HPL. Culture in E. coli yielded 3000 and 8000 units of recombinant HPL per liter of culture. Molar
conversion rate of 50% for hexanal and 26% for hexenal formation were obtained with recombinant HPL
and in contrast to plant extracts no side products were formed. Gigot et al. [229] studied conversion
of 13-HPOT by sugar beet HPL extracted from leaves or expressed by recombinant E. coli strains.
With the adaptation of a fed-batch substrate addition and a continuous extraction of volatiles, at
2 L scale, 3.46 mM of C6 aldehydes were produced with the native HPL extracted, while 5.5 mM
of C6 aldehydes were produced with recombinant HPL and further no side products from the LOX
pathway were formed. Whitehead et al. [183] patented a method using recombinant guava HPL
expressed in E. coli, producing 14 g of hexanal per liter of bacterial lysate. Recently, Jacopini et al. [108]
isolated and cloned a cDNA encoding for a 13-HPL from black olive fruits (Olea europaea L., Leccino
variety). Recombinant olive HPL was expressed in E. coli, then purified, characterized, and used for
bioconversion of 13-HPOD and 13-HPOT. Under optimal biotransformation conditions, 5.61 mM of
hexanal and 4.39 mM of (3Z)-hexenal were produced by the action of the recombinant olive HPL,
corresponding to high molar conversion yields of 93.5 and 73%, respectively [108]. Recombinant
olive HPL appears to be a promising efficient biocatalyst for C6 aldehydes synthesis in a biocatalytic
process. The stabilization of the enzyme using selected chemical additives was also investigated.
Jacopini et al. [230] showed that about 100% of the HPL activity was maintained during five weeks
of storage at —20 or at —80 °C in the presence of glycerol (10%, v/v). The addition of additives such
as NaCl, NaySOy, and glycine to the reaction medium has increased the catalytic efficiency of the
enzyme. During C6 aldehydes biosynthesis in the presence of these compounds, amounts of aldehydes
equivalent to those obtained in their absence, and high molar conversion rates were achieved, while
the amount of enzyme used was decreased from 1.5 to 2.5 fold [230].

If needed, biocatalysts can be engineered using protein and strain engineering tools to increase
their performance to meet process requirements. The performance of the 13-HPL from guava, has been
improved by directed evolution [231]. Engineered 13-HPL showed increased total turnover number,
higher solubility, and thermal stability that translated into lower catalyst loading. Brithlmann and
Bosijokovic [232] showed that the use of a ketoreductase overproduced in a microorganism instead of
baker’s yeast may offer higher selectivity and increased volumetric yields at reduced catalyst loading.
Finally, combining both catalysts (engineered recombinant HPL and recombinant ketoreductase) at
reasonable loading in a simple one-pot cascade reaction offered the GLV (3Z)-hexenol at high isomeric
purity (>99%) and high titers (8 g-L 1) [232].

Besides, recombinant yeasts have also been tested for the production of HPL. Bourel et al. [233]
and Santiago-Gomez et al. [234] obtained 1200 to 1800 units of green pepper recombinant HPL per liter
of culture medium when expressed in yeast Yarrowia lipolytica, and 6 mM of hexanal was obtained from
119 mM of 13-HPOs. Another yeast, Pichia pastoris was used by Atwal et al. [235] to express tomato HPL
as a secreted enzyme. Buchhaupt et al. [236] have described a process for the production of aldehydes
and 6-carbon alcohols by the yeast S. cerevisiae coexpressing soybean 13-LOX and watermelon 13-HPL.
However, the enzyme levels produced in yeasts are much lower than those obtained in E. coli.
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Table 2. Comparison of the methods used and the yields obtained for reactions of biotechnological processes.
. . " . A Product

Biocatalytic Step Initial Substrate Biocatalyst Method Peculiarity (Concentration and/or Yield in %) Reference

LA 20 g1Y) Soybean LOX1 Biphasic medium (octane:borate 13-HPOD (60.2% yield) Drouet [12]

& Yy buffer pH 9.6, 1:8) ey
. ' Hydrolyzed ﬂzi>1< seed oil LOX extracted from soybean seed Bioreactor without addition of 13-HPOT (71.5% yield) Faucon.mer and

Hydroperoxides synthesis (54gL™) any solvent or surfactant Marlier [13]

LA (100 mM) contained in
hydrolyzed sunflower oil

LOX1 isolated from defatted
soybean flour

13-HPOD (68.7 mM, 72% yield)

Marczy, et al. [206]

ALA (100 mM) contained in
hydrolyzed linseed oil

LOX1 isolated from soybean flour

13-HPOT (57 mM, 62% yield)

Nemeth, et al. [207]

Linseed oil (250 g)

Sunflower oil (250 g)

LOX2 isoform of soybean flour

Heat treatment
(90 to 180 °C) under acidic
conditions to promote cleavage
of HPOs

(2E)-hexenal (20,150 ppm)
(3Z)-hexenal (10,380 ppm)
(2E,6Z)-nonadienal (8900 ppm)

(3Z)-hexenal (125 ppm)
hexanal (5250 ppm)

Kerler, et al. [211]

13-HPOD (15 mM)

HPL isolated from spinach leaf

Hexanal isolation by repeated
steam distillation

Hexanal (8.2 mM, 54% yield)

Marczy, et al. [206]

13-HPOT (20 mM)
GLVs synthesis

HPL of a homogenate from green bell

pepper fruits

Hexanal isolation by repeated
steam distillation

(3Z)-hexenal (5.9 mM)
(2E)-hexenal (1.6 mM )
(37% yield for the hexenal
isomers together)

Nemeth, et al. [207]

Linseed oil (3 g-L 1)
hydrolyzed by immobilized
Thermomyces lanuginosa lipase

Soybean flour and HPL of a
homogenate from crushed sugar
beet leaves

All reactions in the same
bioreactor

(3Z)-hexenal (80% yield) and
Hexanal (70% yield)

Rabetafika, et al. [128]

LA (10.7 mM)

Immobilized enzymes extracted from

one gram of tomato leaves

Immobilization in an alginate and
use of a packed-bed bioreactor

Hexanal (80.2 p.g-g’l of fresh
weight, 0.1% yield *)

Schade, et al. [214]

Chemically hydrolyzed
linseed oil

- LOX of a homogenate from
soybean seeds
- HPL of homogenate from
olive leaves
- Saccharomyces cerevisiae yeast
containing ADH activity

Enzymatic liquid/gas reactor for
coupling GLVs synthesis
and extraction

(3Z)- and (2E)-hexenals (0.36 g~l<g’1
of reaction medium, 50% yield)
(3Z)-hexenol (3.54 g'kg™! of olive
leaves, 47.7% yield)

Akacha and Gargouri
[217]
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Biocatalytic Step Initial Substrate

Biocatalyst

Method Peculiarity

Product
(Concentration and/or Yield in %)

Reference

Sunflower oil or linseed oil or
commercial mixture of FAs

- Soybean flour as LOX source
- Guava homogenate containing HPL
- Saccharomyces cerevisiae yeast
containing ADH activity

Steam distillation and/or
extraction of GLVvs with an inert
organic solvent

Hexanal (5 g-kg™! of reaction
medium, 35.8% yield),
(3Z)-hexenol (4.2 g’kg™! of reaction
medium, 41.9% yield) and
(2E)-hexenal (1.5 g-kg ™! of reaction
medium, 20% yield)

Muller, et al. [204]

Flaxseed oil

- Candida cylindracea lipase
- Shreds of violet leaves
- Baker’s yeast cells

(2E,6Z)-nonadienal (661 mg-kg™! of
plant material) and
(2E,6Z)-nonadienol (44 mg~l<g’l of
plant material)

Hausler, et al. [218]

Hydrolyzed safflower and
linseed oils

Soybean flour containing 13-LOX and
Alfalfa recombinant 13-HPL
expressed in E. coli

Hexanal (50% yield)
and (3Z)- and (2E)-hexenal
(26% yield)

Noordermeer, et al. [205]

13-HPOT (10 mM)

Sugar beet HPL extracted from leaves
or expressed by recombinant
E. coli strains

Fed-batch substrate addition and
a continuous extraction of
volatiles

3.46 mM of C6 aldehydes with the
HPL extracted from leaves or
5.5 mM of C6 aldehydes with

recombinant HPL

Gigot, et al. [229]

13-HPOD (17.6 mM)

Recombinant guava HPL expressed

Hexanal (14g-L~! of bacterial lysate,

Whitehead, et al. [183]

in E. coli 3.95% yield *)
13-HPOD and 13-HPOT Green peppgr recomb1nant HI,)L Santiago-Gomez, et al.
expressed in growing Yarrowia - Hexanal (6mM)

(119 mM)

lipolytica

[234]

13-HPOT (257 mM)

Engineered recombinant guava HPL
(improved by directed evolution) and
recombinant ketoreductase

(3Z)-hexenol (8 g'L 71, 41% yield) at
high isomeric purity (>99%)

Briithlmann and
Bosijokovic [232]

13-HPOD (6 mM) and
13-HPOT (6 mM)

Recombinant olive HPL expressed in
E. coli

Hexanal (5.61 mM, 93.5% yield) and
(3Z)-hexenal (4.39 mM, 73% yield)

Jacopini, et al. [108]

* determined from the data of the publication.
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Another strategy is to use the phytopathogenic bacterium Agrobacterium tumefaciens to transfect
the genes encoding and overexpressing the enzymes of the LOX pathway in a plant. Thus, the gene
encoding watermelon 13-HPL was used to overexpress the enzyme in Nicotiana benthamiana and
Nicotiana tabacum [129,237]. In the transgenic leaves, watermelon 13-HPL activity was respectively 80
and 50 higher than endogenous HPL activity in the wild-type plants.

GLVs compounds produced from HPOs may be included in mixtures in the flavor and perfume
industry and the food industry.

6. Conclusions

In addition to acting as defense molecules in plants under stress conditions, GLVs have interesting
flavoring properties commonly used in the flavor and fragrance industry, as well as in food technology.
Nowadays, the demand for natural GLVs still growing, but large-scale synthesis remains a major
challenge for producers. The use of the naturally occurring LOX pathway in plants has led to the
development of efficient and environmentally friendly biotechnological processes for the production of
natural GLVs. Indeed, in such processes the enzymatic activities of the LOX pathway used to perform
the bioconversion of a natural raw material, renewable, and inexpensive, which is often a vegetable oil,
to natural GLVs with high added value.

Enzymatic engineering technology has contributed to the improvement of process efficiency
through the production of recombinant and/or engineered enzymes, and the use of optimized bioreactors
for continuous synthesis. HPL is the essential and critical step of the biotechnological process, being
the limiting factor for the GLVs production. Biotechnological tools are to be developed in order to
improve this step. The production of recombinant HPL in large scale and its stabilization to raise HPL
levels, as well as the extraction of intermediate and final products are important ways to explore.
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