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Nanomaterials, engineered structures of which a single unit is sized (in at least one dimension)
between 1 to 100 nm, are probably the fastest growing market in the world. Although, nanotechnology
is still a new discipline (proposed by Richard Feynman’s talk “There’s Plenty of Room at the Bottom”
in 1959; and named by Norio Taniguchi in 1974), nanomaterials have already been commercialized for
various purposes, including medicine, food, cosmetics, technology, and industry, as well as human
and environmental health. A lot of studies on the preparation of more efficient, stable, and safe
nanomaterials have been performed each year, as clearly shown by the growing number of published
papers (Figure 1). Although, nanomaterials are extremely important for industrial and household
purposes, it should be pointed out that properties of nanomaterials differ substantially from those of
bulk materials of the same composition, resulting in high reactivity. Accordingly, possible undesirable
effects might cause harmful interactions with the environment, living organisms, and humans and their
parts (e.g., influence on structural integrity and functions of essential proteins, enzymes, and DNA),
and thus have the potential to generate toxicity [1,2]. Therefore, possible negative impacts of novel
materials (toxicity) must be also considered in the design of efficient, but also safe products. It is
believed that most importantly, for future human development, nanomaterials/nanotechnology could
be used to solve three of the top ten of humanity’s problems (proposed by Prof. Smalley [3]), i.e.,
environment, water, and energy (which is critical for the rest of the problems). It is known that
nanomaterials might be used for purification of water and air [4–6], wastewater treatment [7–10],
microorganisms’ inactivation [11–13], and energy conversion to the electricity and fuels [14–16].

Therefore, the special issue of Catalysts has been announced to discuss the progress of recent
research on synthesis, properties, and applications of nanomaterials for environmental purification and
energy conversion. This Special Issue was mainly dedicated as a platform for the contributions from
The Symposium on Nanomaterials for Environmental Purification and Energy Conversion (SNEPEC),
which was held in Sapporo, Japan in February 2018 (http://www.cat.hokudai.ac.jp/icat-nepec/).
The contributions from those who could not attend SNEPEC were also welcomed. The Symposium
covered a broad range of topics focusing on the exceptional role of catalytic nanomaterials in solving
environmental and energy problems of modern societies. Accordingly, the Special Issue “Nanomaterials
for Environmental Purification and Energy Conversion” is a collection of 17 papers, including 16 research
papers and one review. Eleven papers present heterogeneous photocatalysis for efficient degradation
of organic pollutants (phenol [17,18], 2-propanol [19], dyes [20–22], humic acid [23]), inactivation
of microorganisms (Escherichia coli, Staphylococcus epidermidis [24], Bacillus subtilis, and Clostridium
sp. [18]), H2 evolution [25], and CO2 reduction [26,27]. Six other papers focus on conventional catalysis
(“dark” reactions), reporting efficient H2 production [28,29], synthesis of ethanol and butanol [30],
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direct conversion of CO2 and methanol to dimethyl carbonate [31], water purification [32], and advanced
characterization of catalysts by X-ray absorption fine structure (EXAFS) spectroscopy [33]. The majority
of studies have been performed with particulate catalysts (nanoparticles (NPs)), but organized
nanostructures, such as nanotubes (TiO2/CuxOy [18], carbon nanotubes (CNTs) [30,32]) and nanowires
(CeO2 [31]) have also been used.
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Fu et al. prepared CeO2 nanowires by the advanced solvothermal method for direct catalytic
synthesis of dimethyl carbonate from CO2 and methanol [31]. They found that the surface reduction
under H2 atmosphere formed acidic/alkaline sites on the catalyst surface, and thus significantly improved
catalytic activity, reducing the activation energy barrier from 74.7 to 41.9 kJ/mol. Complex catalytic studies
were performed by Hafizi and Rahimpour for catalytic H2 production [28]. The effect of alumina and
Mg-Al spinel as the support for the formation of Fe2O3 catalyst was investigated. The Fe2O3–MgAl2O4

with narrowed mesopore-sized (2.3 nm) was successfully synthesized as an ultra-pure lattice oxygen
transport medium. Furthermore, Daneshmand-Jahromi et al. analyzed the role of yttrium promoted
Ni/SBA-16 as an oxygen carrier in steam methane reforming [29]. The reaction temperature, Y and
Ni loading, steam/carbon molar ration, and lifetime of the oxygen carrier were investigated. The best
catalytic activity was obtained for mesoporous silica (SBA-16) modified with 25 wt% Ni and 2.5 wt% Y,
resulting in 99.83% CH4 conversion and 85.34% H2 production.

The synthesis of ethanol and butanol from synthesis gas on multiwalled carbon nanotubes
(MWCNTs) functionalized with salicylic acid and impregnated with copper–cobalt catalyst was
proposed by Zou et al. [30]. It was found that salicylic acid did not only functionalize carbon nanotubes,
but also promoted the synthesis of ethanol and butanol, instead of methanol. Moreover, the surface
properties of MWCNTs were crucial for efficient alcohol synthesis, i.e., the best activity was obtained
with MWCNTs of 30 nm diameter. Carbon nanotubes (CNTs) were also used for efficient water
purification by Li et al. [32]. The conductive cotton filter anodes were fabricated by a facile dying
method to incorporate CNTs as filters. The developed filtration device achieved physical adsorption of
organic compounds (ferrocyanide, methyl orange dye, and antibiotic tetracycline), and additionally,
an application of external potential resulted in chemical oxidation of pollutants. The CNTs amount,
total cell potential, and surfactant were key parameters affecting the electrochemical oxidation. It was
proposed that the conductive cotton filter might be efficiently used for low-cost and energy-saving
water purification. This very important research was reported by Wakisaka et al. who demonstrated the
extended X-ray absorption fine structure (EXAFS) spectroscopy as an efficient technique to characterize
Pt–Au fuel cell catalysts [33]. Previously, range-extended EXAFS was only achieved in high-energy
resolution fluorescence detected XAFS (HERFD-XAFS). The presented results confirmed the feasibility
of the range-extended EXAFS using the bent crystal Laue analyzer (BCLA) for fuel cells models
containing Pt and Au.
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Most papers discussed photocatalytic reactions on nanomaterials (heterogeneous photocatalysis).
Titania (titanium(IV) oxide, TiO2) is one of the most well-known and widely studied photocatalysts,
due to its advantages, such as high activity, stability, low-cost, and nontoxicity (excluding toxicity of
nanomaterials), as also confirmed in this issue (seven papers [17–19,21,24,26,27]). However, titania has
two main shortcomings, i.e., recombination of charge carriers (typical for all semiconductors) and
inactivity under visible light irradiation (due to wide bandgap). Therefore, various studies have
been performed to improve photocatalytic performance of titania. The comprehensive review by
Giovannetti et al. on recent advances in graphene-based TiO2 nanocomposites for synthetic dye
degradation shows the increasing potential of titania photocatalysts based on graphene matrix, in the
field of extending the light absorption of TiO2 from UV into the visible light range of radiation [21].
In this regard, the idea of titania modification is strongly present in the papers collected in the issue,
e.g., titania surface modification with copper oxides (Cu2O [19] and CuxOy [18]), organic compounds
(glucose [24] and urea [19]), polymers (polydopamine [27]), graphene [21], carbon/nitrogen [17],
and titania doping (self-doped or hydrogenated) [34]. All kinds of modifications resulted in enhanced
activity under either UV, visible light or solar radiation. Guan et al. prepared and characterized the
colored core-shell structure of TiO2@TiO2-x [26]. They reported visible light activity of this material
towards CO2 reduction under a simulated flue gas system. Visible light-induced photoreduction
of CO2 was also conducted with polydopamine-sensitized TiO2 by Wang et al. [27]. The successful
titania modifications with D-glucose was achieved by Markowska-Szczupak et al. [24], where the
photocatalytic activities of suspended and immobilized photocatalysts were compared. In this study,
it was shown for the first time that titania modification with monosaccharides could be efficient for water
disinfection, and the immobilization of the photocatalyst on the concrete discs might be a prospective
method for public water supplies and water storage tanks (as exemplified for a home aquarium in
Figure 2a). The synergistic effect was observed by Janczarek et al. for titania bi-modification with urea
(formed poly(amino-s-triazine) [35]) and Cu2O [19]. Two types of possible mechanisms of visible light
activity were proposed, i.e., the type II heterojunction and Z-scheme. An important issue was the
morphological form of the photocatalytic material based on titania. Golabiewska et al. prepared highly
active microspheres in the presence of ionic liquid and Kozak et al. designed TiO2/CuxOy nanotubes
with visible light activity in the degradation of organic pollutants and bacteria inactivation. It was
proposed that these nanotubes could be efficiently used for environmental purification under natural
solar radiation, as shown on the journal cover (Figure 2b).
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It should be pointed that also other semiconductors have been used successfully for
environmental applications, such as ZnO [36], graphitic carbon nitride (g-C3N4) [37], WO3 [10],
BiVO4 [38], and SrTiO3 [39], and some of them exhibited higher activity than that of titania even
under UV irradiation [40–42]. Accordingly, the photocatalytic activity of other semiconductors has
also been discussed in this special issue, such as ZnCr2O4 [23], TiOF2 (modified with NaOH) [20],
SnO2 (fluorine-doped SnO2 (FTO), surface modified with Cu NPs) [25], and rectorite/Fe3O4/ZnO [22].
Wang et al. prepared rectorite/Fe3O4/ZnO composities with photocatalytic and magnetic properties
enabling efficient photocatalyst separation after reaction [22]. Liu et al. obtained Cu/fluorine-doped
tin oxide nanocomposites (Cu/FTO) dedicated to visible light-induced hydrogen production and
photocurrent generation [25]. The high stability during recycling (24-h irradiation) should be
considered as high advantage of this material. The nanosized ZnCr2O4 was synthesized by Dumitru
et al. by thermolysis of a new Zn(II)–Cr(III) oxalate coordination compound [23]. The photocatalyst
was much more efficient for humic acid degradation than simple photolysis (7%), reaching 60%
degradation after 3 h of UV irradiation. Finally, TiOF2 modified with NaOH of network structure
was prepared via a modified low-temperature solvothermal method by Hou et al., and efficiently
used for Rhodamine B degradation [20].

In conclusion, the significant role of catalytic nanomaterials in environmental remediation,
energy production, and chemical synthesis systems has been discussed in the collected papers. We do
believe that the SNEPEC symposium and this associated Special Issue have provided further insights
to this area. We are looking forward to seeing how things will be progressed at the next SNEPEC
symposium (July 2020).

Finally, we thank all authors for their valuable contributions, without which this special issue
would not have been possible. We would like to express our sincerest thanks also to the editorial team
of Catalysts for their kind support, advice, and fast responses.
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