

Article

Single and Dual Metal Oxides as Promising Supports for Carbon Monoxide Removal from an Actual Syngas: The Crucial Role of Support on the Selectivity of the Au–Cu System

Bernay Cifuentes ¹, Felipe Bustamante ² and Martha Cobo ¹,*

- ¹ Energy, Materials, and Environment Laboratory, Chemical Engineering Department, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá 250001, Colombia; bernay.cifuentes1@unisabana.edu.co
- ² Environmental Catalysis Research Group, Chemical Engineering Department, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia; felipe.bustamante@udea.edu.co
- * Correspondence: martha.cobo@unisabana.edu.co; Tel.: +571-8615555 (ext. 25207); Fax: +571-8615555

Received: 9 September 2019; Accepted: 10 October 2019; Published: 13 October 2019

Abstract: A catalytic screening was performed to determine the effect of the support on the performance of an Au–Cu based system for the removal of CO from an actual syngas. First, a syngas was obtained from reforming of ethanol. Then, the reformer outlet was connected to a second reactor, where Au–Cu catalysts supported on several single and dual metal oxides (i.e., CeO₂, SiO₂, ZrO₂, Al₂O₃, La₂O₃, Fe₂O₃, CeO₂-SiO₂, CeO₂-ZrO₂, and CeO₂-Al₂O₃) were evaluated. AuCu/CeO₂ was the most active catalyst due to an elevated oxygen mobility over the surface, promoting CO₂ formation from adsorption of C–O* and OH⁻ intermediates on Au⁰ and CuO species. However, its lower capacity to release the surface oxygen contributes to the generation of stable carbon deposits, which lead to its rapid deactivation. On the other hand, AuCu/CeO₂-SiO₂ was more stable due to its high surface area and lower formation of formate and carbonate intermediates, mitigating carbon deposits. Therefore, use of dual supports could be a promising strategy to overcome the low stability of AuCu/CeO₂. The results of this research are a contribution to integrated production and purification of H₂ in a compact system.

Keywords: CO-PROX; CO-SMET; CO₂ methanation; hydrogen purification; process integration

1. Introduction

Synthesis gas (syngas) is used as a chemical building block in the synthesis of commodity chemicals and for energy applications. Specifically, syngas can be used in combustion processes [1], gas turbines [2], or hydrogen fuel cells (H_2 -FC) [3] to produce energy. The H_2 -FC are promising systems to provide sustainable energy for households, industry, transportation, and small devices. Likewise, the use of H_2 -FC has been proposed as an alternative to supply energy in places that are not connected to the electrical network and for remote installations [4].

The syngas composition varies depending on the production source, but mostly contains H_2 , carbon monoxide (CO), and light hydrocarbons. Bioethanol reforming is one of the most used pathways to produce syngas due to its high yield to H_2 [5]. In a previous study [6], we obtained a syngas containing H_2 , CO, CO₂, CH₄, and H_2 O from ethanol steam reforming (ESR) using a RhPt/CeO₂-SiO₂ catalyst. Syngas production remained stable for 72 h of continuous operation and on/off cycles. This syngas could be used for sustainable energy production in H_2 -FC. However, CO must be removed from the syngas because of its harmful effect on fuel cell electrodes [7].

 H_2 -FC systems that tolerate CO concentrations above 100 ppm [12–14]. These contributions facilitate the use of less complex systems for syngas purification, which could lead to the development of more compact and economic H_2 technology.

Anticipating the commercialization of a new generation of more CO-tolerant H₂-FC, it has been proposed to redesign the CO removal stage to reduce the number of process units in syngas purification. The new approach seeks to carry out CO removal using a single catalytic reactor, where several reactions occur simultaneously (i.e., CO-PROX, WGSR, and CO-SMET). Kugai et al. [15] studied Pt–Cu and Pd–Cu bimetallic catalysts supported on CeO₂ for oxygen-enhanced water gas shift (OWGS), where WGSR and CO-PROX occur concurrently, reporting higher CO removal from a model reformate gas (synthetic syngas) in the OWGS compared to the WGSR carried out individually. Similarly, Xu and Zhang [16] reported that the presence of CO-SMET during CO-PROX on a commercial Ru/Al₂O₃ catalyst allows for wider temperature windows that ensure the CO removal of a synthetic syngas. Despite these valuable contributions, the CO removal from syngas in a compact system is still at laboratory scale. Among the limitations for evaluation at the pilot scale is the lack of consensus regarding the catalyst and the most appropriate operating conditions to carry out the syngas purification.

Au is recognized as a promising catalyst in the three cleaning reactions of syngas (i.e., CO-PROX, WGSR, and CO-SMET) [17,18]. Reina et al. [19] evaluated bimetallic catalysts of Au–M (M = La, Ni, Cu, Fe, Cr, Y), reporting that CO oxidation is favored by the Au–Cu combination because Cu interacts strongly with the support, favoring the oxygen mobility in the catalyst. Also, in a previous study [20], we evaluated Au–Cu bimetallic catalysts supported on CeO₂ for CO removal from a syngas obtained from ESR. It was possible to reduce the CO concentration below 100 ppm, but the catalyst showed rapid deactivation after 40 h. Deactivation was related to structural changes in the support and to the accumulation of carbonaceous compounds during continuous operation. Thus, this study illustrated that the support plays a key role in CO removal from an actual syngas, and led us to evaluate different supports for CO removal from a syngas in the search for a stable material.

Figure 1 shows the supports most used in the CO removal processes (i.e., WGSR, CO-PROX, CO-SMET, or their combinations). CeO₂, Fe₂O₃, ZrO₂, TiO₂, and Al₂O₃ are the most commonly used single supports in CO removal from synthetic syngas. However, there is a growing interest in mixed supports (dual metal oxides), because they may have characteristics not observed in individual supports [21]. Most combinations of dual metal oxides include CeO₂ in the matrix, usually combined with supports that provide larger surface area, such as Al₂O₃ [22] and SiO₂ [23], or with basic oxides, such as ZrO₂, to generate new active sites [24]. TiO₂ is mainly used in CO removal by photocatalytic processes [25] and was not considered in this study. On the other hand, although La₂O₃ is not among the most used supports in CO removal, it was recently reported that La₂O₃ is effective for avoiding carbon deposits during CO-SMET [26].

Figure 1. Supports used in CO removal from syngas streams using CO-PROX, WGSR or CO-SMET reactions.

Although several supports for syngas cleanup have been proposed, each investigation was carried out under different experimental conditions and using synthetic syngas, which makes it difficult to select the most suitable support for the CO removal. Therefore, the objective of this work was to study the CO removal from an actual syngas using bimetallic catalysts of AuCu-supported on single and dual metal oxides. Specifically, CeO₂, ZrO₂, La₂O₃, Fe₂O₃, Al₂O₃, and SiO₂ were selected as single metal oxides, and CeO₂-SiO₂, CeO₂-ZrO₂, and CeO₂-Al₂O₃ as dual metal oxides. The catalytic performance of the supports with and without active metals (i.e., Au and Cu) was evaluated. Then, the activity, selectivity, and stability were established as criteria for selecting the most suitable support for the CO elimination. In addition, characterization tests were conducted, such as temperature programmed reduction (TPR), surface area tests using the Brunauer-Emmett-Teller (BET) method, oxygen storage capacity (OSC) tests, thermogravimetric analysis (TGA), and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

2. Results and Discussion

2.1. Activity, Selectivity, and Stability

Figure 2 shows the CO conversion in the cleanup reactor on the bare supports (i.e., without Au and Cu) and Au–Cu-supported catalysts. CeO₂ and ZrO₂ display the larger CO conversion between single metal oxides (Figure 2a). Indeed, the presence of oxygen vacancies on the surface of an oxide could favor a support showing high activity in the CO oxidation, despite the absence of active metals [27]; on the other hand, supports with low OSC, such as Al_2O_3 [28], present lower activity. The use of dual metal oxides has been proposed as a strategy to overcome the deficiencies of single supports [21]. Figure 2b shows that CeO₂-SiO₂ increases the CO conversion compared to SiO₂, which could be associated with the interaction between the two oxides. However, no significant improvement in the CO conversion with CeO₂-Al₂O₃ was observed, and even for CeO₂-ZrO₂, the combination of the two metal oxides leads to a less active material. Furthermore, below 260 °C the dual metal oxides showed less activity that single CeO₂, suggesting that the combination of several metal oxides does not always lead to more active materials in the syngas cleaning.

Figure 2. CO conversion obtained in the Cleanup reactor with supports (**a**,**b**) and supported 1 wt% Au–1 wt% Cu catalysts (**c**,**d**). Syngas feed: 7.8% H₂, 2.0% CO, 0.5% CO₂, 0.3% CH₄, 1.4% H₂O, 1.8% O₂, 6.8% N₂, and 79.4% Ar. Reaction conditions: Space velocity (SV) = $6.5 \pm 0.2 \text{ L/g}_{cat}$ *min and 0.3 g of the catalytic bed.

On the other hand, catalytic systems based on Au, Cu and Au–Cu have been studied extensively for the CO oxidation, CO-PROX, WGSR, and CO-SMET. In-depth descriptions for Cu/CeO₂ [9], AuCu/CeO₂ [29], AuCu/SiO₂ [30], AuCu/Al₂O₃ [31], Au/Fe₂O₃ [32], Au/La₂O₃/Al₂O₃ [33], and Au/CeO₂-ZrO₂ [34,35] are available in the literature. In general, Au favors the CO conversion through a mechanism that involves Au–CO and Au–OOH species [36], where the formation of C–O* intermediates determines the selectivity of the process [20], while CuO acts through a redox mechanism [8], promoting oxygen mobility in the oxide lattice [37] and facilitating the CO oxidation. A synergistic Au–Cu effect has also been proposed [19,29,38]. Therefore, the inclusion of 1 wt% Au and 1 wt% Cu in the single and dual metal oxides promotes greater CO conversion (Figure 2). Despite having the same active metals (i.e., Au and Cu), the catalysts showed maximum CO conversion at different temperatures, indicating that the properties of the support have a key role in the syngas cleaning. Table 1 shows that only AuCu/CeO₂ reached CO concentrations below 100 ppm in the actual syngas at 210 °C, whereas minimum CO concentrations of the other catalysts were above 500 ppm.

Catalyst ^a	Minimum CO Concentration in	H/M Index	BET Surface Area (m²/g _{cat})		OSC in A (µmol 0	C Samples O ₂ /g _{cat})	OSCC at 300 °C (µmol O ₂ /g _{cat})	
	Outlet Gas (ppm) ^b	muex	AC	Spent	100 °C	300 °C	Fresh	Spent
AuCu/CeO ₂	75 at 210 °C	0.9	60	58 (U)	41	91	230	121 (U)
				50 (S)				93 (S)
AuCu/SiO ₂	8320 at 240 °C	0.7	364	277 (U)	21	37	45	41 (U)
AuCu/ZrO2	507 at 225 °C	0.8	58	47 (U)	39	76	185	84 (U)
AuCu/Al ₂ O ₃	745 at 180 °C	0.8	90	65 (U)	31	35	75	41 (U)
AuCu/La2O3	5365 at 225 °C	0.4	19	18 (U)	21	41	90	24 (U)
AuCu/Fe ₂ O ₃	9416 at 140 °C	0.4	16	5 (U)	NR	NR	NR	NR
AuCu/CeO2-SiO2	861 at 230 °C	1.6	110	75 (U)	34	78	146	121 (U)
				74 (S)				126 (S)
AuCu/CeO2-ZrO2	941 at 210 °C	0.9	42	30 (U)	42	94	210	162 (U)
AuCu/CeO2-Al2O	3 1521 at 260 °C	1.2	65	56 (U)	32	79	155	121 (U)

Table 1. Minimum concentration of CO obtained in syngas, apparent active metal dispersion (H/M ratio), surface area, OSC, and OSCC of Au–Cu catalysts supported on single and dual supports.

^a Nominal metal loadings: 1 wt% Au and 1 wt% Cu. ^b Value includes the carrier gas. AC: activated catalyst, which were reduced with H_2 and stabilized in air before activity tests. U: sample used to obtain light-off curves. S: sample evaluated in the stability test. Note: NR = Not reported; OSC = oxygen storage capacity; OSCC = oxygen storage complete capacity; BET: Brunauer-Emmett-Teller test.

On the other hand, the selectivity in the CO removal has been attributed to the support rather than the active metal [39], being the consumption of H_2 an important criterion in catalyst selection [39]. Figure 3 shows that H₂ consumption increases with temperature, particularly in the supports and catalysts based on ZrO₂. The deficiency of ZrO₂ to adsorb/desorb bidentate carbonates above 150 °C has been associated with a promotion of the H₂ combustion over the CO oxidation [40]. Likewise, H₂ loss increases in the majority of the supported Au–Cu catalysts (Figure 3c,d) compared to their respective bare support (Figure 3a,b), possibly due to affinity of the Au–Cu system to form intermediates in the H₂ oxidation (e.g., hydroxyl groups [29,41]) and methane formation (e.g., C–O* species [18,20,42]). Also, the most active catalysts in the CO removal (i.e., AuCu/CeO₂, AuCu/ZrO₂, AuCu/CeO₂-SiO₂, and AuCu/CeO₂-ZrO₂) promote higher H₂ consumption. That is, an active catalyst in the CO conversion possibly has an inherent tendency to consume H₂. The high H₂ consumption, which in some cases exceeds 20%, could be associated with the syngas composition [20,37], specifically with the H_2/CO ratio. Table 2 shows the results obtained in the CO removal with catalytic systems based on Au–Cu. High H₂/CO ratios (>>10 [43]) are used in CO-PROX with synthetic syngas to favor CO oxidation [44] and reduce the H₂ consumption. To achieve such high H₂/CO ratios before CO-PROX several WGSR reactors are required, however [11]. Thence, aiming at reducing the number of units used in the traditional process, it has been proposed to carry out CO removal reactions in a single reactor using the syngas that comes directly from the reformer [15,20,35]. Nevertheless, the syngas obtained directly from the ESR contains larger amounts of CO. H_2 /CO ratios around 4 have been reported for syngas obtained from ESR using Ir/CeO₂ [45] and RhPd/CeO₂ [46] catalysts. Thus, the low H₂/CO ratio in the actual syngas (e.g., the syngas used in this work has an $H_2/CO = 4$) could conduce to a high H_2 loss in the cleanup reactor. Simultaneous production of CO₂ and CH₄ was observed in all catalysts evaluated (Figures A1 and A2 in Appendix A), suggesting that CO-SMET and CO₂ methanation occur together with CO-PROX and WGSR. Then, H₂ oxidation and carbon hydrogenation would be the main causes of H₂ loss during the CO removal from an actual syngas.

Figure 3. H₂ yield obtained from a system that integrate the ethanol steam reforming (ESR) reactor and the cleanup reactor, where the CO removal is performed with bare supports (**a**,**b**) and supported 1 wt% Au–1 wt% Cu catalysts (**c**,**d**). Reaction conditions: SV = $6.5 \pm 0.2 \text{ L/g}_{cat}$ *min and 0.3 g of the catalytic bed in both reactors.

	Table 2.	Com	parison	of	various	cata	lytic	sys	stems	for	the	CO	removal	l using	g Au-	-Cu	catal	lysts	3
--	----------	-----	---------	----	---------	------	-------	-----	-------	-----	-----	----	---------	---------	-------	-----	-------	-------	---

Catalyst	Syngas Type	H ₂ /CO	T (°C)	CO Conversion (%)	H ₂ Loss (%)	Ref.
AuCu/CeO ₂	Synthetic	30	220	90	2	[29]
AuCu/SBA-15	Synthetic	>50	25	100	5 ^a	[47]
Au/CuO-CeO ₂ /Al ₂ O ₃	Synthetic	4.5	350	75	NR	[17]
Au/CeO2-CuO2/Al2O3	Synthetic	50	110	95	3 ^a	[19]
Au/Al ₂ O ₃	Synthetic	>50	80	99	2 ^a	[36]
Au/CeO ₂ -ZrO ₂	Actual	30	100	99	2 ^a	[35]
AuCu/CeO ₂	Actual	4	210	99	17	This work
AuCu/CeO2-SiO2	Actual	4	230	97	19	This work

^a Calculated by O₂ mass balance. NR: Not reported.

Although CH_4 formation implicitly involves an undesirable H_2 consumption, it has been reported that a combination of CO-PROX and methanation improves CO removal compared to the CO-PROX alone, because of favoritism in the activation of adsorbed CO [16]. Then, C and H mass balances were carried out to determine the effect of CH₄ production on H₂ consumption and CO conversion. Figure 4 shows the H_2 and CO converted with respect to the CH_4 formed in the cleanup reactor. CH_4 formation appears to be directly proportional to H_2 loss (Figure 4a), but the amount of H_2 consumed is larger than the amount of H_2 contained in the formed CH_4 (yellow line); moreover, in most catalysts, H_2 loss is larger than the H_2 required by CO_2 methanation (green line). Hence, the remnant of H₂ loss may be associated with the production of water or hydrogenated compounds not detected by GC, indicating that methanation would have a secondary role in the H₂ loss during the syngas cleanup. On the other hand, CO conversion grows faster compared to the contribution of methanation (Figure 4b). Xu et al. [16] studied a Rh/Al₂O₃ catalyst and proposed that at temperatures above 150 °C, the methanation of CO₂ formed during the CO-PROX facilitates the CO oxidation caused by changes in the C–O* and H* adsorbed species. This possible beneficial effect of CO-PROX and subsequent CO₂ methanation seems to be stronger in some catalysts (e.g., AuCu/CeO₂-Al₂O₃ and AuCu/CeO₂-SiO₂), which would explain their higher activity at high temperatures (Figure 2d), where most CH₄ was produced (Figure A2 in Appendix A). AuCu/CeO₂ and AuCu/La₂O₃ show an atypical trend (Figure 4b), where the CO conversion decreases with the CH_4 formation, which could depend on the intermediates of C–O* formed on theses catalysts, as will be discussed later. Therefore, these results would confirm the beneficial effect of CO_2 methanation during the CO-PROX proposed in [16], but it was also identified that this effect depends on the support and composition of the syngas.

Figure 4. Contribution of methanation in (**a**) the H_2 consumption and (**b**) CO conversion during the CO removal from an actual syngas. The shaded area conveys the trend of the experimental data.

Although the main objective in the cleaning of the syngas is the CO removal, differences in the activity and selectivity could lead to changes in product distribution over prolonged periods of operation. Therefore, the stability of Au–Cu catalysts loaded on the best single (CeO₂) and dual support (CeO₂-SiO₂) was evaluated. Figure 5 shows the product distribution over time obtained from a system consisting of ESR and cleanup reactors, the latter of which is packed with either

AuCu/CeO₂ or AuCu/CeO₂-SiO₂. In both cases, a H₂-rich stream is obtained. However, AuCu/CeO₂ shows more variability in product distribution, and after around 42 h of operation deactivation was observed, at which point the test was stopped. In contrast, the AuCu/CeO₂-SiO₂ catalyst ensures a stable operation for longer periods of time (at least 30% more time-on-stream, Figure 5b) with CO concentration of about 1000 ppm. The results of the stability test show that the use of dual metal oxides leads to less active (i.e., CO concentration of 1000 ppm versus 75 ppm) but more stable materials, which could be more interesting in extended processes.

Figure 5. Products distribution obtained from a system that integrate the ESR reactor and the cleanup reactor, where the CO removal is performed with (**a**) AuCu/CeO₂ and (**b**) AuCu/CeO₂-SiO₂ catalysts. Syngas feed: 7.8% H₂, 2.0% CO, 0.5% CO₂, 0.3% CH₄, 1.4% H₂O, 1.8% O₂, 6.8% N₂, and 79.4% Ar. Reaction conditions: The space velocity (SV) = $6.5 \pm 0.2 \text{ L/g}_{cat}$ *min and 0.3 g of the catalytic bed. Note: TOS = Time-on-stream.

Activity, H₂ consumption, and stability were used as criteria for comparison among the Au–Cu-supported catalysts for the CO removal from an actual syngas. Now, catalytic properties, such as reducibility, surface area, OSC, carbon deposit formation, and the CO-support interactions, will be related to the activity, selectivity, and stability of the Au–Cu catalysts supported in single and dual metal oxides.

2.2. Catalysts Characterization

2.2.1. TPR

The redox properties of catalysts have a significant effect on CO oxidation and metal-support interactions [17]. Figure 6 shows the H₂-TPR profiles for the Au–Cu catalysts supported on single and

dual metal oxides. Deconvolution peaks are presented to identify possible individual contributions in each reduction zone, but they are not intended to be exact. Contrary to bare supports (Figure A3 in Appendix A), discrepancies are observed between supported Au–Cu catalysts. The specific reduction temperatures for Au and Cu are very diverse in the literature, possibly because the reduction of metals strongly depends on the interaction with other species [48]. In this study, a first zone (<130 °C) observed was attributed to the reduction of Au³⁺ and Au⁺ nanoparticles [41]. The second zone (130 to 430 °C) was associated with the reduction of Cu, where at least three species [49] can be identified: (α) easily reducible CuO nano particles, (β) particles of CuO dispersed that interact moderately with the support, and (γ) isolated particles of Cu [50]. In the last zone (>430 °C), the reduction of surface layers and bulk of the support is likely happening [34]. The α and β species promote the formation of oxygen vacancies [51], contributing to the CO oxidation. Thus, preferential formation of CuO species in single and dual metal supports (Figures A1 and A2 in Appendix A).

Figure 6. H₂-temperature programmed reduction (TPR) profiles for Au–Cu catalysts supported on (**a**) single and (**b**) dual metal oxides.

On the other hand, the displacement of the reduction peaks to lower temperatures has been associated with changes in metal-support interactions [48]. CeO₂ shows an exceptional ability to facilitate the reduction of Cu and the formation of (mostly) β species. This effect has been previously studied [9,52], correlating a stronger CuO-CeO₂ interaction with high activity during CO-PROX. However, the increase in the contribution of γ -species and a slight shift of reduction peaks to higher temperatures could indicate a variation of the CuO-CeO₂ interaction in the Au–Cu catalysts supported in dual oxides. Thus, a change in the redox properties of the support caused by the presence of a second metal oxide could explain why the Au–Cu catalysts supported on dual oxides (i.e., AuCu/CeO₂-SiO₂, AuCu/CeO₂-ZrO₂, and AuCu/CeO₂-Al₂O₃) showed less activity compared to AuCu/CeO₂ (Figure 2). However, an exceedingly strong CuO-support interaction could also mitigate the formation of selective Au–Cu alloys [31]. In fact, AuCu/ZrO₂ and AuCu/CeO₂-ZrO₂ show a significant contribution of α species, which could be related to the high H₂ loss observed in these catalysts (Figure 3c,d). On the contrary, the combination of inert metal oxides such as Al₂O₃ with CeO₂ could facilitate the migration

of CuO towards Au particles [31], leading to lower H_2 loss compared to single CeO₂ support. Then, the change in redox properties of CeO₂ by the presence of inert metal oxides (e.g., SiO₂) could lead to less active but more selective materials during CO removal.

Table 1 shows the H/M index, which has been associated with apparent active metal dispersion [53]. The H/M index in AuCu/Fe₂O₃ and AuCu/La₂O₃ is particularly low, indicating that these catalysts are not as effective for dispersing active metals [53]. In the other catalysts, the H/M index was close to or larger than 1.0 (i.e., complete reduction of Au and Cu), which could be associated with a higher dispersion of Au and Cu on the catalytic surface. However, a high H/M value could also indicate an additional effect of superficial reduction of the supports by the interaction between metal oxides and active metals [54]. Au–Cu catalysts supported on dual metal oxides showed higher H/M index compared to their respective single supports, which could be associated with a favoring in the reduction of both active metals and support due to the interaction between metal oxides. If so, then the redox properties of Au–Cu catalysts supported on dual oxides would depend on several interactions: (i) active metal; (ii) active metal-support, and (iii) oxide I-oxide II. The variation of these interactions influences catalytic performance during CO removal.

2.2.2. BET Area

The surface area of the catalysts is key to the availability of the active sites and catalytic performance [55]. The BET area (Table 1) of the catalysts supported on basic oxides (i.e., CeO₂, ZrO₂ and La₂O₃ [56]) is larger than their respective bare supports (Table A1 in Appendix B), which has been previously associated with the formation of high disperse β species [20,57]. On the other hand, AuCu/Fe₂O₃ and AuCu/La₂O₃ show low surface areas, which match to the low capacity of these metal oxides to disperse active metals (low H/M index, Table 1). The synthesis method of the catalysts could influence the surface area of the support, overcoming some drawbacks of metal oxides such as Fe₂O₃ by using alternative synthesis methods [32,58]. In contrast, the higher surface area of AuCu/CeO₂-Al₂O₃ and AuCu/CeO₂-SiO₂ could favor the dispersion of Au and Cu, which is reflected by a larger H/M index (Table 1).

Although an increase in the surface area could contribute to improving the catalytic activity [55], the trend for surface area of the catalysts does not match their activity (Figure 2), indicating that the supports have other features that could be more relevant during the CO removal. Figure 7 shows the conversion rate of CO normalized by the surface area of catalysts. AuCu/La₂O₃ has a high normalized activity, possibly because the basic supports promote the formation of Au nanoparticles [33] and formation of β species [20,57], which are active in the CO conversion. In fact, basic oxides, such as CeO_2 and ZrO_2 , also have higher normalized activity compared to less basic supports, such as Al_2O_3 and SiO₂. Also, the normalized activity of the AuCu/CeO₂-ZrO₂ catalyst increases compared to their respective single supports. Recently, it was reported that the replacement of Zr⁴⁺ ions in the lattice of the CaO-CeO₂ system leads to the formation of highly basic sites [59]. Then, we speculate that the high interaction in CeO₂-ZrO₂ observed by TPR could lead to the formation of sites with greater basicity. However, the low surface area of basic supports is a well-known limitation that affects their activity [6]. So, because of the possible role of basic sites in CO removal, the design of catalysts for CO removal should include a support with both a high surface area and elevated basicity. Modifications in the morphology of metal oxides have been proposed as a successful strategy to achieve this objective in other catalytic processes [60]. Then, preparation of Au–Cu catalysts supported on single and dual metal oxides can be optimized to improve their catalytic properties during CO removal.

Figure 7. CO conversion rate normalized by the surface area of the Au–Cu catalysts supported in (**a**) single and (**b**) dual metal oxides.

2.2.3. OSC Measurements

The OSC of the support plays a central role in the oxidation of CO adsorbed on active sites [27]. Table 1 shows the OSC of Au–Cu catalysts supported on single and dual metal oxides. In general, the OSC of supported Au–Cu catalysts is higher than that of the bare supports (Table A1 in Appendix B), indicating that the presence of Au and Cu favors greater oxygen mobility in the catalyst. Also, the presence of α and β species has been associated with the formation of oxygen vacancies on the catalytic surface [52]. Catalysts that have a higher OSC at 300 °C (i.e., AuCu/CeO₂-ZrO₂, AuCu/CeO₂, AuCu/CeO₂-SiO₂, and AuCu/ZrO₂) were the most active (Figure 2), but also those that showed the highest consumption of H₂ (Figure 3). However, the OSC depends strongly on the temperature: at 100 °C, all catalysts except AuCu/Al₂O₃ showed an OSC up to 60% lower compared to 300 °C, which could be related to the lower activity of catalysts at low temperatures (Figure 2).

Likewise, the CO₂ formation depends on the availability of surface oxygen [15]. The first CO pulse (OSC) in AuCu/CeO₂ only corresponds to 39% of its oxygen storage complete capacity (OSCC), indicating that oxygen adsorbed on CeO₂ may not be easily released. The possible deficiency of CeO₂ to release the oxygen absorbed on its surface could limit the oxidation of carbon intermediates, which could, in turn, be related to the atypical trend observed in Figure 4b. The OSC in supports with larger surface area (i.e., AuCu/SiO₂, AuCu/Al₂O₃, AuCu/CeO₂-SiO₂, and AuCu/CeO₂-Al₂O₃), on the other hand, corresponds to more than 50% of their OSCC. A higher availability of surface oxygen (> OSC/OSCC) could be associated with the strong effect of CO₂ methanation on the CO removal for AuCu/CeO₂-SiO₂ and AuCu/CeO₂-Al₂O₃, as previously discussed. If so, then the beneficial effect of methanation during the CO-PROX proposed by [16] could be enhanced in catalysts that combine a high OSC and readiness to release their adsorbed oxygen (i.e., high OSC/OSCC ratio), which would require a high surface area.

On the other hand, the OSCC of the catalysts used decreases with respect to the fresh, activated ones (AC samples), reaching up to 73% reduction with AuCu/La₂O₃. This reduction could be associated with progressive oxidation of the catalyst surface by the presence of oxidants in the gas stream and deposits on the catalytic surface [20], conducive of a progressive deactivation. To clarify this, a TGA study was conducted.

2.2.4. TGA

Table 3 shows the weight loss of Au–Cu catalysts supported on single and dual metal oxides. Most AC samples show a weight loss of less than 1% that could correspond to a remnant of the precursors of the active metals. However, AuCu/Fe₂O₃ and AuCu/CeO₂-SiO₂ show an increase in weight that can be associated with an oxygen adsorption; specifically, the CeO₂-SiO₂ system can form a $Ce_{9,33}(SiO_4) \cdot 6O_2$ phase that is susceptible to consume oxygen above 600 °C [6]. The used catalysts have a higher weight loss than the fresh, activated ones (AC samples), indicating the presence of compounds deposited on the catalytic surface during the reaction. To determine the nature of the deposits, the TGA results were analyzed by weight loss in terms of rate of carbon equivalent formed in each temperature interval (Table 3). In the first interval (40–250 °C), light compounds, such as water, and adsorbed OH⁻ and gases are released [28]; in this interval, AuCu/SiO₂ and AuCu/Al₂O₃ showed the highest weight loss, which could be related to their high surface area, which favors moisture adsorption. In the second interval (250–600 °C), light hydrocarbons are oxidized [26]; AuCu/La₂O₃ and AuCu/Fe₂O₃ had the highest rate of carbon formation in this interval, which would explain the strong decrease in the OSCC and surface area, respectively, observed in these samples (Table 1). In the last interval (600–1000 °C), heavy hydrocarbons are oxidized, which are the type of deposits that could favor a faster deactivation of the catalyst [56]; in this zone, AuCu/CeO2 showed a higher rate of carbon formation. Thus, rapid deactivation observed in AuCu/CeO₂ (Figure 5) could be associated with the decrease in surface area (17%, Table 1) and OSCC (59%, Table 1) promoted by the accumulation of deposits on the catalytic surface (Table 3). The formation of stable deposits could be associated with the formation of intermediates during the CO removal [28]; therefore, in situ DRIFTS was carried out to identify how the interaction between CO and support affects the performance of the supported Au–Cu catalysts.

Catalyst	Total We	ight Loss (%)	Weight Loss of Spent Catalyst Samples by Temperature Intervals (mg of C/g _{cat} *h)				
	AC	Spent	40–250 °C	250–600 °C	600–1000 °C		
AuCu/CeO ₂	0.7	3.8 (U)	17.1 (U)	6.8 (U)	11.8 (U)		
		5.6 (S)	14.5 (S)	15.1 (U)	18.1 (U)		
AuCu/SiO ₂	0.3	3.7 (U)	35.5 (U)	3.4 (U)	3.9 (U)		
AuCu/ZrO ₂	0.9	1.6 (U)	9.2 (U)	2.1 (U)	4.7 (U)		
AuCu/Al ₂ O ₃	0.5	3.7 (U)	28.9 (U)	2.1 (U)	9.4 (U)		
AuCu/La ₂ O ₃	0.6	2.1 (U)	9.2 (U)	7.5 (U)	2.4 (U)		
AuCu/Fe ₂ O ₃	-0.3	2.5 (U)	18.4 (U)	8.9 (U)	NR		
AuCu/CeO2-SiO2	-0.9	0.3 (U)	3.9 (U)	4.8 (U)	NR		
		1.3 (S)	15.8 (S)	4.1 (U)	NR		
AuCu/CeO2-ZrO2	0.5	1.7 (U)	9.2 (U)	6.2 (U)	0.8 (U)		
AuCu/CeO2-Al2O3	0.6	2.6 (U)	17.1 (U)	2.7 (U)	7.1 (U)		

Table 3. Weight loss of Au–Cu catalysts supported on single and dual supports evaluated in CO removal from an actual syngas.

Note: AC = activated catalyst, which were reduced with H_2 and stabilized in air before activity tests; U = sample used to obtain light-off curves; S = sample evaluated in the stability test; NR = Not reported.

2.2.5. In Situ DRIFTS

Figure 8 shows the DRIFTS spectra of CO adsorption on bare supports and supported Au-Cu catalysts. CeO₂ and ZrO₂ show higher intensity in the area associated with hydroxyl groups (~3500 cm⁻¹) that contributes to the CO conversion [36], which would explain their high activity among single metal oxides (Figure 2). Although the CO pulses were free of H_2 or water, hydroxyl groups may be formed from the interaction of H₂ with the surface of the support [61], which could occur during the H₂ reduction that was performed on the AC samples. In fact, Zhou et al. [62] studied the CO adsorption on bare ZrO₂ by DRIFTS and Fourier Transform Infrared Spectroscopy (FTIR), identifying up to three families of hydroxyl groups in the zone from 3675 to 3772 cm⁻¹, which are activated by the adsorption of CO, even at room temperature, and have an active role in the formation of surface intermediates. CeO₂ favors the formation of hydroxyl groups even with the first pulse of CO, which could be decisive in ensuring a syngas with a lower CO concentration. In the C–O^{*} zone (1200 to 1700 cm⁻¹ [63]), the formation of bidentate carbonates (1600 cm⁻¹) and formates (1300 and 1500 cm⁻¹) are observed, which are also intermediates in the CO conversion [20,51,63]. The formation of hydroxyl groups and C–O* species were lower than dual supports when compared to CeO₂; specifically, CeO₂-Al₂O₃ shows a significant reduction in the formation of C–O* intermediates, which would correspond to its lower activity among the dual supports (Figure 2).

The inclusion of Au–Cu in the single oxides (Figure 8c) favors the presence of hydroxyls and the formation of C–O* intermediates, possibly due to the ability of Au to form Au–CO and Au–OOH species [36]. In fact, most catalysts show an increase in CO adsorbed (2100 cm⁻¹), which is associated with CO–Au⁰ species [64], indicating that Au could be present mostly as Au⁰ on the catalytic surface, as previously reported for systems such as Au/CeO₂ [20] and Au/La₂O₃/Al₂O₃ [33], evaluated by XPS. However, in AuCu/CeO₂-SiO₂ and AuCu/CeO₂-ZrO₂, a weak peak of CO adsorption between 2075 and 2050 cm⁻¹ is also observed, which has been associated with the formation of CO–Au^{δ -} species [65]. In the case of AuCu/CeO₂-ZrO₂, the formation of these species only occurs after several CO pulses. The presence of Au^{δ -} has been related to a stronger support-metal interaction, which could be ascribed to the high stability of AuCu/CeO₂-SiO₂ (Figure 5).

The formation of C–O* intermediates may occur on different active sites, including Au^0 , Au^δ , and CuO, but the formation of carbonate species at approximately 1470 cm⁻¹ occurs preferably on Cu⁺ species [66], which are very active in CO-PROX [67]. The peak associated with Cu⁺ is well defined in AuCu/CeO₂. Furthermore, the formation of active Cu⁺ species due to the high affinity in CuO-CeO₂ has been extensively studied by XPS and DRIFTS [25,68]. Thus, a smaller amount of Cu⁺ species on the other catalysts could explain their inability to ensure CO concentrations below 100 ppm (Table 1). Besides, the peaks associated with formate species, which are related to CH₄ formation, are better defined on CeO₂. It is accepted that CH₄ formation is promoted on several oxides (e.g., Al₂O₃, ZrO₂, Y₂O₃, MgO, and CeO₂ [69]), but the special ability to adsorb and activate carbon species makes CeO₂ an adequate support in CO₂ methanation and CO-SMET [70]. Nevertheless, during the CO removal the Boudouard reaction and the CH₄ decomposition could contribute to the production of carbon deposits [26], favoring the catalyst deactivation. Then, the ability of CeO₂ to form C–O^{*} intermediates (Figure 8) assisted by Cu⁺ species and its lower capacity to release the surface oxygen (low OSC/OSCC) could contribute to the generation of stable carbon deposits, as was observed by TGA, leading to its rapid deactivation (Figure 5). Besides, the deficiency of AuCu/CeO₂ to mitigate carbon deposition due to the excessive formation of C–O* intermediates could be also related to the atypical behavior of CH₄ formation (Figure 4b). However, the less active materials show low formation of intermediates (e.g., AuCu/La₂O₃, AuCu/Fe₂O₃, and AuCu/SiO₂). Thus, the selection of the support for the CO removal from a syngas must consider the balance between activity and stability.

Figure 8. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of CO adsorption of (**a**,**b**) bare supports and (**c**,**d**) supported Au–Cu catalysts.

The results of DRIFTS support the notion that the use of dual metal oxides favors less active but more stable catalysts. Therefore, in this study, CeO_2 is presented as the most promising support for developing a compact system to carry out the CO removal from an actual syngas. However, the selectivity and stability of CeO_2 require improvements. Furthermore, it was shown that the use of dual supports, specifically CeO_2 -SiO₂ and CeO_2 -ZrO₂, could be a promising strategy to overcome the deficiencies presented by CeO_2 .

3. Materials and Methods

3.1. Support Selection

The supports evaluated in this work were selected according to a literature review, and are summarized in Figure 1. Scientific articles published between 2012 and 2019 that included at least one of the following reactions were reviewed: CO-PROX, WGSR, and CO-SMET. The detailed list of reviewed articles can be consulted in Table A2 (see Appendix B).

3.2. Catalyst Synthesis

The single supports of CeO₂, ZrO₂, and Fe₂O₃ were obtained by calcination at 500 °C for 2 h of Ce(NO₃)₃·6H₂O (CAS: 10294-41-4, Sigma Aldrich, Saint Louis, MO, USA), ZrO(NO₃)₂·×H₂O (CAS: 14985-18-3, Sigma Aldrich, Saint Louis, MO, USA), and Fe(NO₃)₃·9H₂O (CAS: 7782-61-8, Merck, Darmstadt, HE, Germany), respectively. Also, commercial oxides of La₂O₃ (CAS: 1312-81-8, Sigma Aldrich, Saint Louis, MO, USA), Al₂O₃ (CAS: 1344-28-1, Sigma Aldrich, Saint Louis, MO, USA), and SiO₂ (CAS: 60676-86-0, Merck, Darmstadt, HE, Germany) were used, which were also calcined at 500 °C in a muffle for 2 h.

Dual supports of CeO₂-ZrO₂, CeO₂-Al₂O₃, and CeO₂-SiO₂ were obtained from aqueous solutions of Ce Ce(NO₃)₃·6H₂O (CAS: 10294-41-4, Sigma Aldrich, Saint Louis, MO, USA) with ZrO(NO₃)₂·H₂O (CAS: 14985-18-3, Sigma Aldrich, Saint Louis, MO, USA), Al₂O₃ (CAS: 1344-28-1, Sigma Aldrich, Saint Louis, MO, USA), and SiO₂ (CAS: 60676-86-0, Merck, Darmstadt, HE, Germany), respectively, ensuring a molar ratio of Ce/M = 1 (M = Si, Zr and Al). Each solution was dried at 80 °C for 24 h and calcined at 500 °C in a muffle for 4 h. All supports (i.e., single and dual metal oxides) were screened with a 140-mesh sieve.

Bimetallic Au–Cu catalysts supported on each single and dual metal oxide were prepared according to the procedure described in [20], ensuring active metal loads of Au (1 wt%) and Cu (1 wt%). Au was first impregnated on each support by the precipitation-deposition method at pH 6 and 80 °C, using a solution of HAuCl₄·3H₂O (CAS: 16961-25-4 Sigma Aldrich, MO, USA). The filtered solid was dried at 80 °C for 24 h. Subsequently, Cu was included in the Au catalysts by the incipient wetness impregnation method, using a solution of Cu(NO₃)₂·3H₂O (CAS: 10031-43-3, Sigma Aldrich, Saint Louis, MO, USA). The catalyst obtained was dried at 80 °C for 24 h, calcined at 500 °C in a muffle for 2 h, and screened with a 140-mesh sieve.

The RhPt/CeO₂-SiO₂ catalyst for ESR was prepared according to the methodology described in [6]. Briefly, CeO₂-SiO₂ support was obtained from Ce(NO₃)₃·6H₂O (CAS: 10294-41-4, Sigma Aldrich, Saint Louis, MO, USA) and SiO₂ (CAS: 60676-86-0, Merck, Darmstadt, HE, Germany) solutions, ensuring a molar ratio of Ce/Si = 2. Rh and Pt were deposited on the CeO₂-SiO₂ support by the incipient wetness co-impregnation method, using RhCl₃·H₂O (CAS: 20765-98-4, Sigma Aldrich, Saint Louis, MO, USA) and H₂PtCl₆·6H₂O (CAS: 10025-65-7, Sigma Aldrich, Saint Louis, MO, USA) solutions. The catalyst obtained was dried at 80 °C for 24 h, calcined at 700 °C for 2 h, and screened with a 140-mesh sieve.

3.3. Obtaining Syngas

The syngas was obtained from ESR with a RhPt/CeO₂-SiO₂ catalyst at 700 °C in the first reactor (ESR reactor). The plug flow conditions in the ESR reactor were maintained ensuring L/Dp >50 ratios (i.e., catalytic bed height (*L*) and catalyst particle size (*Dp*)) and D/Dp >60 (i.e., diameter internal to the reactor (*D*)), as recommended in [71]. The catalyst bed consisted of 0.050 g of RhPt/CeO₂-SiO₂ and 0.250 g of inert quartz. The reactor feed consisted of 0.3 L/min of a mixture of ethanol (1.8 mol%), water (5.4 mol%), and Ar as carrier gas. The space velocity (SV) was set at 6.4 ± 0.2 L/g_{cat}*min. The syngas obtained in the ESR reactor, containing H₂ (8.4 mol%), CO (2.2 mol%), H₂O (1.6 mol%), CO₂ (0.6 mol%), CH₄ (0.3 mol%), and Ar (86.9 mol%), remained stable, with a variation <6.8%.

3.4. Catalytic Test

The supports and Au–Cu catalysts for the CO removal from the syngas were evaluated in a second reactor (cleanup reactor) between 100 and 300 °C. For this, the ESR reactor outlet was mixed with dry air, ensuring an excess oxygen factor (λ) of 1.8 ± 0.05 [20], and connected to the cleanup reactor inlet. The plug flow conditions in the cleanup reactor were maintained as previously described for the ESR reactor. The catalyst bed consisted of 0.050 g of catalyst (i.e., supports or Au–Cu catalysts) and 0.250 g of inert quartz. The SV in the cleanup reactor was set at 6.5 ± 0.3 L/g_{cat}*min. Before the reaction, the supports and Au–Cu catalysts were pretreated in situ at 300 °C with streams of 8% H₂/Ar for 1 h,

followed by Ar for 0.5 h, and finally 10% air/Ar for 0.5 h. These samples were labeled as "activated catalyst" (AC). Also, the samples used to obtain the light-off curves were labeled "U", while those used in the stability test were labeled "S".

The species at the outlet of each reactor (i.e., ESR reactor and cleanup reactor) were quantified by gas chromatography (GC) in a Clarus 580 (Perkin Elmer, Waltham, MA, USA), equipped with a Carboxen 1010 plot column (30 m, 0.53 mm ID, Restek, Bellefonte, PA, USA) connected to a thermal conductivity detector (TCD). Ar was used as carrier gas and N₂ as internal reference. The reaction conditions and GC data processed in Excel can be consulted in detail and downloaded from [72].

The conversion of CO (x_{CO}), the production of the main products (Y_{CO_2} and Y_{CH_4}), and the H₂ obtained (Y_{H_2}) from the integrated system were obtained considering the molar flows (F_i) to the output of each reactor (i.e., ESR reactor and cleanup reactor), according to Equations (1) and (3). Production of CO, CH₄, and H₂ were normalized with the amount of carbon entering the system ($F_{C, inlet to the system$), which remained constant at 5.2*10⁻⁴ mol/min of C.

$$x_{CO} = \frac{F_{CO, ESR-reactor} - F_{CO, cleanup-reactor}}{F_{CO, ESR-reactor}}$$
(1)

$$Y_{CH_4;CO_2} = \frac{F_{CH_4;CO_2, \ cleanup-reactor - F_{CH_4;CO_2, \ ESR-reactor}}{F_{C, \ inlet \ to \ the \ system}}$$
(2)

$$Y_{H_2} = \frac{F_{H_2, \ cleanup-reactor}}{F_{C, \ inlet \ to \ the \ system}} \tag{3}$$

3.5. Characterization Tests

The reducibility of supports and Au–Cu catalysts was determined by TPR. The experiments were carried out in a ChemBET Pulsar unit (Quantachrome Instruments, Boynton Beach, FL, USA) equipped with a TCD. Prior to the reduction, 0.07 ± 0.01 g of AC samples was pretreated with N₂ (0.02 L / min) at 120 °C for 1 h and then cooled to room temperature. Subsequently, 5 % H₂/N₂ was passed, and the temperature was increased to 700 °C (5 °C/min). The H₂ uptake was calculated by integrating the peaks associated with the reduction of active metals (i.e., Au and Cu). The apparent active metal dispersion (H/M ratio) was also determined [53], assuming that the adsorption stoichiometry is one hydrogen atom for one active metal atom (Au + Cu).

The surface area of the samples was determined by standard physisorption of N₂ in a ChemBET Pulsar unit (Quantachrome Instruments, Boynton Beach, FL, USA). For this, 0.06 ± 0.01 g of sample was pretreated with N₂ (0.02 L/min) at 100 °C for 1 h and then cooled to room temperature for 0.5 h. Subsequently, the sample was immersed in a liquid N₂ bath. The BET area was measured with a single point, using 30% N₂/He (0.02 L/min). The measurements were repeated until deviations lower than 5% were obtained.

The OSC values of the samples were measured in a ChemBET Pulsar unit (Quantachrome Instruments, Boynton Beach, FL, USA), according to the procedure described in [41]. Briefly, 0.06 ± 0.01 g of sample was degassed in Ar (0.02 L/min) at 300 °C for 1 h. OSC was measured at 300 and 100 °C with independent samples. For this, 10 pulses of pure O₂ (0.25 mL) were injected to oxidize the sample, followed by a 20 min purge with Ar. Then, pulses of a 5 % CO/Ar mixture (0.25 mL) were injected until a constant signal was obtained. The OSC value was calculated by the CO consumed in the first pulse, and the OSCC value was determined by the total CO consumed.

The weight loss, associated with the presence of impurities, moisture, and carbon deposition in samples, was measured by TGA. The change in mass was determined using a thermogravimetric analyzer (Mettler Toledo, Columbus, OH, USA). For this, 0.02 ± 0.01 g of sample was pretreated with a N₂ (0.1 L/min) at 100 °C for 1 h and then cooled to 40 °C for 0.5 h. Subsequently, the sample was heated to 1000 °C (5 °C/min) in a dry air stream (0.1 L/min). Then, the rate of carbon formation was calculated according to Equation (4).

Rate of carbon formation
$$= \frac{Weight \ loss \ in \ term \ of \ C \ (mg)}{mass \ of \ catalyst \ (g) * TGA \ test \ time \ (h)}$$
(4)

The CO adsorption on supports and catalysts was studied by in situ DRIFTS in a Nicolet iS10 spectrum device (Thermo Scientific, Waltham, MA, USA) equipped with a diffuse reflection attachment DRK-3 Praying Mantis (Harrick Scientific Products, New York, NY, USA). Spectra were taken between 400 and 4000 cm⁻¹, with 64 scans per minute and a resolution of 4 cm⁻¹. The sample holder was sealed with an airtight hood with ZeSn windows. In addition, the airtight hood was isolated with an Ar stream to avoid interference from the environment. Approximately 0.02 g of AC samples were degassed in Ar (15 mL/min) at 50 °C for 30 min. Then, 10 pulses of 30 μ L of CO, obtained from a certified 5% CO/Ar mixture, were injected into the cell; between each pulse, Ar (15 mL/min) was passed for 10 min.

Raw and processed Excel data for characterization tests can be downloaded from [72].

4. Conclusions

Several single and dual metal oxides were investigated as supports in a catalytic system based on Au–Cu for the CO removal from an actual syngas. The use of a syngas obtained directly from the ESR affects the effectiveness in the CO removal; specifically, a low H₂/CO ratio could favor greater H₂ loss. AuCu/CeO₂ was identified as the most active catalyst in the CO removal, but it also contributes to a higher H₂ consumption. H₂ is lost mainly by the formation of water and CH₄, where the occurrence of CO₂ methanation affected the CO removal differently. Over CeO₂-Al₂O₃ and CeO₂-SiO₂, methanation seems to improve CO removal because the CO-PROX product, CO₂, is constantly consumed to produce CH₄. On the contrary, methanation has a negative effect on CeO₂ and La₂O₃ because the formed CH₄ favors carbon deposition.

Differences among the catalysts were evaluated by several characterization techniques. DRIFTS spectra of CO adsorption showed that CeO₂ has a superior activity because it favors the formation of C–O* and OH⁻ intermediates, but it promotes the formation of carbon deposits that lead to its deactivation. Similarly, TPR showed that ZrO_2 has a high interaction with active metals (Au–Cu), which makes it active but less selective, favoring a high H₂ oxidation. In addition, the low OSC of Al_2O_3 and SiO_2 , and the lower surface area of Fe_2O_3 and La_2O_3 make these metal oxides less active. Regarding dual supports, the inclusion of a second metal oxide weakens the interaction of CeO₂ with the active metals, reducing activity. However, dual metal oxides are more selective and stable than single CeO_2 because they mitigate the excess of C–O* species, as was observed by DRIFTS; specifically, CeO₂.SiO₂ mitigates the formation of stable carbon deposits that deactivate the catalyst. Thus, AuCu/CeO₂ was identified as a promising catalyst for carrying out the CO removal from a syngas using just one catalytic reactor, but improvements in CeO₂ stability are still required. Therefore, the use of dual supports (e.g., CeO_2 .SiO₂) could be a strategy to overcome single CeO₂ deficiencies. Thus, the development of more compact systems for the purification of H_2 suitable for FC implicitly promotes greater H₂ consumption. The results of this work aim to contribute to the development and establishment of sustainable energies based on H₂.

Funding: This research was funded by Colciencias (Francisco Jose de Caldas Fund) and Universidad de La Sabana through the projects with code ING-163, ING-166, and ING-221 (Colciencias contracts 0608-2013, 174-2016 and 548-2019).

Acknowledgments: B. Cifuentes acknowledges Colciencias for the doctoral scholarship (grant number 727-2015). F. Bustamante acknowledges the support of the Environmental Catalysis Research Group of Universidad de Antioquia.

Conflicts of Interest: There are no conflicts of interest to declare.

Appendix A

Figure A1. (**a**,**b**) CO₂ and CH₄ (**c**,**d**) production in the CO cleanup reactor with simple and dual supports. Syngas composition: 8.4% H₂, 2.2% CO, 0.6% CO₂, 0.3% CH₄, 1.6% H₂O, and Ar. λ = 1.8. Reaction conditions: SV = 6.5 ± 0.2 L/g_{cat}*min; 0.050 g of catalyst and 0.250 g of inert quartz.

Figure A2. (**a**,**b**) CO₂ and CH₄ (**c**,**d**) production in the CO cleanup reactor with Au–Cu catalysts supported on simple and dual supports. Syngas composition: 8.4% H₂, 2.2% CO, 0.6% CO₂, 0.3% CH₄, 1.6% H₂O, and Ar. λ =1.8. Reaction conditions: SV = 6.5 ± 0.2 L/g_{cat}*min; 0.050 g of catalyst and 0.250 g of inert quartz.

Figure A3. H₂-TPR profiles of bare supports evaluated in the CO removal from an actual syngas.

Appendix B

Table A1. Surface area, OSC, OSCC, and thermogravimetric analysis (TGA) results of single and dual supports.

Support	BET Surface	Area (m ² /gcat)	OSC in Fresh Samples at	OSCC in Fresh Samples at	Weight Loss (%)		
Support	Fresh	Used	300 °C (µmol O ₂ /gcat)	300 °C (µmol O ₂ /gcat)	Fresh	Used	
CeO ₂	52.4	55.4	61	135	1.1	0.6	
SiO ₂	466.5	410.6	41	49	1.4	1.1	
ZrO ₂	51.6	44.9	55	99	1.6	0.6	
Al_2O_3	96	68.6	36	55	1.7	0.2	
La_2O_3	14.1	15.3	21	68	5.5	2.1	
Fe ₂ O ₃	38.1	36.7	5	16	0.7	0.8	
CeO2-SiO2	163.2	155.2	54	105	-2.7	1.8	
CeO ₂ -ZrO ₂	44.3	40.5	46	110	0.2	2.0	
CeO ₂ -Al ₂ O ₃	72.7	69.1	41	120	2.0	1.0	

 Table A2. Reviewed articles for the selection of supports evaluated in the CO removal.

	Date	Active Metals	Metal Oxide I	Metal Oxide II	Journal	Digital Object Identifier (DOI)
2012 PI Other - Electrochimica Acta 10.1016/j.electatc.2012.01.50 2012 - NiQ. - Applied Strafes Genere 10.1016/j.pinoleata.2012.01.50 2013 Co Co Co Q.Q. - Journal of Molecular Catalysis 10.1016/j.pinoleata.2012.05.001 2013 CuO TiO.2 Al-Q.D. Surface and Contings Technology 10.1016/j.ecs.2013.04.053 2014 Co MgO - Process Stelfy and 10.1016/j.ecs.2013.02.002 2014 Pt Co Journal of Catalysis 10.1016/j.ecs.2014.06.018 2014 Ag Zoolite - Applied Tarlysis A: General 10.1016/j.ecs.2014.00.019 2014 Au NiCo - Applied Catalysis 10.1016/j.pice.2014.00.012 2014 CuO SiO2 CeO2 - Chemical Engineering 10.1016/j.jecs.2014.00.021 2015 CuO SiO2 CeO2 - Chemical Engineering 10.1016/j.jecs.2015.00.044 2015 CuO SiO2 Co2,O	2012	CuO	Fe ₂ O ₃	-	Chemical Engineering Journal	10.1016/j.cej.2012.01.017
2012 - Fe ₂ O ₂ - Applied Surface Science 10.1016/j.papus.2011.10.092 2013 Ni, Co Co ₂ O ₄ - Journal of Mloys and Compounds 10.016/j.papus.2013.04.053 2013 CuO TiO ₂ Al ₂ O ₃ Surface and Catings Technology 10.016/j.papus.2013.04.053 2013 Co Fe2O3 - Chemical Engineering Journal 10.016/j.papus.2013.0.002 2014 Co MgO - Process Safety and 10.016/j.papus.2013.0.002 2014 Pd Fe ₂ O ₃ - Chemical Engineering Journal 10.0106/j.papus.2014.04.06.08 2014 Pd Fe ₂ O ₃ - Chemical Engineering 10.0106/j.papus.2014.04.0019 2014 Ag Zeolite - Fuel 10.0106/j.papus.2014.02.003 2015 Co, Fe, Cr CGO ₂ - Ihternational Journal of Environmental 10.0106/j.papus.2014.02.003 2015 Cu, CeO ₂ - Chemical Engineering 10.0106/j.papus.2015.03.04 2015 Cu, CeO ₂ ZeO ₂ Chemical Engineering	2012	Pt	Other	-	Electrochimica Acta	10.1016/j.electacta.2012.04.150
2012 NO Journal of Molecular Catalysis 10.1016/j.molecular.2015.05.01 2013 Ni, Co Co ₂ O ₄ - Journal of Alloys and Compounds 10.1016/j.molecular.2015.01.03 2013 CuO TiO ₂ Al ₂ O ₅ Starface and Costings Technology 10.1016/j.molecular.2015.01.03 2014 Co MgO - Process Stafty and 10.1016/j.ces.2013.02.002 2014 Pl Co ₂ O ₂ - Chemical Engineering Journal 10.1016/j.ces.2013.02.002 2014 Pl CeO ₂ - Chemical Engineering Journal 10.1016/j.ces.2014.06.019 2014 Pd Fe ₂ O ₃ - Journal of Catalysis 10.1016/j.ject.2014.00.03 2014 Au NiO ₂ - Applied Catalysis A: Ceneral 10.1016/j.ject.2014.02.03 2015 CuO SiO ₂ CeO ₂ - Chemical Engineering 10.1016/j.ject.2014.02.03 2015 CuO Fe ₂ O ₇ - Chemical Engineering 10.1016/j.ject.2014.02.04 2015 CuO CeO ₂ ZO ₂ Chemica	2012	-	Fe ₂ O ₃	-	Applied Surface Science	10.1016/j.apsusc.2011.10.092
2013 N. Co Figural of Alloys and Compounds 10.1016/j.j.ill.com.2013.04.0633 2013 Co Figural of Alloys and Compounds 10.1016/j.j.ill.com.2013.04.0633 2013 Co Figural Co <th< td=""><td>2012</td><td></td><td>NIO</td><td></td><td>Journal of Molecular Catalysis</td><td>10 1016/i malaata 2012 05 001</td></th<>	2012		NIO		Journal of Molecular Catalysis	10 1016/i malaata 2012 05 001
2013 Ni, Co Cop0, - Journal of Alloys and Compounds 10.1016/j.surco.210.304.083 2013 CuO TiO ₂ Al ₂ O ₃ - Chemical Engineering Journal 10.1016/j.surco.210.210.003 2014 Co MgO - Environmental Protection 10.1016/j.surco.210.210.003 2014 Pt Co - Journal of Catalysis 10.1016/j.p.sep.2013.12.003 2014 Pt Co - Applied Catalysis A: General 10.1016/j.p.sep.2013.12.004.06.058 2014 Pt CoO SiO ₂ CoO Chemical Engineering Journal 10.1016/j.p.sep.2013.12.003 2014 Ag Zeolite - Applied Catalysis A: General 10.1016/j.p.sep.2014.02.003 2015 Co, Fe, Cr CoO ₃ - Applied Catalysis A: General 10.1016/j.p.sep.2014.03.021 2015 - CoO ₃ - Catalysis Communications 10.1016/j.p.sep.2015.06.018 2015 - CoO ₄ - Catalysis Cohay 10.1016/j.p.sep.2015.06.018 2015 -	2012	-	NIO ₂	-	A: Chemical	10.1010/J.molcata.2012.05.001
	2013	Ni, Co	Co ₃ O ₄	-	Journal of Alloys and Compounds	10.1016/j.jallcom.2013.04.053
2013 Co Fe203 - Chemical Engineering Journal 10.1016/j.ese2.013.02.002 2014 Co MgO - Environmental Protection 10.1016/j.psep.2013.12.003 2014 Pt CeO2 - Journal of Catalysis 10.1016/j.psep.2013.12.003 2014 Pd FeO3 - Journal of Catalysis 10.1016/j.psep.2013.12.003 2014 Au NiO2 - Applied Catalysis A: General 10.1016/j.psep.2014.02.003 2014 CuO SiO2 CeO2 Chemical Engineering Journal of THydrogen Theregy 10.1016/j.jece.2014.03.021 2015 Co, Fe, Cr CeO2 - Applied Catalysis A: General 10.1016/j.jece.2014.03.021 2015 Au Zeolite - Catalysis Today 10.1016/j.jece.2015.03.04 2015 Au Zeolite - Catalysis Today 10.1016/j.jece.2014.03.01.08 2015 Au Zeol ZrO2 Catalysis Today 10.1016/j.jece.2015.06.018 2015 Au ZeoO ZrO2 Applied Catalysis A: General	2013	CuO	TiO ₂	Al_2O_3	Surface and Coatings Technology	10.1016/j.surfcoat.2012.10.031
2014 Co MgO - Process Stely and Environmental Protection 10.1016/j.psep.2013.12.003 2014 Pt CoO - Chemical Engineering Journal 10.1016/j.psep.2013.12.003 2014 Pd Fe ₂ O ₃ - Opurnal of Catalysis 10.1016/j.pac.210.406.019 2014 Ag Zool - Fuel 10.1016/j.pac.210.407.011 2014 Au NiO2 - Applied Catalysis A: General 10.1016/j.pac.210.2012.003 2015 Co, Fe, Cr CoO - Chemical Engineering 10.1016/j.pac.210.2014.10.024 2015 CuO Fe ₂ O ₃ - Chinese Journal of Catalysis Today 10.1016/j.pac.210.2014.00.21 2015 Au CuO Fe ₂ O ₃ - Catalysis Today 10.1016/j.pac.2015.06.018 2015 Au CuO CoO ₂ ZrO ₂ Catalysis Today 10.1016/j.pac.2015.06.018 2015 - PIO2 - Catalysis Today 10.1016/j.pac.2015.06.018 2015 - PIO2 - Catalysis	2013	Co	Fe2O3	-	Chemical Engineering Journal	10.1016/j.ces.2013.02.002
action The second	2014	Co	MgO	_	Process Safety and	10 1016/i psep 2013 12 003
2014 Pt CeO2 - Chemical Engineering Journal 10.1016/j.cet.2014.06.008 2014 Ag Zeolite - Fuel 10.1016/j.cet.2014.06.009 2014 Au NiO2 - Applied Catalysis A: General 10.1016/j.tuel.2014.02.003 2014 CuO SiO2 CeO2 International Journal of Environmental 10.1016/j.tuel.2014.02.003 2015 C. Co, Fe, Cr CoO Applied Catalysis A: General 10.1016/j.tuel.2014.10.024 2015 Au Zeolite - Catalysis Today 10.1016/j.tuel.2014.02.03 2015 Au CuO FeO3 - Catalysis Today 10.1016/j.tuel.2014.02.03 2015 Au CuO CoO2 ZrO2 Catalysis Today 10.1016/j.tuel.2014.02.03 2015 Au CuO CoO2 ZrO2 Catalysis Today 10.1016/j.tuel.2014.00.03 2015 - MrO2 CeO2 Applied Catalysis A: Environmental 10.1016/j.tuel.2014.06.038 2016 - CoO2 ZrO2 Engineering	2014	D:	inge G O		Environmental Protection	10.1016/
	2014	Pt	CeO ₂	-	Chemical Engineering Journal	10.1016/j.cej.2014.06.058
	2014	Pd	Fe ₂ O ₃	-	Journal of Catalysis	10.1016/j.jcat.2014.06.019
	2014	Ag	Zeolite	-	Fuel	10.1016/j.fuel.2014.07.011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2014	Au	NiO ₂	-	Applied Catalysis A: General	10.1016/j.apcata.2014.02.003
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2014	CuO	SiO ₂	CeO ₂	Journal of Environmental	10.1016/j.jece.2014.03.021
	2015	0 7 0	-	-	Chemical Engineering	
2015 - Co ₂ O ₄ - Applied Catalysis A: General 10.1016/j.apcata.2014.10.024 2015 Cu Fe ₂ O ₅ - Chinese Journal of Catalysis Today 10.1016/j.cattod.2014.00825 2015 Au Zeolite - Catalysis Today 10.1016/j.cattod.2014.12.038 2015 Au, Cu CeO ₂ ZrO ₂ Catalysis Today 10.1016/j.cattod.2014.12.038 2015 - PrO2 - Applied Surface Science 10.1016/j.jacc.2015.06.038 2015 - MrO ₂ CeO ₂ Applied Catalysis E. Environmental 10.1016/j.jacc.2015.06.038 2016 Pd Fe ₂ O ₃ - Chenical Engineering 10.1016/j.jaccatb.2014.06.038 2016 Pd Fe ₂ O ₃ - Chenical Engineering 10.1016/j.jaccatb.2014.06.038 2016 Au Zro ₂ ZrO ₂ Applied Catalysis B: Environmental 10.1016/j.jaccatb.2016.02.025 2016 - CeO ₂ - Journal of Molecular Catalysis 10.1016/j.jaccatb.2016.02.025 2016 - Co ₂ O ₄	2015	Co, Fe, Cr	CeO ₂	-	International Journal of Hydrogen Energy	10.1016/j.ijhydene.2015.03.044
2015 CuO FegO3 - Chinese Journal of Catalysis 10.1016/S1872-2067(15)60292-6 2015 Pt CeO2 - Catalysis Today 10.1016/j.actor.2015.06.018 2015 Au, Cu CeO2 ZrO2 Catalysis Today 10.1016/j.actor.2015.06.018 2015 - PtO2 - Catalysis Today 10.1016/j.actor.2014.04.80.035 2015 - PtO2 - Applied Surface Science 10.1016/j.apsusc.2015.06.018 2015 - MnO2 CeO2 ZrO2 Intriming Chemistry 10.1016/j.apcatb.2014.06.038 2016 Pd FegO3 - Chinese Journal of Tatysis 10.1016/j.apcatb.2014.06.029 2016 Au Zn2SrO4 - Chinese Journal of Catalysis 10.1016/j.apcatb.2016.02.023 2016 Au CeO2 2 Applied Catalysis B: Environmental 10.1016/j.apcatb.2016.08.025 2016 Au CeO2 - Applied Catalysis D: B: Trivinonmental 10.1016/j.apcatb.2016.08.025 2016 Pd CeO2 - Ap	2015	-	Co_3O_4	-	Applied Catalysis A: General	10.1016/j.apcata.2014.10.024
	2015	CuO	Fe ₂ O ₃	-	Chinese Journal of Catalysis	10.1016/S1872-2067(15)60922-6
	2015	Au	Zeolite	-	Catalysis Communications	10.1016/j.catcom.2015.06.018
	2015	Pt	CeO ₂	-	Catalysis Today	10.1016/j.cattod.2014.12.038
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2015	Au, Cu	CeO ₂	ZrO_2	Catalysis Today	10.1016/j.cattod.2014.08.035
2015CuOCeO2ZrO2Journal of Industrial and Engineering Chemistry10.1016/j.jiec.2015.06.0382015-MnO2CeO2Applied Catalysis B: Environmental Journal of Environmental10.1016/j.apcatb.2014.06.0382016PdFe2O3-Journal of Environmental Chemical Engineering10.1016/j.apcatb.2016.02.0232016-CeO2ZrO2Applied Catalysis B: Environmental Chemical Engineering10.1016/j.apcatb.2016.02.0232016AuZro5SrO4-Catalysis Communications10.1016/j.apcatb.2016.02.0232016AuCeO2-Applied Catalysis B: Environmental Journal of Molecular Catalysis10.1016/j.apcatb.2016.02.0252016AuCeO2-Applied Catalysis B: Environmental Journal of Molecular Graphics and 	2015	-	PtO2	-	Applied Surface Science	10.1016/j.apsusc.2015.03.108
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2015	CuO	CeO ₂	ZrO ₂	Journal of Industrial and Engineering Chemistry	10.1016/j.jiec.2015.06.038
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2015	-	MnO ₂	CeO ₂	Applied Catalysis B: Environmental	10.1016/j.apcatb.2014.06.038
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2016	Pd	Fe ₂ O ₃	-	Journal of Environmental Chemical Engineering	10.1016/j.jece.2016.10.019
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2016	-	CeO ₂	ZrO ₂	Applied Catalysis B: Environmental	10.1016/j.apcatb.2016.02.023
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2016	Au	Zn_2SnO_4	-	Chinese Journal of Catalysis	10.1016/S1872-2067(16)62468-3
2016Au CeO_2 -Applied Catalysis B: Environmental10.1016/j.apcatb.2016.02.0252016Pd CeO_2 -Journal of Molecular Catalysis10.1016/j.apcatb.2016.02.0252016Pd CeO_2 -Al_2O_3Journal of Molecular Catalysis10.1016/j.molcata.2016.08.0352016-SiO_2-Catalysis Today10.1016/j.imgm.2016.08.0052016AgSiO_2-Catalysis Today10.1016/j.susc.2015.08.0432016-PdO-Surface Science10.1016/j.susc.2015.08.0432016-Co ₃ O ₄ -Applied Catalysis Communications10.1016/j.susc.2015.08.0432016CuOTiO_2-Catalysis Communications10.1016/j.apcata.2016.03.0272016CuOTiO_2-Catalysis Communications10.1016/j.apcatb.2016.02.0012016CuOMnO_2-Applied Catalysis B: Environmental10.1016/j.apcatb.2015.08.0432016CuOPeroskita-Applied Catalysis Today10.1016/j.catvd.2015.08.0342016CuOPeroskita-Applied Catalysis Today10.1016/j.catvd.2015.05.0212016-Fe ₂ O ₃ -Chemical Engineering Journal10.1016/j.catvd.2015.05.0212016-Fe ₂ O ₃ -Chemical Engineering Journal10.1016/j.catvd.2015.05.0212016-Fe ₂ O ₃ -Chemical Engineering Journal10.1016/j.catvd.2015.05.0212016-Fe ₂ O ₃ -Chemical Engineerin	2016	_	$C_{02}O_4$	-	Catalysis Communications	10.1016/j.catcom.2016.08.020
2016PdCeO2-Internal of Molecular Catalysis A: Chemical10.016/j.molcata.2016.08.0352016-SiO2Al2O3Journal of Molecular Graphics and Modelling10.1016/j.molcata.2016.08.0352016-SiO2-Catalysis Today10.1016/j.sugar.2016.08.0052016-Co ₂ O4-Applied Catalysis Today10.1016/j.apcata.2016.03.0372016-Co ₂ O4-Applied Catalysis A: General10.1016/j.apcata.2016.03.0372016CuOTiO2-Catalysis Communications10.1016/j.apcata.2016.03.0272016CuOTiO2-Catalysis E Environmental10.1016/j.apcatb.2016.03.0272016CuOMnO2-Applied Catalysis B: Environmental10.1016/j.apcatb.2016.03.0272016CuOMnO2-Applied Catalysis B: Environmental10.1016/j.apcatb.2016.03.0242016CuOPeroskita-Applied Catalysis Today10.1016/j.caty.2015.05.0212016-Fe ₂ O3-Catalysis Today10.1016/j.caty.2015.05.0212016AuTiO2-Catalysis Today10.1016/j.cattod.2015.05.0592016AuFe ₂ O3-Catalysis Today10.1016/j.cattod.2016.05.0592016-Co ₃ O4-Materials Letters10.1016/j.cattod.2016.05.0592016-Co ₃ O4-Chinese Journal of Molecular Catalysis10.1016/j.imscata.2016.01.032016-Co ₃ O4-Chinese Journal of Catalysis<	2016	Au	CeO	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2016.02.025
2016Pd CeO_2 - $A: Chemical10.1016/j.molcata.2016.08.035$ 2016- SiO_2 Al_2O_3 Journal of Molecular Graphics and Modelling10.1016/j.imgr.2016.08.0052016Ag SiO_2 -Catalysis Today10.1016/j.cattod.2016.05.0332016-PdO-Surface Science10.1016/j.cattod.2016.03.0272016-Co3O_4-Applied Catalysis A: General10.1016/j.accata.2016.03.0272016CuOTiO_2-Catalysis Communications10.1016/j.actatom.2016.02.0012016PtCeO_2-Applied Catalysis B: Environmental10.1016/j.actatom.2016.02.0012016CuOMnO_2-Applied Catalysis Today10.1016/j.cattom.2016.02.0212016CuOPeroskita-Applied Clay Science10.1016/j.cattod.2015.05.0212016PdZnO-Catalysis Today10.1016/j.cattod.2015.05.0212016AuTiO_2-Catalysis Today10.1016/j.cattod.2015.05.0212016AuFe2O_3CeO_2Catalysis Today10.1016/j.cattod.2015.05.0912016AuTiO_2-Catalysis Today10.1016/j.cattod.2016.05.0592016-Co_3O_4-Chinese Journal of Catalysis Today10.1016/j.cattod.2015.05.0592016-Co_3O_4-Chinese Journal of Catalysis10.1016/j.maltet.2016.06.1082016-Co_3O_4-Chinese Journal of Catalysis10.1016/j.japsusc.2016.01.285			2		Journal of Molecular Catalysis	
2016- SiO_2 Al_2O_3 Journal of Molecular Graphics and Modelling $10.1016/j.jmgm.2016.08.005$ 2016Ag SiO_2 -Catalysis Today $10.1016/j.cattod.2016.05.033$ 2016-PdO-Surface Science $10.1016/j.susc.2015.08.043$ 2016-Co ₃ O ₄ -Applied Catalysis A: General $10.1016/j.susc.2015.08.043$ 2016CuOTiO_2-Catalysis Communications $10.1016/j.apcata.2016.02.001$ 2016PtCeO_2-Applied Catalysis B: Environmental $10.1016/j.apcata.2016.02.001$ 2016CuOMnO_2-Applied Catalysis B: Environmental $10.1016/j.apcata.2016.02.041$ 2016CuOPeroskita-Applied Catalysis Today $10.1016/j.apcatb.2016.08.024$ 2016CuOPeroskita-Chemical $10.1016/j.catto.2015.05.021$ 2016PdZnO-Catalysis Today $10.1016/j.catto.2015.05.021$ 2016AuTiO_2-Catalysis Today $10.1016/j.cattod.2015.05.021$ 2016AuFe2O_3CeO_2Catalysis Today $10.1016/j.cattod.2015.05.091$ 2016AuFe2O_3CeO_2Catalysis Today $10.1016/j.cattod.2015.05.091$ 2016-Co_3O_4-Chemical SLetters $10.1016/j.cattod.2015.05.091$ 2016AuFo2O_3CeO_2Catalysis Today $10.1016/j.cattod.2015.06.072$ 2016AuTiO_2-Catalysis Today $10.1016/j.cattod.2015.06.072$ <td>2016</td> <td>Pd</td> <td>CeO₂</td> <td>-</td> <td>A: Chemical</td> <td>10.1016/j.molcata.2016.08.035</td>	2016	Pd	CeO ₂	-	A: Chemical	10.1016/j.molcata.2016.08.035
2016- $3l_2 2$ A_2O_3 Modelling10.1016/j.lingl1.2018.08.0032016Ag SiO_2 -Catalysis Today10.1016/j.cattod.2016.05.0332016- Co_3O_4 -Applied Catalysis A: General10.1016/j.acetat.2016.03.0272016CuO TiO_2 -Catalysis Communications10.1016/j.acetat.2016.03.0272016CuO TiO_2 -Catalysis Communications10.1016/j.acetat.2016.03.0272016CuOMnO2-Applied Catalysis B: Environmental10.1016/j.acetat.2016.03.0272016CuOMnO2-Applied Catalysis B: Environmental10.1016/j.acetat.2016.03.0242016CuOPeroskita-Applied Clay Science10.1016/j.cattod.2015.08.0342016PdZnO-Catalysis Today10.1016/j.cattod.2015.09.0342016PdZnO-Catalysis Today10.1016/j.cattod.2015.09.0342016AuTiO2-Catalysis Today10.1016/j.cattod.2015.09.0342016AuFe ₂ O ₃ CeO ₂ Catalysis Today10.1016/j.cattod.2016.05.0592016-Co ₃ O ₄ -Materials Letters10.1016/j.apusc.2016.01.2852016-Fe ₂ O ₃ -Applied Surface Science10.1016/j.apusc.2016.01.2852016-Fe ₂ O ₃ -Applied Surface Science10.1016/j.apusc.2016.01.0382016-Fe ₂ O ₃ -Applied Surface Science10.1016/j.ipusc.2016.01.0322016<	2016		8:0	41.0	Journal of Molecular Graphics and	10 1016/i im am 2016 08 005
2016 Ag SiO2 - Catalysis Today 10.1016/j.cattod.2016.05.033 2016 - PdO - Surface Science 10.1016/j.susc.2015.08.043 2016 - Co ₃ O ₄ - Applied Catalysis A: General 10.1016/j.apcata.2016.03.027 2016 CuO TiO2 - Catalysis Communications 10.1016/j.catcom.2016.02.001 2016 Pt CeO2 - Applied Catalysis B: Environmental 10.1016/j.catcom.2016.02.001 2016 CuO MnO2 - Applied Catalysis Today 10.1016/j.cattom.2016.08.024 2016 CuO MnO2 - Archemical 10.1016/j.cattom.2015.08.034 2016 CuO Peroskita - Applied Clay Science 10.1016/j.cattod.2015.05.021 2016 Pd ZnO - Catalysis Today 10.1016/j.cattod.2015.05.021 2016 Au TiO2 - Catalysis Today 10.1016/j.cattod.2015.05.059 2016 Au TiO2 - Catalysis Today 10.1016/j.matlet.2016.06.108 2016 - Co ₃ O ₄ - Chinese Journal of	2016	-	5102	$A1_2O_3$	Modelling	10.1016/J.Jingin.2016.08.003
2016 - PdO - Surface Science 10.1016/j.susc.2015.08.043 2016 - Co ₃ O ₄ - Applied Catalysis A: General 10.1016/j.acatca.2016.02.027 2016 CuO TiO ₂ - Catalysis Communications 10.1016/j.acatca.2016.02.001 2016 Pt CeO ₂ - Applied Catalysis B: Environmental 10.1016/j.acatca.2016.02.001 2016 CuO MnO ₂ - Applied Catalysis B: Environmental 10.1016/j.catvol.2016.08.024 2016 CuO MnO ₂ - Applied Catalysis Today 10.1016/j.catvol.2015.08.034 2016 CuO Peroskita - Applied Catalysis Today 10.1016/j.catvol.2015.05.021 2016 Pd ZnO - Catalysis Today 10.1016/j.cattod.2015.05.021 2016 Au TiO ₂ - Catalysis Today 10.1016/j.cattod.2015.05.059 2016 Au Fe ₂ O ₃ CeO ₂ Catalysis Today 10.1016/j.cattod.2016.06.108 2016 Au Fe ₂ O ₃ CeO ₂ Catalysis Today 10.1016/j.inatlet.2016.06.108 2016 - Co	2016	Ag	SiO ₂	-	Catalysis Today	10.1016/j.cattod.2016.05.033
2016- Co_3O_4 -Applied Catalysis A: General10.1016/j.apcata.2016.03.0272016CuOTiO2-Catalysis Communications10.1016/j.apcata.2016.03.0272016PtCeO2-Applied Catalysis B: Environmental10.1016/j.apcatb.2016.01.0562016CuOMnO2-A: Chemical10.1016/j.apcatb.2016.01.0562016CuOPeroskita-Applied Clay Science10.1016/j.caty.2015.08.0342016PdZnO-Catalysis Today10.1016/j.caty.2015.08.0342016-Fe2O3-Chemical Engineering Journal10.1016/j.caty.2015.08.0342016AuTiO2-Catalysis Today10.1016/j.cattod.2015.05.0212016AuFe2O3CeO2Catalysis Today10.1016/j.cattod.2015.05.0592016AuFe2O3CeO2Catalysis Today10.1016/j.cattod.2016.06.1082016AuFe2O3CeO2Catalysis Today10.1016/j.astud.2016.06.1082016AuTiO2-Applied Surface Science10.1016/j.astud.2016.01.082016AuTiO2-Applied Surface Science10.1016/j.j.pis.2016.01.12852016AuOther-Journal of Colloid and Interface Science10.1016/j.j.pis.2016.06.0722016AuOther-Journal of Colloid and Interface Science10.1016/j.j.pis.2016.06.0722016AuCherr-Journal of Colloid and Interface Science10.1016/j.jithyde.2016.08.170 <tr< td=""><td>2016</td><td>-</td><td>PdO</td><td>-</td><td>Surface Science</td><td>10.1016/j.susc.2015.08.043</td></tr<>	2016	-	PdO	-	Surface Science	10.1016/j.susc.2015.08.043
2016CuOTiO2-Catalysis Communications10.1016/j.catcom.2016.02.0012016PtCeO2-Applied Catalysis B: Environmental10.1016/j.catcom.2016.02.0012016CuOMnO2-Journal of Molecular Catalysis10.1016/j.catcom.2016.02.0012016CuOPeroskita-Applied Clay Science10.1016/j.cattod.2015.08.0342016PdZnO-Catalysis Today10.1016/j.cattod.2015.05.0212016AuTiO2-Catalysis Today10.1016/j.cattod.2015.05.0212016AuTiO2-Catalysis Today10.1016/j.cattod.2016.04.1362016AuFe2O3CeO2Catalysis Today10.1016/j.cattod.2016.05.0592016-Co3O4-Materials Letters10.1016/j.mattet.2016.06.1082016AuTiO2-Applied Surface Science10.1016/j.mattet.2016.01.2852016AuTiO2-Applied Surface Science10.1016/j.ipsusc.2016.01.2052016AuTiO2-Applied Surface Science10.1016/j.ipsusc.2016.01.2052016AuOther-Journal of Colloid and Interface Science10.1016/j.ipsis.2016.06.0722016AuLaPO4-Journal of Hodrawinse10.1016/j.jics.2016.06.0722016PtAl2O3-International Journal of Hydrogen Energy10.1016/j.jihydene.2016.08.1702016PtOther-Surface Science10.1016/j.jihydene.2016.08.1702016 <t< td=""><td>2016</td><td>-</td><td>Co₃O₄</td><td>-</td><td>Applied Catalysis A: General</td><td>10.1016/j.apcata.2016.03.027</td></t<>	2016	-	Co ₃ O ₄	-	Applied Catalysis A: General	10.1016/j.apcata.2016.03.027
2016PtCeO2-Applied Catalysis B: Environmental10.1016/j.apcatb.2016.01.0562016CuOMnO2-Journal of Molecular Catalysis A: Chemical10.1016/j.apcatb.2016.08.0242016CuOPeroskita-Applied Clay Science10.1016/j.clay.2015.08.0342016PdZnO-Catalysis Today10.1016/j.catud.2015.05.0212016-Fe2O3-Chemical Engineering Journal10.1016/j.catud.2015.05.0212016AuTiO2-Catalysis Today10.1016/j.catud.2015.05.0592016AuFe2O3CeO2Catalysis Today10.1016/j.catud.2015.05.0592016-Co3O4-Materials Letters10.1016/j.matlet.2016.06.1082016-Co3O4-Chinese Journal of Catalysis10.1016/j.astod.2016.05.092016AuTiO2-Applied Surface Science10.1016/j.astod.2016.01.2852016-Fe2O3-Journal of Molecular Catalysis10.1016/j.aspusc.2016.01.2852016-Fe2O3-Journal of Molecular Catalysis10.1016/j.ipsi.2016.01.0032016AuOther-Journal of Colloid and Interface Science10.1016/j.ipsi.2016.06.0722016AuLaPO4-Journal of the Taiwan Institute of Chemical Engineers10.1016/j.ipi.e.2016.08.1702016PtAl2O3-International Journal of Hydrogen Energy10.1016/j.ipi.de.2016.08.1702016PtOther-Surface Scienc	2016	CuO	TiO ₂	-	Catalysis Communications	10.1016/j.catcom.2016.02.001
2016CuO MnO_2 -Journal of Molecular Catalysis A: Chemical10.1016/j.caty.2015.08.0242016CuOPeroskita-Applied Clay Science10.1016/j.caty.2015.08.0342016PdZnO-Catalysis Today10.1016/j.cattod.2015.05.0212016-Fe2O_3-Chemical Engineering Journal10.1016/j.cattod.2015.05.0212016AuTiO2-Catalysis Today10.1016/j.cattod.2015.09.0402016AuFe2O_3CeO2Catalysis Today10.1016/j.cattod.2016.06.0592016-Co3O_4-Materials Letters10.1016/j.matlet.2016.06.1082016-Co3O_4-Chinese Journal of Catalysis10.1016/j.matlet.2016.06.1082016-Co3O_4-Applied Surface Science10.1016/j.matlet.2016.01.0282016AuTiO2-Applied Surface Science10.1016/j.insc.2016.01.0282016-Fe2O_3-Journal of Molecular Catalysis10.1016/j.insc.2016.01.0032016AuOther-Journal of Colloid and Interface Science10.1016/j.jcis.2016.06.0722016AuLaPO_4-Journal of Hydrogen Energy10.1016/j.jidyeden.2016.08.1702016PtAl_2O_3-International Journal of Hydrogen Energy10.1016/j.jidyeden.2016.08.1702016PtOther-Surface Science10.1016/j.jidyeden.2016.08.1702016PtOther-International Journal of Hydrogen Energy <td< td=""><td>2016</td><td>Pt</td><td>CeO₂</td><td>-</td><td>Applied Catalysis B: Environmental</td><td>10.1016/j.apcatb.2016.01.056</td></td<>	2016	Pt	CeO ₂	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2016.01.056
2016 CuO Peroskita - Applied Clay Science 10.1016/j.clay.2015.08.034 2016 Pd ZnO - Catalysis Today 10.1016/j.cattod.2015.05.021 2016 - Fe ₂ O ₃ - Chemical Engineering Journal 10.1016/j.cattod.2015.05.021 2016 - Fe ₂ O ₃ - Chemical Engineering Journal 10.1016/j.cattod.2015.09.040 2016 Au TiO ₂ - Catalysis Today 10.1016/j.cattod.2016.05.059 2016 Au Fe ₂ O ₃ CeO ₂ Catalysis Today 10.1016/j.cattod.2016.05.059 2016 - Co ₃ O ₄ - Materials Letters 10.1016/j.matlet.2016.06.108 2016 - Co ₃ O ₄ - Applied Surface Science 10.1016/j.matlet.2016.01.285 2016 Au TiO ₂ - Applied Callysis 10.1016/j.inste.2016.01.003 2016 - Fe ₂ O ₃ - Journal of Molecular Catalysis 10.1016/j.j.cis.2016.00.072 2016 - Fe ₂ O ₃ - Journal of the Taiwan Institute o	2016	CuO	MnO ₂	-	Journal of Molecular Catalysis	10.1016/j.molcata.2016.08.024
2016 Pd ZnO - Catalysis Today 10.1016/j.cattod.2015.05.021 2016 - Fe ₂ O ₃ - Chemical Engineering Journal 10.1016/j.cattod.2015.05.021 2016 Au TiO ₂ - Catalysis Today 10.1016/j.cattod.2015.05.021 2016 Au TiO ₂ - Catalysis Today 10.1016/j.cattod.2015.05.059 2016 Au Fe ₂ O ₃ CeO ₂ Catalysis Today 10.1016/j.cattod.2016.05.059 2016 - Co ₃ O ₄ - Materials Letters 10.1016/j.matlet.2016.06.108 2016 - Co ₃ O ₄ - Chinese Journal of Catalysis 10.1016/j.matlet.2016.06.108 2016 Au TiO ₂ - Applied Surface Science 10.1016/j.msc.2016.01.285 2016 Au TiO ₂ - Applied Surface Science 10.1016/j.ipics.2016.01.003 2016 - Fe ₂ O ₃ - Journal of Colloid and Interface Science 10.1016/j.j.jcis.2016.01.003 2016 Au Other - Journal of the Taiwan Institut	2016	CuO	Peroskita	-	Applied Clay Science	10.1016/i.clav.2015.08.034
2016 - $Fe_{2}O_{3}$ - Chemical Engineering Journal 10.016/j.cej.2016.04.136 2016 Au $Fio_{2}O_{3}$ - Catalysis Today 10.1016/j.cej.2016.04.136 2016 Au $Fe_{2}O_{3}$ CeO ₂ Catalysis Today 10.1016/j.cattod.2016.05.059 2016 Au $Fe_{2}O_{3}$ CeO ₂ Catalysis Today 10.1016/j.cattod.2016.06.136 2016 - Co ₃ O ₄ - Materials Letters 10.1016/j.cattod.2016.06.108 2016 - Co ₃ O ₄ - Chinese Journal of Catalysis 10.1016/j.stps:2-2067(15)60969-X 2016 Au TiO ₂ - Applied Surface Science 10.1016/j.jasusc.2016.01.285 2016 - Fe ₂ O ₃ - A: Chemical 10.1016/j.jcis.2016.01.003 2016 - Fe ₂ O ₃ - Journal of Colloid and Interface Science 10.1016/j.jcis.2016.06.072 2016 Au UaPO ₄ - Journal of the Taiwan Institute of Chemical Engineers 10.1016/j.jtice.2016.01.016 2016 Au LaPO ₄ - International Journal of Hydrogen Energy 10.1016/j.jtipk.2016.08.170	2016	Pd	ZnO	-	Catalysis Today	10 1016/i cattod 2015 05 021
2016Au TO_2 -Catalysis $TO, 03, 0401$ 2016Au Fe_2O_3 CeO_2 Catalysis $TO, 040$ 2016- Co_3O_4 -Materials $TO, 0401$ 2016- Co_3O_4 -Chinese Journal of Catalysis $10.1016/5.1872-2067(15)60969-X$ 2016Au TO_2 -Applied Surface Science $10.1016/j.apsusc.2016.01.285$ 2016- Fe_2O_3 -Journal of Molecular Catalysis $10.1016/j.ipsusc.2016.01.285$ 2016AuOther-Journal of Colloid and Interface Science $10.1016/j.jcis.2016.06.072$ 2016AuLaPO_4-Journal of the Taiwan Institute of Chemical Engineers $10.1016/j.jipte.2016.01.016$ 2016PtAl_2O_3-International Journal of Hydrogen Energy $10.1016/j.jipte.2016.08.170$ 2016PtOther-Surface Science $10.1016/j.jipt.2016.08.170$	2016	-	FeaOa	_	Chemical Engineering Journal	10 1016/j.cei 2016 04 136
2016AuFe2O3CeO2Catalysis Today10.1016/j.cattod.2015.05.052016-Co3O4-Materials Letters10.1016/j.cattod.2016.05.0592016-Co3O4-Materials Letters10.1016/j.cattod.2016.05.0592016-Co3O4-Chinese Journal of Catalysis10.1016/j.cattod.2016.05.0592016AuTiO2-Applied Surface Science10.1016/j.apsusc.2016.01.2852016-Fe2O3-Journal of Molecular Catalysis10.1016/j.pol.cata.2016.01.0032016AuOther-Journal of Colloid and Interface Science10.1016/j.jcis.2016.06.0722016AuLaPO4-Journal of the Taiwan Institute of Chemical Engineers10.1016/j.jtice.2016.01.0162016PtAl2O3-International Journal of Hydrogen Energy10.1016/j.ijhydene.2016.08.1702016PtOther-Surface Science10.1016/j.ijhydene.2015.08.024	2016	A11	TiO	_	Catalysis Today	10 1016/j.cettod 2015 09 040
2016 Au $16_{2}O_3$ $10_{1}O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O_1O$	2016	A11	Fee On	CeOn	Catalysis Today	10.1016/j.cattod.2015.05.040
2016- Co_3O_4 -Interfacts Letters10.1016/j.intet.2016.06.1062016- Co_3O_4 -Chinese Journal of Catalysis10.1016/j.iB72-2067(15)60969-X2016Au TO_2 -Applied Surface Science10.1016/j.iB72-2067(15)60969-X2016-Fe2O_3-Journal of Molecular Catalysis10.1016/j.imsc.2016.01.0232016AuOther-Journal of Colloid and Interface Science10.1016/j.ipicis.2016.06.0722016AuLaPO_4-Journal of the Taiwan Institute of Chemical Engineers10.1016/j.ipice.2016.01.0162016PtAl2O_3-International Journal of Hydrogen Energy10.1016/j.ipidee.2016.08.1702016PtOther-Surface Science10.1016/j.ipit.50.80.24	2010	Au	re203	CeO_2	Matariala Lattara	10.1016/j.cattot.2016.05.059
2016 - Co_3O_4 -Chinese journal of Catalysis $10.1016/518/2-206/(15)60969-X$ 2016 Au TiO_2 -Applied Surface Science $10.1016/5.18/2-206/(15)60969-X$ 2016 - Fe_2O_3 -Journal of Molecular Catalysis $10.1016/5.18/2-206/(15)60969-X$ 2016 AuOther-Journal of Molecular Catalysis $10.1016/5.502.2016.006.072$ 2016 AuOther-Journal of Colloid and Interface Science $10.1016/5.502.016.06.072$ 2016 AuLaPO_4-Journal of the Taiwan Institute of Chemical Engineers $10.1016/5.502.016.008.072$ 2016 PtAl_2O_3-International Journal of Hydrogen Energy $10.1016/5.508.024$ 2016 PtOther-Surface Science $10.1016/5.508.024$	2010	-	Co ₃ O ₄	-	Chinese Journal of Catalucia	10.1010/J.IIIauet.2010.00.100
2016Au 10_2 -Applied Surface Science $10.1016/j.apsusc.2016.01.285$ 2016- Fe_2O_3 -Journal of Molecular Catalysis A.: Chemical $10.1016/j.ipsusc.2016.01.003$ 2016AuOther-Journal of Colloid and Interface Science $10.1016/j.ipsusc.2016.06.072$ 2016AuLaPO_4-Journal of the Taiwan Institute of Chemical Engineers $10.1016/j.ipsusc.2016.00.1016$ 2016PtAl ₂ O ₃ -International Journal of Hydrogen Energy $10.1016/j.ipsusc.2016.08.170$ 2016PtOther-Surface Science $10.1016/j.ipsusc.2015.08.024$	2010	- A	C0304	-	Applied Surface Catalysis	10.1010/516/2-2007(15)00969-X
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2010	Au	110_2	-	Applied Surface Science	10.1016/J.apsusc.2016.01.285
2016 Au Other - Journal of Colloid and Interface Science 10.1016/j.jcis.2016.06.072 2016 Au LaPO4 - Journal of the Taiwan Institute of Chemical Engineers 10.1016/j.jtice.2016.01.016 2016 Pt Al2O3 - International Journal of Hydrogen Energy 10.1016/j.jtice.2016.08.170 2016 Pt Other - Surface Science 10.1016/j.jtice.2015.08.024	2016	-	Fe ₂ O ₃	-	A: Chemical	10.1016/j.molcata.2016.01.003
2016 Au LaPO4 - Journal of the lawan Institute of Chemical Engineers 10.1016/j.jtice.2016.01.016 2016 Pt Al2O3 - International Journal of Hydrogen Energy 10.1016/j.jtice.2016.08.170 2016 Pt Other - Surface Science 10.1016/j.jtice.2015.08.024	2016	Au	Other	-	Journal of Colloid and Interface Science	10.1016/j.jcis.2016.06.072
2016 Pt Al ₂ O ₃ - International Journal of Hydrogen Energy 10.1016/j.ijhydene.2016.08.170 2016 Pt Other - Surface Science 10.1016/j.susc.2015.08.024	2016	Au	LaPO ₄	-	Journal of the Taiwan Institute of Chemical Engineers	10.1016/j.jtice.2016.01.016
	2016 2016	Pt Pt	Al ₂ O ₃ Other	-	International Journal of Hydrogen Energy Surface Science	10.1016/j.ijhydene.2016.08.170 10.1016/j.susc.2015.08.024

Table A2. Cont.

Date	Active Metals	Metal Oxide I	Metal Oxide II	Journal	Digital Object Identifier (DOI)
2017	CuO	Nb ₂ O ₅	-	Catalysis Communications	10.1016/j.catcom.2017.04.008
2017	Zn, Pt	CeO ₂	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2017.04.044
2017	Pt, Fe	Fe ₂ O ₃	Co ₃ O ₄	Chinese Journal of Catalysis	10.1016/S1872-2067(17)62838-9
2017	CuO	MnO ₂	CeO ₂	Catalysis Communications	10.1016/j.catcom.2017.05.016
2017	Pt	MnO_2		Journal of Electroanalytical Chemistry	10.1016/j.jelechem.2016.09.031
2017	Au	LaPO ₄	-	Chinese Journal of Chemical Engineering	10.1016/j.cjche.2017.08.008
2017	Fe, Mn	CeO ₂	-	Catalysis Today	10.1016/j.cattod.2016.11.046
2017	Mn	Co ₃ O ₄	-	Solid State Sciences	10.1016/j.solidstatesciences.2017.07.006
2017	Mn	Co ₃ O ₄	-	Fuel	10.1016/j.fuel.2017.04.140
2017	Au	CeO ₂	-	Applied Surface Science	10.1016/j.apsusc.2017.04.158
2017	-	MgO	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2016.11.043
2017	CuO	CeO ₂	Zeolite	Microporous and Mesoporous Materials	10.1016/j.micromeso.2017.02.016
2017	-	Zeolite	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2017.06.083
2017	Со	ZnO	-	Ceramics International	10.1016/j.ceramint.2017.06.157
2017	Pd	TiO ₂	SnO ₂	Applied Catalysis B: Environmental	10.1016/j.apcatb.2017.02.017
2017	Pd	Fe ₂ O ₃	-	Fuel Processing Technology	10.1016/j.fuproc.2017.02.037
2017	CuO	CeO ₂	-	Journal of Power Sources	10.1016/j.jpowsour.2017.01.127
2017	Mn	CeO ₂	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2017.03.049
2017	Со	Co ₃ O ₄	-	Chemical Physics Letters	10.1016/j.cplett.2017.02.085
2017	Au	TiO ₂	-	Catalysis Today	10.1016/j.cattod.2016.05.056
2017	CuO	CeO ₂	-	International Journal of Hydrogen Energy	10.1016/j.ijhydene.2017.02.088
2017	CuO	CeO ₂	-	Journal of Rare Earths	10.1016/j.jre.2017.05.015
2017	Pd	Al ₂ O ₃	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2017.02.038
2017	Pt	TiO ₂	-	Molecular Catalysis	10.1016/j.mcat.2017.01.014
2017	-	CeO ₂	Other	Catalysis Today	10.1016/j.cattod.2017.06.017
2017	-	Al_2O_3	SnO ₂	Applied Surface Science	10.1016/j.apsusc.2017.01.058
2017	Ag	Zeolite	-	Fuel	10.1016/j.fuel.2016.10.037
2017	Au	TiO ₂	-	Applied Surface Science	10.1016/j.apsusc.2016.10.076
2017	-	Carbon	-	Molecular Catalysis	10.1016/j.molcata.2016.12.007
2017	Ag	SiO ₂	-	Microporous and Mesoporous Materials	10.1016/j.micromeso.2017.01.016
2017	Pd, Rh	Al_2O_3	-	Catalysis Today	10.1016/j.cattod.2016.10.010
2017	Au, Cu	SiO ₂	-	Catalysis Today	10.1016/j.cattod.2016.08.003
2017	Pd	CeO ₂	MnO	Applied Catalysis B: Environmental	10.1016/j.apcatb.2017.01.020
2017	-	CeO ₂	-	Catalysis Today	10.1016/j.cattod.2016.04.016
2017	Pd	Co ₃ O ₄	-	Applied Catalysis A: General	10.1016/j.apcata.2016.12.021
2017	Pt	CeO ₂	-	Applied Catalysis A: General	10.1016/j.apcata.2017.08.012
2017	Mn	Co ₃ O ₄	-	Solid State Sciences	10.1016/j.solidstatesciences.2017.07.006
2017	Ni	ZrO_2	-	Applied Catalysis A: General	10.1016/j.apcata.2017.02.001
2018	-	SiO ₂	Co ₃ O ₄	Microporous and Mesoporous Materials	10.1016/j.micromeso.2017.07.016
2018	Pt	Fe ₂ O ₃	-	Applied Catalysis A: General	10.1016/j.apcata.2018.09.014
2018	Pd	SiO ₂	Al_2O_3	Applied Catalysis B: Environmental	10.1016/j.apcatb.2018.06.059
2018	Cu	CeO ₂	-	Catalysis Today	10.1016/j.cattod.2018.10.037
2018	Cu -Ni	CeO ₂	Al_2O_3	International Journal of Hydrogen Energy	10.1016/j.ijhydene.2018.12.127
2018	Ru	TiO ₂	ZrO_2	International Journal of Hydrogen Energy	10.1016/j.ijhydene.2018.10.061
2018	Ni	ZrO_2	-	International Journal of Hydrogen Energy	10.1016/j.ijhydene.2018.06.173
2018	-	ZrO ₂	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2018.03.001
2018	Ni	ZrO ₂	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2018.06.045
2019	Au	TiO ₂	-	International Journal of Hydrogen Energy	10.1016/j.ijhydene.2018.11.050
2019	Cu	Co ₃ O ₄	-	Molecular Catalysis	10.1016/j.mcat.2019.01.020
2019	-	Other	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2018.12.022
2019	Pt	Zeolite	-	Applied Catalysis A: General	10.1016/j.apcata.2018.12.034
2019	Ni	ZrO ₂	-	Applied Catalysis B: Environmental	10.1016/j.apcatb.2018.11.024

References

- 1. Zhang, K.; Jiang, X. An investigation of fuel variability effect on bio-syngas combustion using uncertainty quantification. *Fuel* **2018**, *220*, 283–295. [CrossRef]
- 2. Renzi, M.; Patuzzi, F.; Baratieri, M. Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation. *Appl. Energy* **2017**, *206*, 697–707. [CrossRef]
- 3. Rosa, A. Chapter 10—Hydrogen Production. In *Fundamentals of Renewable Energy Processes*, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 371–428.
- 4. Mohammed, H.; Al-Othman, A.; Nancarrow, P.; Tawalbeh, M.; El Haj Assad, M. Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency. *Energy* **2019**, *172*, 207–219. [CrossRef]
- Sengodan, S.; Lan, R.; Humphreys, J.; Du, D.; Xu, W.; Wang, H.; Tao, S. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. *Renew. Sustain. Energy Rev.* 2018, *82*, 761–780. [CrossRef]
- Cifuentes, B.; Hernández, M.; Monsalve, S.; Cobo, M. Hydrogen production by steam reforming of ethanol on a RhPt/CeO₂/SiO₂ catalyst: Synergistic effect of the Si:Ce ratio on the catalyst performance. *Appl. Catal. A Gen.* 2016, 523, 283–293. [CrossRef]

- Xie, Y.; Wu, J.; Jing, G.; Zhang, H.; Zeng, S.; Tian, X.; Zou, X.; Wen, J.; Su, H.; Zhong, C.J.; et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO₂ nanocatalysts with different shapes. *Appl. Catal. B Environ.* 2018, 239, 665–676. [CrossRef]
- 8. Kou, T.; Si, C.; Gao, Y.; Frenzel, J.; Wang, H.; Yan, X.; Bai, Q.; Eggeler, G.; Zhang, Z. Large-scale synthesis and catalytic activity of nanoporous Cu-O system towards CO oxidation. *RSC Adv.* **2014**, *4*, 65004–65011. [CrossRef]
- Kou, T.; Si, C.; Pinto, J.; Ma, C.; Zhang, Z. Dealloying assisted high-yield growth of surfactant-free (110) highly active Cu-doped CeO₂ nanowires for low-temperature CO oxidation. *Nanoscale* 2017, *9*, 8007–8014. [CrossRef]
- 10. Ashraf, M.A.; Ercolino, G.; Specchia, S.; Specchia, V. Final step for CO syngas clean-up: Comparison between CO-PROX and CO-SMET processes. *Int. J. Hydrogen Energy* **2014**, *39*, 18109–18119. [CrossRef]
- 11. Rossetti, I.; Compagnoni, M.; Torli, M. Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization. *Chem. Eng. J.* **2015**, *281*, 1036–1044. [CrossRef]
- Gubán, D.; Tompos, A.; Bakos, I.; Vass, Á.; Pászti, Z.; Szabó, E.G.; Sajó, I.E.; Borbáth, I. Preparation of CO-tolerant anode electrocatalysts for polymer electrolyte membrane fuel cells. *Int. J. Hydrogen Energy* 2017, 42, 13741–13753. [CrossRef]
- 13. Narayanan, H.; Basu, S. Regeneration of CO poisoned Pt black anode catalyst in PEMFC using break-in procedure and KMnO4 solution. *Int. J. Hydrogen Energy* **2017**, *42*, 23814–23820. [CrossRef]
- 14. Devrim, Y.; Albostan, A.; Devrim, H. Experimental investigation of CO tolerance in high temperature PEM fuel cells. *Int. J. Hydrogen Energy* **2018**, *43*, 18672–18681. [CrossRef]
- 15. Kugai, J.; Fox, E.B.; Song, C. Kinetic characteristics of oxygen-enhanced water gas shift on CeO2-supported Pt–Cu and Pd–Cu bimetallic catalysts. *Appl. Catal. A Gen.* **2015**, *497*, 31–41. [CrossRef]
- 16. Xu, G.; Zhang, Z.G. Preferential CO oxidation on Ru/Al2O3 catalyst: An investigation by considering the simultaneously involved methanation. *J. Power Sources* **2006**, *157*, 64–77. [CrossRef]
- 17. Reina, T.R.; Ivanova, S.; Laguna, O.H.; Centeno, M.A.; Odriozola, J.A. WGS and CO-PrOx reactions using gold promoted copper-ceria catalysts: "bulk CuO–CeO₂ vs. CuO–CeO₂/Al₂O₃ with low mixed oxide content". *Appl. Catal. B Environ.* **2016**, *197*, 67–72. [CrossRef]
- Wang, F.; Zhang, J.-C.; Li, W.-Z.; Chen, B.-H. Coke-resistant Au–Ni/MgAl₂O₄ catalyst for direct methanation of syngas. J. Energy Chem. 2019, 39, 198–207. [CrossRef]
- Reina, T.R.R.; Ivanova, S.; Centeno, M.A.A.; Odriozola, J.A.A. Catalytic screening of Au/CeO₂-MOx/Al₂O₃ (M = La, Ni, Cu, Fe, Cr, Y) in the CO-PrOx reaction. *Int. J. Hydrogen Energy* 2015, 40, 1782–1788. [CrossRef]
- 20. Cifuentes, B.; Bustamante, F.; Conesa, J.A.; Córdoba, L.F.; Cobo, M. Fuel-cell grade hydrogen production by coupling steam reforming of ethanol and carbon monoxide removal. *Int. J. Hydrogen Energy* **2018**, *43*, 17216–17229. [CrossRef]
- Yao, X.; Gao, F.; Dong, L. The application of incorporation model in γ–Al₂O₃-supported single and dual metal oxide catalysts: A review. *Cuihua Xuebao/Chin. J. Catal.* 2013, 34, 1975–1985. [CrossRef]
- 22. MacIel, C.G.; Profeti, L.P.R.; Assaf, E.M.; Assaf, J.M. Hydrogen purification for fuel cell using CuO/CeO₂-Al₂O₃ catalyst. J. Power Sources 2011, 196, 747–753. [CrossRef]
- 23. Águila, G.; Gracia, F.; Araya, P. CuO and CeO₂ catalysts supported on Al₂O₃, ZrO₂, and SiO₂ in the oxidation of CO at low temperature. *Appl. Catal. A Gen.* **2008**, *343*, 16–24. [CrossRef]
- Zhao, Z.; Lin, X.; Jin, R.; Dai, Y.; Wang, G. High catalytic activity in CO PROX reaction of low cobalt-oxide loading catalysts supported on nano-particulate CeO₂–ZrO₂ oxides. *Catal. Commun.* 2011, 12, 1448–1451. [CrossRef]
- 25. Moretti, E.; Rodríguez-Aguado, E.; Molina, A.I.; Rodríguez-Castellón, E.; Talon, A.; Storaro, L. Sustainable photo-assisted CO oxidation in H₂-rich stream by simulated solar light response of Au nanoparticles supported on TiO₂. *Catal. Today* **2018**, *304*, 135–142. [CrossRef]
- 26. Li, S.; Tang, H.; Gong, D.; Ma, Z.; Liu, Y. Loading Ni/La₂O₃ on SiO₂ for CO methanation from syngas. *Catal. Today* **2017**, 297, 298–307. [CrossRef]
- 27. Liu, S.; Wu, X.; Weng, D.; Ran, R. Ceria-based catalysts for soot oxidation: A review. *J. Rare Earths* **2015**, *33*, 567–590. [CrossRef]
- 28. Martínez, L.M.; Laguna, O.H.; López-Cartes, C.; Centeno, M.A. Synthesis and characterization of Rh/MnO₂-CeO₂/Al₂O₃ catalysts for CO-PrOx reaction. *Mol. Catal.* **2017**, 440, 9–18. [CrossRef]

- 29. Gamboa-Rosales, N.K.; Ayastuy, J.L.; González-Marcos, M.P.; Gutiérrez-Ortiz, M.A. Effect of Au promoter in CuO/CeO₂ catalysts for the oxygen-assisted WGS reaction. *Catal. Today* **2011**, *176*, 63–71. [CrossRef]
- Destro, P.; Marras, S.; Manna, L.; Colombo, M.; Zanchet, D. AuCu alloy nanoparticles supported on SiO₂: Impact of redox pretreatments in the catalyst performance in CO oxidation. *Catal. Today* 2017, 282, 105–110. [CrossRef]
- Destro, P.; Kokumai, T.M.; Scarpellini, A.; Pasquale, L.; Manna, L.; Colombo, M.; Zanchet, D. The Crucial Role of the Support in the Transformations of Bimetallic Nanoparticles and Catalytic Performance. *ACS Catal.* 2017, *8*, 1031–1037. [CrossRef]
- 32. Ayastuy, J.L.; Gurbani, A.; Gutiérrez-Ortiz, M.A. Effect of calcination temperature on catalytic properties of Au/Fe₂O₃ catalysts in CO-PROX. *Int. J. Hydrogen Energy* **2016**, *41*, 19546–19555. [CrossRef]
- 33. Lakshmanan, P.; Park, E. Preferential CO Oxidation in H₂ over Au/La₂O₃/Al₂O₃ Catalysts: The Effect of the Catalyst Reduction Method. *Catalysts* **2018**, *8*, 183–193. [CrossRef]
- 34. Córdoba, L.F.; Martínez-Hernández, A. Preferential oxidation of CO in excess of hydrogen over Au/CeO₂–ZrO₂ catalysts. *Int. J. Hydrogen Energy* **2015**, *40*, 16192–16201. [CrossRef]
- 35. Arévalo, J.D.; Martinez-Hernández, Á.; Vargas, J.C.; Córdoba, L.F. Hydrogen Production and Purification by Bioethanol Steam Reforming and Preferential Oxidation of CO. *Tecciencia* **2018**, *13*, 55–64.
- 36. Chen, Z.; Pursell, C.J.; Chandler, B.D.; Saavedra, J.; Whittaker, T.; Rioux, R.M. Controlling activity and selectivity using water in the Au–catalysed preferential oxidation of CO in H₂. *Nat. Chem.* **2016**, *8*, 584–589.
- Dasireddy, V.D.B.C.; Valand, J.; Likozar, B. PROX reaction of CO in H₂/H₂O/CO₂ Water–Gas Shift (WGS) feedstocks over Cu–Mn/Al₂O₃ and Cu–Ni/Al₂O₃ catalysts for fuel cell applications. *Renew. Energy* 2018, 116, 75–87. [CrossRef]
- Zhan, W.; Wang, J.; Wang, H.; Zhang, J.; Liu, X.; Zhang, P.; Chi, M.; Guo, Y.; Guo, Y.; Lu, G.; et al. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. *J. Am. Chem. Soc.* 2017, 139, 8846–8854. [CrossRef]
- Reina, T.R.; Megías-Sayago, C.; Florez, A.P.; Ivanova, S.; Centeno, M.Á.; Odriozola, J.A. H₂ oxidation as criterion for PrOx catalyst selection: Examples based on Au–CoOx-supported systems. *J. Catal.* 2015, 326, 161–171. [CrossRef]
- Yung, M.M.; Zhao, Z.; Woods, M.P.; Ozkan, U.S. Preferential oxidation of carbon monoxide on CoOx/ZrO₂. J. Mol. Catal. A Chem. 2008, 279, 1–9. [CrossRef]
- 41. Fonseca, J.D.; Ferreira, H.S.; Bion, N.; Pirault-Roy, L.; do Carmo Rangel, M.; Duprez, D.; Epron, F. Cooperative effect between copper and gold on ceria for CO-PROX reaction. *Catal. Today* **2012**, *180*, 34–41. [CrossRef]
- 42. Proaño, L.; Tello, E.; Arellano-Trevino, M.A.; Wang, S.; Farrauto, R.J.; Cobo, M. In-Situ DRIFTS study of two-step CO₂ capture and catalytic methanation over Ru,"Na₂O"/Al₂O₃ Dual Functional Material. *Appl. Surf. Sci.* **2019**, *479*, 25–30. [CrossRef]
- 43. Jhalani, A.; Schmidt, L.D. Preferential CO oxidation in the presence of H₂, H₂O and CO₂ at short contact-times. *Catal. Lett.* **2005**, *104*, 103–110. [CrossRef]
- 44. Tanaka, K.I.; He, H.; Shou, M.; Shi, X. Mechanism of highly selective low temperature PROX reaction of CO in H₂: Oxidation of CO via HCOO with OH. *Catal. Today* **2011**, *175*, 467–470. [CrossRef]
- Wang, F.; Zhang, L.; Zhu, J.; Han, B.; Zhao, L.; Yu, H.; Deng, Z.; Shi, W. Study on different CeO2 structure stability during ethanol steam reforming reaction over Ir/CeO₂ nanocatalysts. *Appl. Catal. A Gen.* 2018, 564, 226–233. [CrossRef]
- Divins, N.J.; Casanovas, A.; Xu, W.; Senanayake, S.D.; Wiater, D.; Trovarelli, A.; Llorca, J. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction. *Catal. Today* 2015, 253, 99–105. [CrossRef]
- 47. Li, X.; Fang, S.S.; Teo, J.; Foo, Y.L.; Borgna, A.; Lin, M.; Zhong, Z. Activation and deactivation of Au–Cu/SBA-15 catalyst for preferential oxidation of CO in H₂-Rich Gas. *ACS Catal.* **2012**, *2*, 360–369. [CrossRef]
- Laguna, O.H.; Hernández, W.Y.; Arzamendi, G.; Gandía, L.M.; Centeno, M.A.; Odriozola, J.A. Gold supported on CuOx/CeO₂ catalyst for the purification of hydrogen by the CO preferential oxidation reaction (PROX). *Fuel* 2014, 118, 176–185. [CrossRef]
- Redina, E.A.; Greish, A.A.; Mishin, I.V.; Kapustin, G.I.; Tkachenko, O.P.; Kirichenko, O.A.; Kustov, L.M. Selective oxidation of ethanol to acetaldehyde over Au–Cu catalysts prepared by a redox method. *Catal. Today* 2015, 241, 246–254. [CrossRef]

- 50. Wang, J.; Zhong, L.; Lu, J.; Chen, R.; Lei, Y.; Chen, K.; Han, C.; He, S.; Wan, G.; Luo, Y. A solvent-free method to rapidly synthesize CuO–CeO₂ catalysts to enhance their CO preferential oxidation: Effects of Cu loading and calcination temperature. *Mol. Catal.* **2017**, *443*, 241–252. [CrossRef]
- 51. Wang, X.; Rodriguez, J.A.; Hanson, J.C.; Gamarra, D.; Martínez-Arias, A.; Fernández-García, M. In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cu–CeO₂ Catalysts: Complex Interaction between Metallic Copper and Oxygen Vacancies of Ceria. *J. Phys. Chem. B* 2006, *110*, 428–434. [CrossRef]
- Wang, F.; Büchel, R.; Savitsky, A.; Zalibera, M.; Widmann, D.; Pratsinis, S.E.; Lubitz, W.; Schüth, F. In Situ EPR Study of the Redox Properties of CuO–CeO₂ Catalysts for Preferential CO Oxidation (PROX). *ACS Catal.* 2016, *6*, 3520–3530. [CrossRef]
- 53. Mallát, T.; Szabó, S.; Petró, J.; Mendioroz, S.; Folgado, M.A. Real and apparent dispersion of carbon supported palladium-cobalt catalysts. *Appl. Catal.* **1989**, *53*, 29–40. [CrossRef]
- 54. Barbato, P.S.; Colussi, S.; Di Benedetto, A.; Landi, G.; Lisi, L.; Llorca, J.; Trovarelli, A. Origin of High Activity and Selectivity of CuO/CeO₂ Catalysts Prepared by Solution Combustion Synthesis in CO-PROX Reaction. *J. Phys. Chem. C* **2016**, *120*, 13039–13048. [CrossRef]
- Schüth, F.; Ward, M.D.; Buriak, J.M. Common Pitfalls of Catalysis Manuscripts Submitted to Chemistry of Materials. *Chem. Mater.* 2018, 30, 3599–3600. [CrossRef]
- 56. Cifuentes, B.; Valero, M.; Conesa, J.; Cobo, M. Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO₂, ZrO₂, and La₂O₃ as Supports. *Catalysts* **2015**, *5*, 1872–1896. [CrossRef]
- 57. Nagaraja, B.M.; Padmasri, A.H.; Raju, B.D.; Rao, K.S.R. Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu-MgO coprecipitated catalysts. *J. Mol. Catal. A Chem.* **2007**, 265, 90–97. [CrossRef]
- Li, J.; Zhan, Y.; Lin, X.; Zheng, Q. Influence of Calcination Temperature on Properties of Au/Fe₂O₃ Catalysts for Low Temperature Water Gas Shift Reaction. *Acta Phys.-Chim. Sin.* 2008, 24, 932–938. [CrossRef]
- 59. Liu, F.; Xiao, Y.; Sun, X.; Qin, G.; Song, X.; Liu, Y. Synergistic catalysis over hollow CeO₂–CaO–ZrO₂ nanostructure for polycarbonate methanolysis with methanol. *Chem. Eng. J.* **2019**, *369*, 205–214. [CrossRef]
- 60. Chen, W.; Ran, R.; Weng, D.; Wu, X.; Zhong, J.; Han, S. Influence of morphology on basicity of CeO₂ and its use in 2-chloroethyl ethyl sulfide degradation. *J. Rare Earths* **2017**, *35*, 970–976. [CrossRef]
- 61. Malik, A.S.; Zaman, S.F.; Al-Zahrani, A.A.; Daous, M.A.; Driss, H.; Petrov, L.A. Selective hydrogenation of CO₂ to CH₃OH and in-depth DRIFT analysis for PdZn/ZrO₂ and CaPdZn/ZrO₂ catalysts. *Catal. Today* **2019**, in press. [CrossRef]
- Zhou, W.; Ma, Z.; Guo, S.; Wang, M.; Wang, J.; Xia, M.; Jia, L.; Hou, B.; Li, D.; Zhao, Y. Comparative study of CO adsorption on zirconia polymorphs with DRIFT and transmission FT-IR spectroscopy. *Appl. Surf. Sci.* 2018, 427, 867–873. [CrossRef]
- 63. Agarwal, S.; Mojet, B.L.; Lefferts, L.; Datye, A.K. Ceria Nanoshapes-Structural and Catalytic Properties. In *Catalysis by Materials with Well-Defined Structures*; Elsevier: Amsterdam, The Netherlands, 2015; pp. 31–70.
- 64. Leba, A.; Davran-Candan, T.; Önsan, Z.I.; Yildirim, R. DRIFTS study of selective CO oxidation over Au/γAl₂O₃ catalyst. *Catal. Commun.* **2012**, *29*, 6–10. [CrossRef]
- 65. Fernández-García, S.; Collins, S.E.; Tinoco, M.; Hungría, A.B.; Calvino, J.J.; Cauqui, M.A.; Chen, X. Influence of {111} nanofaceting on the dynamics of CO adsorption and oxidation over Au supported on CeO₂ nanocubes: An operando DRIFT insight. *Catal. Today* **2019**, *336*, 90–98. [CrossRef]
- 66. Gamarra, D.; Martínez-Arias, A. Preferential oxidation of CO in rich H₂ over CuO/CeO₂: Operando-DRIFTS analysis of deactivating effect of CO₂ and H2O. *J. Catal.* **2009**, *263*, 189–195. [CrossRef]
- Moretti, E.; Lenarda, M.; Storaro, L.; Talon, A.; Frattini, R.; Polizzi, S.; Rodríguez-Castellón, E.; Jiménez-López, A. Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina. *Appl. Catal. B Environ.* 2007, 72, 149–156. [CrossRef]
- Polster, C.S.; Nair, H.; Baertsch, C.D. Study of active sites and mechanism responsible for highly selective CO oxidation in H₂ rich atmospheres on a mixed Cu and Ce oxide catalyst. *J. Catal.* 2009, 266, 308–319.
 [CrossRef]
- Suzuki, Y.; Hayakawa, K.; Fukuhara, C.; Watanabe, R.; Kawasaki, W. A novel nickel-based structured catalyst for CO₂ methanation: A honeycomb-type Ni/CeO₂ catalyst to transform greenhouse gas into useful resources. *Appl. Catal. A Gen.* 2016, 532, 12–18.
- 70. Le, T.A.; Kim, M.S.; Lee, S.H.; Kim, T.W.; Park, E.D. CO and CO₂ methanation over supported Ni catalysts. *Catal. Today* **2017**, *293–294*, 89–96. [CrossRef]

- 71. Sahoo, D.R.; Vajpai, S.; Patel, S.; Pant, K.K. Kinetic modeling of steam reforming of ethanol for the production of hydrogen over Co/Al₂O₃ catalyst. *Chem. Eng. J.* **2007**, *125*, 139–147. [CrossRef]
- 72. Cifuentes, B.; Bustamante, F.; Cobo, M. Data for: Single and dual metal oxides as promising supports for carbon monoxide removal from an actual syngas. *Mendeley Datasets* **2019**, 1–10. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).