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Abstract: New iridium(III)-bipyridonate complexes having cyclopentadienyl ligands with a
series of alkyl substituents were synthesized for the purpose of tuning the catalytic activity for
acceptorless dehydrogenation reactions. A comparison of the catalytic activity was performed
for the reaction of alcoholic substrates such as 1-phenylethanol, 2-octanol, and benzyl alcohol.
The 1-t-butyl-2,3,4,5-tetramethylcyclopentadienyl iridium complex exhibited the best performance,
which surpassed that of the 1,2,3,4,5-pentamethylcyclopentadienyl (Cp*) iridium catalyst in
the dehydrogenation reaction of alcohols. The catalytic activity in the dehydrogenation of
2-methyl-1,2,3,4-tetrahydroquinoline was also examined. The highest efficiency was obtained
in the reaction catalyzed by the same t-butyl-substituted cyclopentadienyl iridium complex.

Keywords: iridium complex; cyclopentadienyl ligand; functional ligand; catalytic dehydrogenation;
alcohol; N-heterocycle

1. Introduction

Dehydrogenation of small organic molecules without using external oxidants (i.e., acceptorless
dehydrogenation) is an attractive transformation reaction from the viewpoint of excellent atomic
efficiency [1–4]. Avoidance of the use of harmful oxidants without generating stoichiometric amounts
of waste (other than hydrogen gas) meets the requirements of green chemistry. Moreover, the resulting
hydrogen gas can be used as a promising energy carrier owing to its high weight energy density
and carbon neutrality. These characteristics make the significance of acceptorless dehydrogenation
much greater in the field of organic synthesis as well as energy science [4–9]. Owing to the catalytic
activity of ruthenium complexes in dehydrogenation reactions of alcohols [10,11], considerable
efforts have been made to improve catalytic systems with the development of complexes such
as pincer-type ruthenium or iridium complexes with non-innocent behavior of the pincer ligands
(Scheme 1a) [12–22]. Recently, a catalytic system has been applied to the dehydrogenation reaction
of N-heterocyclic compounds for use in hydrogen storage (Scheme 1b) [23–30]. The search for a
highly efficient catalytic dehydrogenation system remains a challenging task. Our research group has
consistently studied the catalytic activity of pentamethylcyclopentadienyl (Cp*) iridium complexes
for the hydrogen transfer process of alcoholic substrates [31–35]. By combining hydroxypyridine
or dihydroxybipyridine derivatives as non-innocent ligands, the Cp* iridium complex shows an
extremely high catalytic activity in acceptorless dehydrogenation reactions of alcoholic substrates and
N-heterocyclic compounds (Scheme 1c) [36–47]. Theoretical studies suggest that the spectator Cp*
ligand contributes to the stabilization of catalytically active species and to the milder electron-population
change on the iridium center during the reaction, which decreases the overall reaction barrier [48].
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In general, a cyclopentadienyl (Cp) ligand donates six electrons to a metal center with tridentate
coordination mode, which results in stable complexes that are widely used as catalysts. The
incorporation of substituents on the Cp ring allows both electronic and steric perturbation on
the Cp metal complexes [49–51]. Well-modified Cp ligands have been used to improve the
potential catalytic activity and reaction selectivity of transition metal complexes [52–61]. Thus,
a systematic study of the modified Cp-ligated iridium complex should provide significant insight for
the development of a more active catalytic system for acceptorless dehydrogenation reactions. Herein,
we synthesized a series of bipyridonate-coordinated iridium(III) complexes bearing Cp ligands with
various alkyl substituents to reveal the trend of catalytic activity in the dehydrogenation of alcohols and
2-methyl-1,2,3,4-tetrahydroquinoline (Scheme 1c). The 1-tert-butyl-2,3,4,5-tetramethylcyclopentadienyl
iridium complex exhibited higher activity.
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2. Results

On the basis of our previous studies, in which Cp* iridium complexes exhibited excellent catalytic
activity [36–47], we attempted to modify one methyl group in the Cp* ligand to hydrogen, ethyl,
isopropyl, and t-butyl groups in order to improve the catalytic properties (Scheme 2). A series of
cyclopentadienyl-ligated iridium dichloride dimers 1a–1e were synthesized by the reaction of iridium
trichloride with parent cyclopentadiene derivatives [62–64]. The structure of novel complex 1e was
successfully identified by X-ray crystallographic analysis. The coordination reactions of 1a–1e with
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6,6′-dihydroxy-2,2′-bipyridine in methanol at 60 ◦C gave cationic complexes 2a–2e, which were
converted into neutral aquo complexes 3a–3e by treatment with NaOtBu in water. The structures
of cationic bipyridine complexes 2 and neutral bipyridonate complexes 3 were fully characterized
by 1H and 13C NMR and elemental analysis. X-ray crystallographic analysis could be performed
for 2a and 2e to provide unambiguous structural information (Figure 1, details are indicated in the
Supplementary Materials). The t-butyl group of 2e is located at the trans position to the chloro ligand
probably owing to its steric demand. Complexes 2a and 2e showed similar structural parameters
around the iridium center.

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 14 

 

structures of cationic bipyridine complexes 2 and neutral bipyridonate complexes 3 were fully 
characterized by 1H and 13C NMR and elemental analysis. X-ray crystallographic analysis could be 
performed for 2a and 2e to provide unambiguous structural information (Figure 1). The t-butyl group 
of 2e is located at the trans position to the chloro ligand probably owing to its steric demand. 
Complexes 2a and 2e showed similar structural parameters around the iridium center. 

 

Scheme 2. Synthesis of bipyridonate iridium complexes with a Cp ligand bearing a series of alkyl 
groups. 

  
Figure 1. ORTEP illustrations of complexes 2a (left) and 2e (right) at the 50% probability level: Solvent 
molecules and hydrogen atoms are omitted for clarity. 

After obtaining a series of iridium catalysts (3), their catalytic activities in the dehydrogenation 
of 1-phenylethanol (4), which is a model substrate that we previously studied in detail, were 
investigated (Table 1). To ensure full solubility of iridium complexes, reactions were performed in 
THF under reflux conditions. The yield of the dehydrogenated product acetophenone (5) after 1 h 
was determined by gas chromatography (GC) analysis to evaluate initial catalytic activity. In the 
presence of tetramethylcyclopentadienyl complex 3a, the dehydrogenation reaction proceeded to 
give acetophenone in 35% yield (Table 1, entry 1). Cp* complex 3b, ethyltetramethylcyclopentadienyl 

Scheme 2. Synthesis of bipyridonate iridium complexes with a Cp ligand bearing a series of alkyl groups.

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 14 

 

structures of cationic bipyridine complexes 2 and neutral bipyridonate complexes 3 were fully 
characterized by 1H and 13C NMR and elemental analysis. X-ray crystallographic analysis could be 
performed for 2a and 2e to provide unambiguous structural information (Figure 1). The t-butyl group 
of 2e is located at the trans position to the chloro ligand probably owing to its steric demand. 
Complexes 2a and 2e showed similar structural parameters around the iridium center. 

 

Scheme 2. Synthesis of bipyridonate iridium complexes with a Cp ligand bearing a series of alkyl 
groups. 

  
Figure 1. ORTEP illustrations of complexes 2a (left) and 2e (right) at the 50% probability level: Solvent 
molecules and hydrogen atoms are omitted for clarity. 

After obtaining a series of iridium catalysts (3), their catalytic activities in the dehydrogenation 
of 1-phenylethanol (4), which is a model substrate that we previously studied in detail, were 
investigated (Table 1). To ensure full solubility of iridium complexes, reactions were performed in 
THF under reflux conditions. The yield of the dehydrogenated product acetophenone (5) after 1 h 
was determined by gas chromatography (GC) analysis to evaluate initial catalytic activity. In the 
presence of tetramethylcyclopentadienyl complex 3a, the dehydrogenation reaction proceeded to 
give acetophenone in 35% yield (Table 1, entry 1). Cp* complex 3b, ethyltetramethylcyclopentadienyl 

Figure 1. ORTEP illustrations of complexes 2a (left) and 2e (right) at the 50% probability level: Solvent
molecules and hydrogen atoms are omitted for clarity.

After obtaining a series of iridium catalysts (3), their catalytic activities in the dehydrogenation
of 1-phenylethanol (4), which is a model substrate that we previously studied in detail, were
investigated (Table 1). To ensure full solubility of iridium complexes, reactions were performed
in THF under reflux conditions. The yield of the dehydrogenated product acetophenone (5) after
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1 h was determined by gas chromatography (GC) analysis to evaluate initial catalytic activity. In
the presence of tetramethylcyclopentadienyl complex 3a, the dehydrogenation reaction proceeded to
give acetophenone in 35% yield (Table 1, entry 1). Cp* complex 3b, ethyltetramethylcyclopentadienyl
complex 3c, and isopropyltetramethylcyclopentadienyl complex 3d exhibited higher catalytic activities
than 3a to produce 5 in similar yields (Table 1, entries 2–4). The t-butyltetramethylcyclopentadienyl
complex 3e exhibited the highest catalytic activity (Table 1, entry 5). Although the differences
in catalytic activity between 3b–3d were not large, the observed trend indicated that a stronger
electron-donating cyclopentadienyl ligand leads up to higher catalytic activity. This conclusion is
based on the observation that 3a was least active while 3e showed the highest catalytic activity. After
24 h, the complete conversion of the starting alcohol was achieved, which suggests that the obtained
results originated only from the catalytic activity and not from the deactivation of catalysts.

Table 1. Catalytic activity of iridium complexes (3) in the dehydrogenation of 4.
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The catalytic abilities of iridium complexes (3) were also examined in the dehydrogenation reaction
of 2-octanol (6) as an aliphatic alcohol in refluxing THF (Table 2). Catalyst 3a exhibited the lowest
catalytic activity to give 2-octanone (7) with an 18% yield after 2 h (Table 2, entry 1). Catalyst 3b
exhibited moderate performance and produced a dehydrogenated product with a 49% yield (Table 2,
entry 2). The highest catalytic ability was achieved by 3e, which produced 7 with a 57% yield (Table 2,
entry 3). The trend of catalytic ability is consistent with that of the dehydrogenation reaction of
1-phenylethanol (4), which is shown in Table 1.

Table 2. Catalytic activity of iridium complexes (3) in the dehydrogenation of 6.
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However, compared with the dehydrogenation of secondary alcohols, no significant difference in
catalytic activity was observed for the primary alcohol (Table 3). The reactions were performed under
more diluted conditions than those for secondary alcohols to suppress undesired side reactions, such as
self-condensation, leading to ester product. Dehydrogenation reaction of benzyl alcohol (8) in refluxing
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toluene was carried out in the presence of 0.5 mol% of iridium catalyst to produce benzaldehyde (9).
Catalyst 3a exhibited a slightly lower performance compared with catalyst 3b and 3e (Table 3, entries
1–3). Catalysts 3b and 3e showed similar catalytic activities.

Table 3. Catalytic activity of iridium complexes 3a, 3b, and 3e in the dehydrogenation of 8.
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We have previously reported that the dehydrogenation of a cyclic amine, which leads to aromatized
N-heterocycles, is also catalyzed by the same iridium complex used for the dehydrogenation of alcoholic
substrates [45–47]. Hence, we also examined the catalytic activity of a series of iridium complexes (3)
in the dehydrogenation of 2-methyl-1,2,3,4-tetrahydroquinoline (10) as a model substrate (Table 4).
Considering the relatively slower reaction rate for the dehydrogenation of cyclic amines than that of
alcohols, the reactions were performed under toluene reflux conditions for 20 h. Catalyst 3a exhibited
moderate catalytic activity to produce the dehydrogenated product 2-methylquinoline (11) with a 55%
yield (Table 4, entry 1). Catalyst 3b exhibited high performance with a 91% yield (Table 4, entry 2).
The reactions in the presence of catalysts 3c and 3d were somehow significantly less effective than
the reaction catalyzed by 3b (Table 4, entries 3 and 4). Similar to the dehydrogenation of alcoholic
substrates, the highest catalytic ability was achieved by catalyst 3e (Table 4, entry 5).

Table 4. Catalytic activity of iridium complexes (3) in the dehydrogenation of 10.
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3. Materials and Methods

3.1. General

1H and 13C NMR spectra were recorded on JEOL ECX-500 (500 MHz) and ECS-400 (400 MHz)
spectrometers (JEOL, Tokyo, Japan). 1H and 13C NMR spectra of each isolated products are shown
in Supplementary Materials. Gas chromatography (GC) analyses were performed on a GC-4000Plus
(GL-Science, Tokyo, Japan) with a capillary column (InertCap for Amines and InertCap Pure WAX).
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Elemental analyses were carried out at the Microanalysis Center of Kyoto University. Melting points
were measured by a Yanaco MP-500D (Yanaco Group, Kyoto, Japan) in air. Dehydrated solvent was used
in the reaction. HCp*Ethyl(5-ethyl-1,2,3,4-tetramethylcyclopentadiene) [65], HCp*iPr(5-isopropyl-1,2,3,4-
tetramethylcyclopentadiene) [64,65], HCp*tBu(5-tert-butyl-1,2,3,4-tetramethylcyclopentadiene) [66],
(Cp*Ir(6,6′-dihydroxy-2,2′-bipyridine)Cl)Cl (2b) [67], Cp*Ir(2.2′-bipyridine-6,6′-dionato)H2O (3b) [40],
and 6,6′-dihydroxy-2,2′-bipyridine [68] were prepared according to the literature method. All other
reagents are commercially available and were used as received (FUJIFILM Wako Pure Chemical Corp.,
Osaka, Japan); (Nacalai Tesque, Kyoto, Japan); (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan).

3.2. Procedures for the Synthesis of (CpRIrCl2)2

3.2.1. (η5-C5Me4H)IrCl2)2 (CAS: 835614-43-2) (1a)

Under an atmosphere of argon, IrCl3·5H2O (998.2 mg, 2.57 mmol) was placed in a 50-mL
two-neck flask equipped with a Dimroth condenser and three-way cock. Methanol (19.7 mL) and
1,2,3,4-tetramethylcyclopentadiene (1271.3 mg, 10.37 mmol) [69] were added, and the mixture was
stirred for 48 h at 90 ◦C. After cooling to r.t., orange precipitate was filtered with a glass filter, washed
with Et2O (15 mL), and then dried under vacuum to give the title compound as an orange solid
(355.5 mg, 0.463 mmol, 36%). 1H NMR (400 MHz, CDCl3, r.t.) δ 5.24 (s, 2H, CpH), 1.66 (s, 12H, CpCH3),
1.61 (s, 12H, CpCH3). 13C NMR (100.5 MHz, CDCl3, r.t.) δ 92.1 (s, CpC), 86.4(s, CpC), 68.0 (s, CpC),
11.1 (s, CpCH3), 9.4 (s, CpCH3).

3.2.2. (Cp*EthylIrCl2)2 (CAS: 2050480-26-5) (1c)

Under an atmosphere of argon, IrCl3·5H2O (645.6 mg, 1.66 mmol) was placed in a 50-mL
two-neck flask equipped with a Dimroth condenser and three-way cock. Methanol (13.0 mL) and
5-ethyl-1,2,3,4-tetramethylcyclopentadiene [65] (996.3 mg, 6.63 mmol) were added, and the mixture
was stirred for 72 h at 90 ◦C. After cooling to r.t., the solvent was slightly removed by vacuum and
orange precipitate was filtered with a glass filter, washed with Et2O (15 mL), and then dried under
vacuum to give the title compound as an orange solid (458.2 mg, 0.519 mmol, 77%). 1H NMR (400 MHz,
CDCl3, r.t.) δ 2.13 (q, 4H, J = 7.6 Hz, CH2), 1.58 (s, 12H, CpCH3), 1.56 (s, 12H, CpCH3), 1.05 (t, 6H,
J = 7.6 Hz, CH3). 13C NMR (100.5 MHz, CDCl3, r.t.) δ 89.2 (s, CpC), 86.6 (s, CpC), 86.2 (s, CpC), 17.7 (s,
CH2), 11.8 (s, CH3), 9.4 (s, CpCH3), 9.2 (s, CpCH3).

3.2.3. (Cp*iPrIrCl2)2 (CAS: 1621315-48-7) (1d)

Under an atmosphere of argon, IrCl3·5H2O (840.2 mg, 2.16 mmol) was placed in a 50-mL
two-neck flask equipped with a Dimroth condenser and three-way cock. Methanol (16.6 mL) and
5-isopropyl-1,2,3,4-tetramethylcyclopentadiene [64,65] (1440.7 mg, 8.77 mmol) were added, and the
mixture was stirred for 48 h at 90 ◦C. After cooling to r.t., orange precipitate was filtered with a glass
filter, washed with Et2O (20 mL), and then dried under vacuum to give the title compound as an
orange solid (783.8 mg, 0.919 mmol, 85%). 1H NMR (400 MHz, CDCl3, r.t.) δ 2.46 (sept, 2H, J = 7.2 Hz,
CH), 1.66 (s, 12H, CpCH3), 1.58 (s, 12H, CpCH3), 1.26 (d, 12H, J = 7.2 Hz, CH3). 13C NMR (100.5 MHz,
CDCl3, r.t.) δ 90.4 (s, CpC), 86.3 (s, CpC), 86.1 (s, CpC), 25.3 (s, CH), 20.7 (s, CH(CH3)2), 10.4 (s, CpCH3),
9.6 (s, CpCH3).

3.2.4. (Cp*tBuIrCl2)2 (1e)

Under an atmosphere of argon, IrCl3·5H2O (546.5 mg, 1.41 mmol) was placed in a 50-mL
two-neck flask equipped with a Dimroth condenser and three-way cock. Methanol (11.1 mL) and
5-tert-butyl-1,2,3,4-tetramethylcyclopentadiene [66] (1010.0 mg, 5.66 mmol) were added, and the
mixture was stirred for 144 h at 90 ◦C. After cooling to r.t., orange precipitate was filtered with a glass
filter, washed with Et2O (10 mL), and then dried under vacuum to give an orange solid (276.8 mg,
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0.314 mmol, 45%). M.P. (decomp.) > 277.6 ◦C. 1H NMR (400 MHz, CDCl3, r.t.) δ 1.79 (s, 12H, CpCH3),
1.61 (s, 12H, CpCH3), 1.37 (s, 18H, C(CH3)3). 13C NMR (100.5 MHz, CDCl3, r.t.) δ 92.1 (s, CpC), 87.4 (s,
CpC), 84.8 (s, CpC), 33.8 (s, CMe3), 30.9 (s, C(CH3)3), 13.3 (s, CpCH3), 10.1 (s, CpCH3). Anal. Calcd for
C26H42Cl4Ir2: C, 35.45; H, 4.81. Found: C, 35.05; H, 4.69.

3.3. Procedures for the Synthesis of (CpRIr(6,6′-dihydroxy-2,2′-bipyridine)Cl)Cl

3.3.1. ((η5-C5Me4H)Ir(6,6′-dihydroxy-2,2′-bipyridine)Cl)Cl (2a)

Under an atmosphere of argon, ((η5-C5Me4H)IrCl2)2 (1a) (49.8 mg, 0.065 mmol), 6,6′-dihydroxy-
2,2′-bipyridine (24.4 mg, 0.130 mmol), and methanol (1.1 mL) were placed in a 10-mL two-neck test
tube flask equipped with a Dimroth condenser and three-way cock. The mixture was stirred for 3 h
at 60 ◦C. After cooling to r.t., the solvent was removed under reduced pressure and the residue was
dried under vacuum to give the title compound as a yellow solid (59.3 mg, 0.1036 mmol, 80%). M.P.
(decomp.) > 344.9 ◦C. 1H NMR (500 MHz, CD3OD, r.t.) δ 7.99 (t, 2H, J = 7.5 Hz, aromatic), 7.93 (d,
2H, J = 7.5 Hz, aromatic), 7.12 (d, 2H, J = 8.0 Hz, aromatic), 5.87 (s, CpH), 1.73 (s, Cp(CH)3), 1.68
(s, Cp(CH)3). 13C NMR (100.5 MHz, CD3OD, r.t.) δ 165.4 (s, aromatic), 156.1 (s, aromatic), 143.3 (s,
aromatic), 116.4 (s, aromatic), 113.9 (s, aromatic), 92.3 (s, CpC), 91.9 (s, CpC), 77.3 (s, CpC), 10.7 (s,
CH3), 10.0 (s, CH3). Anal. Calcd for C19H21Cl2IrN2O2: C, 39.86; H, 3.70; N, 4.89. Found: C, 39.69; H,
3.68; N, 4.77.

3.3.2. (Cp*EthylIr(6,6′-dihydroxy-2,2′-bipyridine)Cl)Cl (2c)

Under an atmosphere of argon, (Cp*EthylIrCl2)2 (1c) (106.1 mg, 0.13 mmol), 6,6′-dihydroxy-2,2′-
bipyridine (48.7 mg, 0.26 mmol), and methanol (2.0 mL) were placed in a 10-mL two-neck test tube
flask equipped with a Dimroth condenser and three-way cock. The mixture was stirred for 3 h at
60 ◦C. After cooling to r.t., the solvent was removed under reduced pressure and the residue was
dried under vacuum to give the title compound as a yellow solid (121 mg, 0.201 mmol, 78%). M.P.
(decomp.) > 344.7 ◦C. 1H NMR (400 MHz, CD3OD, r.t.) δ 7.97 (t, 2H, J = 8.0 Hz, aromatic), 7.89 (d,
2H, J = 7.8 Hz, aromatic), 7.07 (d, 2H, J = 8.2 Hz, aromatic), 2.12 (q, 2H, J = 7.6 Hz, CH2), 1.67 (s, 6H,
Cp(CH)3), 1.66 (s, 6H, Cp(CH)3), 1.05 (t, 3H, J = 8.0 Hz, CH3). 13C NMR (100.5 MHz, CD3OD, r.t.) δ
164.1 (s, aromatic), 154.5 (s, aromatic), 142.0 (s, aromatic), 114.8 (s, aromatic), 112.7 (s, aromatic), 91.2 (s,
CpC), 89.6 (s, CpC), 88.9 (s, CpC), 17.3 (s, CH2), 11.0 (s, CH3), 8.4 (s, CpCH3), 8.3 (s, CpCH3). Anal.
Calcd for C21H25Cl2IrN2O2: C, 42.00; H, 4.20; N, 4.66. Found: C, 41.90; H, 4.38; N, 4.53.

3.3.3. (Cp*iPrIr(6,6′-dihydroxy-2,2′-bipyridine)Cl)Cl (2d)

Under an atmosphere of argon, (Cp*iPrIrCl2)2 (1d) (101.6 mg, 0.12 mmol), 6,6′-dihydroxy-2,2′-
bipyridine (44.8 mg, 0.24 mmol), and methanol (2.0 mL) were placed in a 10-mL two-neck test tube
flask equipped with a Dimroth condenser and three-way cock. The mixture was stirred for 3 h at
60 ◦C. After cooling to r.t., the solvent was removed under reduced pressure and the residue was
dried under vacuum to give the title compound as a yellow solid (121.3 mg, 0.197 mmol, 83%). M.P.
(decomp.) > 342.3 ◦C. 1H NMR (400 MHz, CD3OD, r.t.) δ 7.97 (t, 2H, J = 7.6 Hz, aromatic), 7.90 (d,
2H, J = 7.8 Hz, aromatic), 7.08 (d, 2H, J = 8.2 Hz, aromatic), 2.38 (sept, 1H, J = 7.6 Hz, CH), 1.79 (s,
6H, CpCH3), 1.73 (s, 6H, CpCH3), 0.99 (d, 6H, J = 7.2 Hz, CH3). 13C NMR (100.5 MHz, CD3OD, r.t.) δ
165.5 (s, aromatic), 156.1 (s, aromatic), 143.4 (s, aromatic), 116.1 (s, aromatic), 114.1 (s, aromatic), 98.2 (s,
CpC), 88.3 (s, CpC), 86.9 (s, CpC), 26.8 (s, CH), 20.5 (s, CH3), 11.6 (s, CpCH3), 9.4 (s, CpCH3). Anal.
Calcd for C22H27Cl2IrN2O2: C, 43.00; H, 4.43; N, 4.56. Found: C, 42.60; H, 4.74; N, 4.42.

3.3.4. (Cp*tBuIr(6,6′-dihydroxy-2,2′-bipyridine)Cl)Cl (2e)

Under an atmosphere of argon, (Cp*tBuIrCl2)2 (1e) (36.3 mg, 0.04 mmol), 6,6′-dihydroxy-2,2′-
bipyridine (15.7 mg, 0.08 mmol), and methanol (0.7 mL) were placed in a 10-mL two-neck test tube
flask equipped with a Dimroth condenser and three-way cock. The mixture was stirred for 3 h at 60 ◦C.
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After cooling to r.t., the solvent was removed under reduced pressure and the residue was dried under
vacuum to give the title compound as a yellow solid (44.2 mg, 0.0703 mmol, 86%). M.P. (decomp.) >

344.6 ◦C. 1H NMR (400 MHz, CD3OD, r.t.) δ 7.99 (t, 2H, J = 7.6 Hz, aromatic), 7.94 (d, 2H, J = 8.0 Hz,
aromatic), 7.08 (d, 2H, J = 8.0 Hz, aromatic), 1.88 (s, 6H, CpCH3), 1.82 (s, 6H, CpCH3), 0.93 (s, 9H, CH3).
13C NMR (100.5 MHz, CD3OD, r.t.) δ 165.4 (s, aromatic), 156.2 (s, aromatic), 143.5 (s, aromatic), 116.1 (s,
aromatic), 114.2 (s, aromatic), 101.8 (s, CpC), 88.9 (s, CpC), 84.4 (s, CpC), 34.3 (s, CMe3), 30.3 (s, CH3),
15.0 (s, CpCH3), 9.6 (s, CpCH3).

3.4. Procedures for the Synthesis of CpRIr(2.2′-bipyridine-6,6′-dionato)H2O

3.4.1. (η5-C5Me4H)Ir(2,2′-bipyridine-6,6′-dionato)H2O (3a)

Under an atmosphere of argon, ((η5-C5Me4H)IrCl2)2 (1a) (203.8 mg, 0.27 mmol), 6,6′-dihydroxy-
2,2′-bipyridine (99.8 mg, 0.53 mmol), and methanol (6.4 mL) were placed in a 30-mL two-neck round
flask equipped with a Dimroth condenser and three-way cock. The mixture was stirred for 3 h at 60 ◦C.
After cooling to r.t., the solvent was removed under reduced pressure and the residue was dried under
vacuum overnight to give a yellow solid. Sodium tert-butoxide (102.6 mg, 1.07 mmol) and degassed
H2O (9.3 mL) were added to the same flask and stirred for 3 h at r.t. After the reaction, the precipitate
was filtered by cannulation through glass filter under argon atmosphere and dried under vacuum.
CH2Cl2 (35 mL) was added to dissolve the solid. Solution was collected in flask, and the solvent was
evaporated. CH2Cl2 (1 mL) was added, followed by the addition of hexane (15 mL) for reprecipitation.
The resulting solid was filtered with glass filter and washed with H2O (10 mL), affording the title
compound as a green yellow solid (158.3 mg, 0.306 mmol, 57%) after drying under vacuum. M.P.
(decomp.) > 288.9 ◦C. 1H NMR (400 MHz, CD3OD, r.t.) δ 7.45 (br t, 2H, J = 8.0 Hz, aromatic), 6.71
(br d, 2H, J = 7.2 Hz, aromatic), 6.51 (br d, 2H, J = 6.8 Hz aromatic), 5.85 (br s, 1H, CpH), 1.72 (br s,
6H, CpCH3), 1.52 (br s, 6H, CpCH3). 1H NMR (500 MHz, CD3OD, 60 ◦C) δ 7.23 (t, 2H, , J = 12 Hz,
aromatic), 6.92 (d, 2H, J = 9.0 Hz, aromatic), 6.64 (br, 2H, aromatic), 5.60 (br, 1H, CpH), 1.59 (s, 6H,
CpCH3), 1.43 (s, 6H, CpCH3). 13C NMR (100.5 MHz, CD3OD, 60 ◦C) δ 171.4 (s, aromatic), 157.7 (s,
aromatic), 139.7 (s, aromatic), 118.5 (s, aromatic), 107.5 (s, aromatic), 92.0 (s, CpC), 88.7 (s, CpC), 74.4
(s, CpC), 10.7 (s, CpCH3), 9.9 (s, CpCH3). Anal. Calcd for C19H21IrN2O3: C, 44.09; H, 4.09; N, 5.41.
Found: C, 43.84; H, 3.96; N, 5.39.

3.4.2. Cp*EthylIr(2,2′-bipyridine-6,6′-dionato)H2O (3c)

Under an atmosphere of argon, (Cp*EthylIrCl2)2 (1c) (198.2 mg, 0.24 mmol), 6,6′-dihydroxy-2,2′-
bipyridine (90.4 mg, 0.48 mmol), and methanol (5.8 mL) were placed in a 30-mL two-neck round flask
equipped with a Dimroth condenser and three-way cock. The mixture was stirred for 3 h at 60 ◦C.
After cooling to r.t., the solvent was removed under reduced pressure and the residue was dried under
vacuum overnight to give a yellow solid. Sodium tert-butoxide (92.3 mg, 0.96 mmol) and degassed
H2O (8.4 mL) were added to the same flask and stirred for 3 h at r.t. After the reaction, the precipitate
was filtered by cannulation through glass filter under argon atmosphere and dried under vacuum.
CH2Cl2 (35 mL) was added to dissolve the solid. Solution was collected in flask, and the solvent was
evaporated. CH2Cl2 (1 mL) was added, followed by the addition of hexane (15 mL) for reprecipitation.
The resulting solid was filtered with glass filter and washed with H2O (8 mL). The title compound
was obtained as a green yellow solid (141.3 mg, 0.259 mmol, 57%) after drying under vacuum. M.P.
(decomp.) > 272.3 ◦C. 1H NMR (400 MHz, CD3OD, 60 ◦C) δ 7.42 (t, 2H, J = 6.5 Hz, aromatic), 6.90 (d,
2H, J = 6.5 Hz, aromatic), 6.52 (br s, 2H, aromatic), 1.95 (br s, 2H, CH2), 1.47 (s, 12H, CpCH3), 0.93
(br s, 3H, CH3). 13C NMR (100.5 MHz, CD3OD, 60 ◦C) δ 171.3 (s, aromatic), 157.2 (s, aromatic), 139.5
(s, aromatic), 118.3 (s, aromatic), 106.7 (s, aromatic), 90.0 (s, CpC), 88.2 (s, CpC, two peaks may be
overlapped), 18.7 (s, CH), 11.9 (s, CH3), 9.7 (s, CpCH3, two peaks may be overlapped). Anal. Calcd for
C21H25IrN2O3: C, 46.23; H, 4.62; N, 5.13. Found: C, 46.13; H, 4.56; N, 5.11.
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3.4.3. Cp*iPrIr(2,2′-bipyridine-6,6′-dionato)H2O (3d)

Under an atmosphere of argon, (Cp*iPrIrCl2)2 (1d) (159.3 mg, 0.19 mmol), 6,6′-dihydroxy-2,2′-
bipyridine (70.8 mg, 0.38 mmol), and methanol (4.4 mL) were placed in a 30-mL two-neck round flask
equipped with a Dimroth condenser and three-way cock. The mixture was stirred for 3 h at 60 ◦C.
After cooling to r.t., the solvent was removed under reduced pressure and the residue was dried with
vacuum overnight to give a yellow solid. Sodium tert-butoxide (71.8 mg, 0.75 mmol) and degassed
H2O (6.6 mL) were added to the same flask and stirred for 3 h at r.t. After the reaction, the precipitate
was filtered by cannulation through glass filter under argon atmosphere and dried under vacuum.
CHCl3 (35 mL) was added to dissolve the solid. The solution was collected in flask, and solvent was
evaporated. CHCl3 (1 mL) was added, followed by the addition of hexane (10 mL) for reprecipitation.
The resulting solid was filtered with glass filter and washed with H2O (8 mL). Title compound was
obtained as a green yellow solid (87 mg, 0.155 mmol, 42%) after drying under reduced pressure. M.P.
(decomp.) > 274.7 ◦C. 1H NMR (400 MHz, CD3OD, r.t.) δ 7.43 (t, 2H, J = 7.6 Hz, aromatic), 6.93 (d, 2H,
J = 6.0 Hz, aromatic), 6.42 (d, 2H, J = 7.2 Hz, aromatic), 2.16 (br sept, 1H, J = 3.6 Hz CH), 1.83 (br s, 6H,
CpCH3), 1.71 (br s, 6H, CpCH3), 0.94 (br d, 6H, J = 6.4 Hz, CH3). 1H NMR (400 MHz, CD3OD, 60 ◦C) δ
7.40 (t, 2H, J = 10.5 Hz, aromatic), 6.88 (d, 2H, J = 9.0 Hz, aromatic), 6.43 (br s, 2H, J = 11.0 Hz, aromatic),
2.22 (sept, 1H, J = 9.0 Hz, CH), 1.77 (s, 6H, CpCH3), 1.70 (s, 6H, CpCH3), 0.97 (d, 6H, J = 9.0 Hz, CH3).
13C NMR (100.5 MHz, CD3OD, 60 ◦C) δ 171.2 (s, aromatic), 157.6 (s, aromatic), 139.6 (s, aromatic), 118.2
(s, aromatic), 106.4 (s, aromatic), 94.5 (s, CpC), 89.0 (s, CpC), 81.5 (s, CpC), 26.8 (s, CH), 20.1 (s, CH3),
11.2 (s, CpCH3), 9.7 (s, CpCH3). Anal. Calcd for C22H27IrN2O3: C, 47.21; H, 4.86; N, 5.01. Found: C,
47.41; H, 4.98; N, 4.90.

3.4.4. Cp*tBuIr(2,2′-bipyridine-6,6′-dionato)H2O (3e)

Under an atmosphere of argon, (CptBuIrCl2)2 (1e) (146.5 mg, 0.17 mmol), 6,6′-dihydroxy-2,2′-
bipyridine (63.2 mg, 0.34 mmol), and methanol (4.0 mL) were placed in a 30-mL two-neck round flask
equipped with a Dimroth condenser and three-way cock. The mixture was stirred for 3 h at 60 ◦C. After
cooling to r.t., the solvent was removed under reduced pressure and dried under vacuum overnight to
give a yellow solid. Sodium tert-butoxide (65.5 mg, 0.68 mmol) and degassed H2O (6.6 mL) were added
to the same flask and stirred for 3 h at r.t. After the reaction, the precipitate was filtered by cannulation
through glass filter under argon atmosphere and dried under vacuum. CHCl3 (55 mL) was added to
dissolve the solid. The solution was collected in flask, and solvent was evaporated. CHCl3 (1 mL) was
added, followed by the addition of hexane (15 mL) for reprecipitation. The resulting solid was filtered
with glass filter and washed with H2O (10 mL). The title compound was obtained as a green yellow
solid (121.1 mg, 0.211 mmol, 63.6%) after drying under vacuum. M.P. (decomp.) > 280.2 ◦C. 1H NMR
(400 MHz, CD3OD, r.t.) δ 7.43 (t, 2H, J = 7.6 Hz, aromatic), 6.96 (d, 2H, J = 6.8 Hz, aromatic), 6.43 (br d,
2H, J = 4.8 Hz), 1.93 (s, CpCH3), 1.80 (s, CpCH3), 0,90 (s, CH3), 13C NMR (100.5 MHz, CD3OD, r.t.) δ
170.7 (s, aromatic), 157.8 (s, aromatic), 140.0 (s, aromatic), 118.1 (s, aromatic), 106.8 (s, aromatic), 100.2
(s, CpC), 90.6 (s, CpC), 74.5 (s, CpC), 33.7 (s, CH), 29.8 (s, CH3), 14.8 (s, CpCH3), 10.1 (s, CpCH3), Anal.
Calcd for C23H29IrN2O3: C, 48.15; H, 5.10; N, 4.88. Found: C, 48.36; H, 5.15; N, 4.90.

3.5. Investigation of Catalytic Activity in Dehydrogenation of 1-Phenylethanol (4)

Under an atmosphere of argon, Ir catalyst (1.0 mol%), THF (6.0 mL), and 1-phenylethanol (4)
(1.0 mmol) were placed in a 50-mL two-neck round flask equipped with a Dimroth condenser and
three-way cock. It was stirred for 1 h at 106 ◦C (oil bath temperature) under reflux. After the reaction,
THF (24 mL) and undecane (internal standard) were added and stirred. Conversion and yield were
determined by GC. Average of three runs is shown.
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3.6. Investigation of Catalytic Activity in Dehydrogenation of Benzyl alcohol (6)

Under an atmosphere of argon, Ir catalyst (0.5 mol%), toluene (20 mL), and benzylalcohol (6)
(0.5 mmol) were placed in a 50-mL two-neck round flask equipped with a Dimroth condenser and
three-way cock. It was stirred for 1 h at 131 ◦C (oil bath temperature) under reflux. After the reaction,
toluene (10 mL) and biphenyl (internal standard) were added and stirred. Conversion and yield were
determined by GC.

3.7. Investigation of Catalytic Activity in Dehydrogenation of 2-Octanol (8)

Under an atmosphere of argon, Ir catalyst (1.0 mol%), THF (6 mL), and 2-octanol (8) (1.0 mmol)
were placed in a 30-mL two-neck round flask equipped with a Dimroth condenser and three-way cock.
It was stirred at 131 ◦C (oil bath temperature) under reflux. After the reaction, toluene (14 mL) and
biphenyl (internal standard) were added and stirred. Conversion and yield were determined by GC.

3.8. Investigation of Catalytic Activity in Dehydrogenation of 2-MeTHQ (10)

Under an atmosphere of argon, Ir catalyst (1.0 mol%), toluene (3 mL), and 2-methyl-1,2,3,4-
tetrahydroquinoline (10) (1.0 mmol) were placed in a 30-mL two-neck round flask equipped with a
Dimroth condenser and three-way cock. It was stirred for 20 h at 131 ◦C (oil bath temperature) under
reflux. After the reaction, toluene (14 mL) and undecane (internal standard) were added and stirred.
Conversion and yield were determined by GC.

3.9. X-ray Crystallographic Analyses

Crystallographic data of 1e was collected on a Rigaku/R Axis Rapid diffractometer with
CrystalClear (Rigaku, Tokyo, Japan). Crystallographic data of 2a and 2e were collected on a Rigaku/

Saturn 70 CCD diffractometer and processed with CrystalClear (Rigaku, Tokyo, Japan). Calculations
for 1e were performed with the CrystalStructure software package (Rigaku, Tokyo, Japan). Calculations
for 2a and 2e were performed with the Olex2 software package (Ver. 1.2.10, OlexSys Ltd., Durham,
UK). Details are indicated in the Supplementary Materials.

4. Conclusions

In conclusion, we successfully synthesized new iridium complexes (1–3) having cyclopentadienyl
ligands with various alkyl substituents. The t-butyl-substituted cyclopentadienyl complex 3e exhibited
a slightly higher catalytic activity than other complexes in the dehydrogenation of alcohols and
2-methyl-1,2,3,4-tetrahydroquinoline. This study provides systematic information on the effect of
substituents on the cyclopentadienyl ligand in a catalytic dehydrogenation reaction. However, the
reason for the better catalytic performance of 3e is unclear. Computational studies on the relationship
between the effect of the cyclopentadienyl ligand on iridium complexes and their catalytic activity
are ongoing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/10/846/s1,
detailed description of experimental procedures, 1H and 13C NMR data of the isolated products with spectral
charts; the cif and checkcif output files for 1e, 2a, and 2e.
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