Supplementary information

Article

Metallosupramolecular Polymer Precursor Design for Multi-element Co-doped Carbon Shells with Improved Oxygen Reduction Reaction Catalytic Activity

Yuzhe Wu, Yuntong Li, Jie Mao, Haiyang Wu, Tong Wu, Yaying Li, Birong Zeng, Yiting Xu, Conghui Yuan* and Lizong Dai*

Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China, wuyuzhe@stu.xmu.edu.cn (Y.W.); lyt@stu.xmu.edu.cn (Y.L.); mao-jie@foxmail.com (J.M.); why@stu.xmu.edu.cn (H.W.); wutong@stu.xmu.edu.cn (T.W.); liyaying@stu.xmu.edu.cn (Y.L.); brzeng@xmu.edu.cn (B.Z.); xyting@xmu.edu.cn (Y.X.) Correspondence: yuanch@xmu.edu.cn (C.Y.); lzdai@xmu.edu.cn (L.D.); Tel.: +86-592-2186178 (C.Y. & L.D.)

Calculation of electron transfer number (*n*) for oxygen reduction reaction

The electron transfer number (*n*) per oxygen molecule based on rotating disk electrode (RDE) data is calculated by K-L equations:

$$\frac{1}{j} = \frac{1}{j_{k}} + \frac{1}{B\omega^{1/2}} (1)$$

B=0.2nF(D₀)^{2/3}C₀, $\upsilon^{-1/6} (2)$

Where *j* is the measured current density, j_k is the kinetic-limiting current density, ω is the electrode rotation rate, *F* is Faraday constant (96485 C mol⁻¹), D_{O_2} is the diffusion coefficient of O₂ in 0.1 M KOH electrolyte (1.9 × 10⁻⁵ cm²s⁻¹), C_{O_2} is the concentration of dissolved O₂ (1.2 × 10⁻⁶ molcm⁻³), *v* is the kinematic viscosity of the 0.1 M KOH electrolyte (0.01 cm²s⁻¹). The constant 0.2 is adopted when the rotation speed is expressed in rpm.¹

Synthesis of DFC and TBB

Synthesis of DFC: То of a solution 4,4'-(((perfluoropropane-2,2-diyl)bis(4,1-phenylene))bis(oxy))dianiline (136.68 mg, 0.264 mmol) in anhydrous methanol (20 mL) was added 3,4-dihydroxybenzaldehyde (75.75 mg, 0.55 mmol). The clear yellow mixture was stirred and protected from light at room temperature overnight. The reaction mixture was concentrated into 3 mL, followed by filtering, washing with 100 mL of cold anhydrous methanol for 3 times, and drying in vacuum for 6 hours.² Yield: 60 %. Purity is 90 %. ¹H NMR (400 MHz, DMSO-D₆) δ (ppm): 9.56 (s, 2 H), 9.31 (s, 2 H), 8.41 (s, 2 H), 7.39 (s, 2 H), 7.36-7.35 (d, 4 H), 7.29-7.27 (d, 4 H), 7.19-7.18 (s, 2 H), 7.14-7.12 (d, 4 H), 7.10-7.08 (d, 4 H), 6.84-6.83 (s, 2 H). ¹³CNMR (400 MHz, DMSO-D₆): 191.44, 160.41, 158.63, 153.33, 152.73, 149.87, 148.83, 146.45, 146.25, 131.92, 129.34, 128.47, 126.79, 124.98, 123.05, 121.03, 117.79, 115.98, 115.96, 114.68, 56.50. ESI/MS m/z 759.19225 $[M+H]^+$.

Synthesis of TBB: To a solution of Tris(4-aminophenyl)amine (96.8 mg, 0.276 mmol) in anhydrous ethanol (20 mL) was added 4-Formylphenylboronic acid (152 mg, 1.01 mmol). The clear red mixture was stirred and protected from light at room temperature overnight. The reaction mixture was concentrated into 5 mL. The cold methylene chloride (25.0 mL) was added into the above solution to get yellow precipitate, which was collected by filtering, washing with 100 mL of a cold solvent comprising anhydrous ethanol and methylene chloride (volume ratio : 5 : 1) for 3 times, and drying in vacuum for 6 hours.³ Yield: 80 %. ¹H NMR (400 MHz, DMSO-D₆) δ (ppm): 8.68 (s, 3 H), 8.19 (s, 6 H), 7.95-7.87 (d, 6 H; d, 6 H), 7.33 (d, 6 H), 7.11 (d, 6 H). ¹³CNMR (400 MHz, DMSO-D₆): 159.71, 146.64, 145.88, 138.01, 134.87, 134.69, 127.89, 124.79, 123.03. ESI/MS m/z 745.32 [M+59]⁻.

Figure 1. TEM images of (a) CS₁₂₋₅₅₀, (b) CS₁₂₋₇₅₀.

Figure S2. XPS survey spectra of CS_{12-550} (a) and CS_{12-750} (b).

Composition					
C %	N %	O %	B %	F %	Fe %
90.72	2.25	5.50	1.43	0	0.09

Table S1. Atomic percent of elements obtained from XPS analysis to CS_{12-750} .

Figure S3. The corresponding K-L plots at various potentials of (a) CS_{6-650} , (b) CS_{12-650} , (c) CS_{18-650} , (d) CS_{12-550} , and (e) CS_{12-750} . Electron transfer numbers obtained from K-L plots of CS_{12-550} and CS_{12-750} (f).

Figure S4. LSV curves of the commercial 20 wt% Pt/C at 1600 rpm in O₂-saturated 0.1 M KOH aqueous solution before and after 1000 cycles of CV curves with a scan rate of 50 mV/s.

References

1. Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai. L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. *Nature Nanotechnology*. **2015**, *10*, 444-452.

2. Li, L. Y.; Yuan, C. Y.; Zhou, D. M.; Ribbe, D. E.; Kittilstved, P. R.; Thayumanavan, P. S. Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal-Organic Nanoparticles. *Angew. Chem. Int. Ed.* **2015**, *127*, 13183-13187.

3. Chang, Y.; Yuan, C. H.; Li, Y. T.; Liu, C.; Wu, T.; Zeng, B. R.; Xu, Y. T.; Dai, L. Z. Controllable fabrication of a N and B co-doped carbon shell on the surface of TiO₂ as a support for boosting the electrochemical performances. *J. Mater. Chem. A.* **2017**, *5*, 1672-1678.