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Abstract: A new catalytic system that employs water as an environmentally friendly solvent for
the dehydrogenative oxidation of alcohols and lactonization of diols has been developed. In this
catalytic system, a water-soluble dicationic iridium complex having a functional ligand that comprises
α-hydroxypyridine and 4,5-dihydro-1H-imidazol-2-yl moieties exhibits high catalytic performance.
For example, the catalytic dehydrogenative oxidation of 1-phenylethanol in the presence of 0.25 mol
% of the iridium catalyst and base under reflux in water proceeded to give acetophenone in 92% yield.
Additionally, under similar reaction conditions, the iridium-catalyzed dehydrogenative lactonization
of 1,2-benzenedimethanol gave phthalide in 98% yield.

Keywords: dehydrogenation; iridium catalyst; functional ligand; alcohol; diol; ketone; lactone;
water solvent

1. Introduction

From the viewpoint of green sustainable chemistry, it is important to accomplish synthetic organic
reactions efficiently using water as a solvent. Because water is incombustible, non-toxic, inexpensive,
and easily available in large quantities, it is important that research aims at using water as a solvent
for organic synthesis [1–6]; however, it is generally difficult to use water as a solvent in such reactions,
especially in reactions that require homogeneous transition metal catalysts. This is probably due to the
fact that most homogeneous transition metal catalysts have problems when used in aqueous media,
such as (1) instability in water, (2) insolubility in water, and/or (3) inactivity in water. These limitations
have prevented the development of methods for catalytic organic synthesis in aqueous media.

Recently, with an objective to overcome the aforementioned problems, we developed
a homogeneous dicationic iridium catalyst with a bipyridine-based functional ligand, which is highly
soluble and stable in water [7]. Additionally, we reported some catalytic systems that were active for
the dehydrogenative oxidation reaction of alcohols in aqueous media, for the production of aldehydes,
ketones, carboxylic acids, and lactones [8–10]. These achievements were remarkable as uncommon
examples of catalytic organic synthesis using water as a solvent [11–22]; however, some issues remained
unresolved such as (1) the necessity of using comparatively large amounts of catalyst, (2) the significant
effort required to synthesize the functional ligands, and (3) the limited scope of substrates that can be
used as a starting material for the dehydrogenative reactions.
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In this study, we synthesized a series of iridium complexes bearing a bidentate functional ligand
based on a pyridine and an imidazoline ring. These catalysts were successfully applied to the
production of ketones and lactones in water using a small amount of catalyst.

2. Results and Discussion

First, a series of dicationic complexes 1–4 were prepared (Figure 1). Complexes 1 and 2 have
bidentate functional ligands that comprise α-hydroxypyridine and 4,5-dihydro-1H-imidazol-2-yl
moieties. Complex 3 does not have hydroxy group in the pyridine ring of the functional ligand.
Complex 4 includes methoxy group instead of hydroxy group at the α-position in the pyridine ring
of the functional ligand. The structures of these complexes 1–4 were determined by NMR data and
elemental analyses. For example, in the 1H NMR analysis of 1 [23], three signals in the aromatic
region at δ 8.13, 7.63, and 7.33 ppm, which would be assigned as protons on the pyridine ring,
were observed. Additionally, two sets of signals that can be assigned to the methylene protons in
4,5-dihydro-1H-imidazol-2-yl moiety were observed at δ 4.34 and 4.10 ppm as triplet signals with
each integration values corresponding to 2H, clearly indicating the bidentate N,N-chelating nature
of the ligand in complex 1. Details of the procedures for the preparation of complexes 1–4 and their
analytical data are included in the experimental section. All these complexes were highly soluble in
water and stable under air or in water for extended periods of time. Therefore, we decided to explore
their applications as catalysts for the dehydrogenative oxidation of organic substrates in aqueous
media following our previous work on this type of reaction.
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aqueous media, complex 1 can be regarded as one of the most effective catalysts [7,9,24]. 

  

Figure 1. The dicationic complexes 1–4 bearing a bidentate ligand based on pyridine and
4,5-dihydro-1H-imidazole-2-yl moieties.

Thus, we examined the dehydrogenative oxidation of 1-phenylethanol (5a) to acetophenone (6a)
in aqueous media using the water-soluble iridium complexes 1–4. The results are summarized in
Table 1. Complex 1 and 2 having an α-hydroxypyridine moiety in the functional ligand exhibited high
catalytic performance, with the activity of 1 slightly higher than that of 2 (entries 1 and 2). High yield
of 6a was accomplished by the employment of a very small amount (0.25 mol %) of both catalyst
1 and Na2CO3 (entry 1). The presence of hydroxy group at the α-position of the functional ligand
was observed to be indispensable for achieving a high catalytic performance; complex 3 without
a hydroxy group and complex 4 with a methoxy group exhibited poor catalytic activity (entries 3
and 4). The importance of hydroxy group at α-position of the pyridine ring in the functional ligand
will be discussed later in the explanation of catalytic mechanism (vide infra). When compared with
our previously reported catalysts for the dehydrogenative oxidation of alcohols in aqueous media,
complex 1 can be regarded as one of the most effective catalysts [7,9,24].
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Table 1. Dehydrogenative oxidation of 1-phenylethanol (5a) to acetophenone (6a) in aqueous media
using water-soluble iridium complexes 1–4.
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With an optimal catalyst in hand, we further focused on the optimization of basic additive for
the dehydrogenative oxidation of 5a to 6a catalyzed by 1. The results are summarized in Table 2.
The reaction without any basic additive resulted in a very low yield of 6a (16%). However, addition
of a variety of bases, such as Na2CO3, NaOH, NaHCO3, Li2CO3, K2CO3, and Cs2CO3, considerably
improved the catalytic activity of 1, with the highest yield of 6a (92%) obtained using 0.25 mol % of
Na2CO3 (entry 2). We think that the addition of base would lead to the formation of catalytically active
monocationic species. The detailed explanation of the effect of base will be discussed later (vide infra).

Table 2. Optimization of the basic additive for the dehydrogenative oxidation of 5a to 6a catalyzed by
1 in aqueous media.
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To explore the scope of the new catalytic system that employs 1 and Na2CO3 in aqueous
media, various secondary alcohols were subjected to the optimized reaction conditions. The results
are summarized in Table 3. The reactions of 1-arylethanols bearing electron-donating and
electron-withdrawing substituents in the aromatic ring smoothly proceeded to give the corresponding
acetophenone derivatives in moderate to high yields. Methoxy, N,N-dimethylamino, trifluoromethyl,
fluoro, and chloro groups were tolerated in this catalytic system. 1-Indanol and 1-tetralol were also
converted into the corresponding ketones in excellent yields. Additionally, 1-phenyl-1-propanol could
be dehydrogenatively oxidized to propiophenone, even though a relatively higher catalyst loading
and longer reaction time were required in this case.
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Table 3. Dehydrogenative oxidation of various secondary alcohols to the corresponding ketones
catalyzed by 1 in aqueous media.
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Yields were determined by 1H NMR analysis. Isolated yields are shown in the parentheses. a 1.0 mol % of complex
1 and Na2CO3 were used as catalyst. b Reaction time was 72 h.

A possible mechanism for the dehydrogenative oxidation of alcohols catalyzed by 1 is depicted
in Scheme 1. Firstly, the base-promoted elimination of triflic acid along with the dissociation of
aquo ligand from catalyst 1 would occur to generate a monocationic coordinatively unsaturated
species A having an α-pyridonate moiety connected to the 4,5-dihydro-1H-imidazol-2-yl unit. Further,
activation of the alcohol substrate would occur through transition state B which produces the ketonic
product with the concomitant formation of iridium hydride species C. The final step would involve
the protonolysis of the hydride on the iridium center by the hydroxy proton on the functional ligand,
regenerating the catalytically active unsaturated species A along with release of hydrogen gas.

To verify the possible mechanism, some experiments were carried out. First, a quantitative
analysis of the evolved hydrogen gas was conducted (Equation (1)). When the dehydrogenative
oxidation of 1-indanol in aqueous media on a large scale (10 mmol scale) was performed, hydrogen
gas was obtained in 98% yield, which was almost equimolar amount to that of the ketone product
(99%). The second experiment addressed the formation of the catalytically active monocationic species
A (Equation (2)). By the treatment of the dicationic catalyst 1 with one equivalent of Na2CO3 at room
temperature for 10 min, a new monocationic complex 9 having an α-pyridonate ring connected to the
4,5-dihydro-1H-imidazol-2-yl moiety, which is closely related to the species A in Scheme 1, was isolated
in 33% yield. The structure of 9 was determined by spectroscopic data (see the Supplementary
Materials). Further, the catalytic performance of 9 was investigated (Equation (3)). As expected,
the complex 9 showed high catalytic activity for the dehydrogenation of 1-phenylethanol in water
with a loading of 0.25 mol % even in the absence of base to give acetophenone in a high yield (90%).
We assume that the results of these reactions (Equations (1)–(3)) strongly support the proposed catalytic
cycle that is depicted in Scheme 1.
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As a further application of the dehydrogenative oxidation system catalyzed by 1, we examined the
dehydrogenation of diols in water. Although we have previously reported a similar catalytic system
for the dehydrogenative lactonization using a water-soluble iridium catalyst having a bipyridine-based
functional ligand, a relatively high catalyst loading (1.0–3.0 mol %) was required in those cases [10].
Therefore, in this study, we attempted the reactions of various diols using 0.25 mol % of catalyst 1 and
Na2CO3. The results are summarized in Table 4. A variety of lactones having five- or six-membered
ring structures could be obtained in good to excellent yields by conducting the reactions in aqueous
media. For the substrates depicted in entries 5–7, two isomers of lactones were obtained. In those
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cases, each product was isolated as a mixture of isomers, the ratios of which were determined by 1H
NMR analysis.

The reaction pathway for dehydrogenative lactonization is illustrated in Scheme 2. In the first
step, one of the alcohol moieties in the diol substrate would be transformed to the aldehyde by catalytic
dehydrogenation. Then, an intramolecular cyclization would afford the corresponding hemiacetal.
Finally, dehydrogenative transformation would occur to generate lactone as a product.
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a Yields were determined by 1H NMR analysis. Isolated yields are shown in parentheses.  
b 0.5 mol % of complex 1 and Na2CO3 were used as catalyst. c Reaction time was 48 h.  
d Ratio of two isomers. 

3. Experimental Section 

3.1. General 

1H and 13C{1H} NMR spectra were recorded on ECX-500 and ECS-400 spectrometers (JEOL, 
Akishima, Tokyo, Japan) at room temperature. Gas chromatography (GC) analyses were performed 
on a GC353B gas chromatograph (GL-Sciences, Shinjuku, Tokyo, Japan) with a capillary column 
[InertCap Pure WAX (GL-Sciences, Shinjuku, Tokyo, Japan)]. Elemental analyses were carried out at 
the Microanalysis Center of Kyoto University. Silica-gel column chromatography was carried out 
using Wako-gel C-200 (FUJIFILM Wako Pure Chemical Corporation, Doshoumatchi, Osaka, Japan). 
The compounds, [Cp*IrCl2]2 (Cp* = η5-pentamethylcyclopentadienyl) [25] and [Cp*Ir(OH2)3](OTf)2 
[26] were prepared according to the literature method. The diol 7b was prepared by the reduction of 
2-benzoylbenzoic acid using LiAlH4 [10]. The diols 7e–g were prepared by the reduction of the 
corresponding dicarboxylic acids using BH3-THF [10]. All other reagents are commercially available 
and were used as received. 

3.2. Preparation of Dicationic Complexes 1–4 

In a two-necked round-bottomed flask under argon atmosphere, [Cp*Ir(OH2)3](OTf)2 (1.14 g, 
1.68 mmol), 2-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxymethoxypyridine (348 mg, 1.68 mmol), and 
degassed distilled water (10 mL) were placed. The mixture was stirred at 60 °C for 12 h. After cooling 
to room temperature, the mixture was washed with CH2Cl2 (15 mL × 3) and Et2O (10 mL × 1). 
Evaporation of the water layer under vacuum gave a crude product of complex 1 as a yellow 
powder. The product was purified by recrystallization from water (orange crystals, 965 mg, 1.20 
mmol, 71%). 

Analysis: 1H NMR (400 MHz, methanol-d4): δ 8.13 (t, J = 7.2 Hz, 1H, aromatic), 7.63 (d, J = 7.2 Hz, 
1H, aromatic), 7.33 (d, J = 8.0 Hz, 1H, aromatic), 4.34 (t, J = 10 Hz, 2H, -N(CH2)-), 4.10 (t, J = 11 Hz, 2H, 
-N(CH2)-), 1.77 (s, 15H, Cp*). 13C{1H} NMR (100 MHz, methanol-d4): δ 173.2, 165.6, 144.9, 144.8, 
123.3(q, CF3), 118.2, 117.4, 89.6, 53.8, 47.0, 9.7. 1H NMR (500 MHz, D2O): δ 7.97 (dd, J = 8.0 Hz, 7.0 Hz, 
1H, aromatic), 7.42 (d, J = 7.0 Hz, 1H, aromatic), 7.23 (d, J = 8.0 Hz, 1H, aromatic), 4.27 (t, J = 10.5 Hz, 
2H, -N(CH2)-), 4.02 (t, J = 10.5 Hz, 2H, -N(CH2)-), 1.70 (s, 15H, Cp*). 13C{1H} NMR (125 MHz, D2O): δ 
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3. Experimental Section

3.1. General

1H and 13C{1H} NMR spectra were recorded on ECX-500 and ECS-400 spectrometers (JEOL,
Akishima, Tokyo, Japan) at room temperature. Gas chromatography (GC) analyses were performed
on a GC353B gas chromatograph (GL-Sciences, Shinjuku, Tokyo, Japan) with a capillary column
[InertCap Pure WAX (GL-Sciences, Shinjuku, Tokyo, Japan)]. Elemental analyses were carried
out at the Microanalysis Center of Kyoto University. Silica-gel column chromatography was
carried out using Wako-gel C-200 (FUJIFILM Wako Pure Chemical Corporation, Doshoumatchi,
Osaka, Japan). The compounds, [Cp*IrCl2]2 (Cp* = η5-pentamethylcyclopentadienyl) [25] and
[Cp*Ir(OH2)3](OTf)2 [26] were prepared according to the literature method. The diol 7b was prepared
by the reduction of 2-benzoylbenzoic acid using LiAlH4 [10]. The diols 7e–g were prepared by
the reduction of the corresponding dicarboxylic acids using BH3-THF [10]. All other reagents are
commercially available and were used as received.

3.2. Preparation of Dicationic Complexes 1–4

In a two-necked round-bottomed flask under argon atmosphere, [Cp*Ir(OH2)3](OTf)2 (1.14 g,
1.68 mmol), 2-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxymethoxypyridine (348 mg, 1.68 mmol), and
degassed distilled water (10 mL) were placed. The mixture was stirred at 60 ◦C for 12 h. After cooling
to room temperature, the mixture was washed with CH2Cl2 (15 mL × 3) and Et2O (10 mL × 1).
Evaporation of the water layer under vacuum gave a crude product of complex 1 as a yellow powder.
The product was purified by recrystallization from water (orange crystals, 965 mg, 1.20 mmol, 71%).

Analysis: 1H NMR (400 MHz, methanol-d4): δ 8.13 (t, J = 7.2 Hz, 1H, aromatic), 7.63 (d, J = 7.2 Hz,
1H, aromatic), 7.33 (d, J = 8.0 Hz, 1H, aromatic), 4.34 (t, J = 10 Hz, 2H, -N(CH2)-), 4.10 (t, J = 11 Hz,
2H, -N(CH2)-), 1.77 (s, 15H, Cp*). 13C{1H} NMR (100 MHz, methanol-d4): δ 173.2, 165.6, 144.9, 144.8,
123.3(q, CF3), 118.2, 117.4, 89.6, 53.8, 47.0, 9.7. 1H NMR (500 MHz, D2O): δ 7.97 (dd, J = 8.0 Hz, 7.0 Hz,
1H, aromatic), 7.42 (d, J = 7.0 Hz, 1H, aromatic), 7.23 (d, J = 8.0 Hz, 1H, aromatic), 4.27 (t, J = 10.5 Hz,
2H, -N(CH2)-), 4.02 (t, J = 10.5 Hz, 2H, -N(CH2)-), 1.70 (s, 15H, Cp*). 13C{1H} NMR (125 MHz, D2O):
δ 172.5, 165.0, 144.1, 143.5, 120.3 (q, JCF = 316 Hz), 117.2, 117.1, 88.6, 53.1, 46.4, 9.27. Anal. Calcd for
C20H26N3O8IrF6S2: C, 29.78; H, 3.25; N, 5.21. Found: C, 29.42; H, 3.25; N, 5.14.

Complexes 2–4 were prepared by the similar procedures for complex 1.
Complex 2 (61%): Analysis: 1H NMR (400 MHz, methanol-d4): δ 8.15 (t, J = 8.0 Hz, 1H, aromatic),

7.92 (d J = 8.0 Hz, 1H, aromatic), 7.35 (d, J = 8.0 Hz, 1H, aromatic), 4.20 (m, 4H, -N(CH2CH2)N-), 3.50
(s, 3H, NCH3), 1.75 (s, 15H, Cp*). 13C{1H} NMR (100 MHz, methanol-d4): δ 171.3, 165.7, 144.9, 144.8,
123.3, 120.0, 117.4, 89.8, 56.7, 51.9, 35.7, 9.8. Anal. Calcd for C21H29N3O8IrF6S2•2H2O: C, 29.40; H, 3.88;
N, 4.90. Found: C, 29.50; H, 3.62; N, 4.92.

Complex 3 (75%): Analysis: 1H NMR (400 MHz, methanol-d4): δ 9.24 (d, J = 5.2Hz, 1H, aromatic),
8.45 (t, J = 7.6 Hz, 1H, aromatic), 8.23 (d, J = 7.6 Hz, 1H, aromatic), 8.02 (t, J = 6.4 Hz, 1H, aromatic), 4.38
(t, J = 10 Hz, 2H, -N(CH2)-), 4.18 (t, J = 11 Hz, 2H, -N(CH2)-), 1.80 (s, 15H, Cp*). 13C{1H} NMR (100
MHz, methanol-d4): δ 172.5, 154.3, 148.0, 143.2, 132.1, 126.8, 123.3, 89.8, 53.6, 47.4, 9.12. Anal. Calcd for
C20H26N3O7IrF6S2: C, 30.38; H, 3.31; N, 5.31. Found: C, 30.29; H, 3.32; N, 5.27.

Complex 4 (88%): Analysis: 1H NMR (400 MHz, methanol-d4): δ 8.36 (t, J = 7.6 Hz, 1H, aromatic),
7.80 (d, J = 1.2 Hz, 1H, aromatic), 7.69 (d, J = 9.2 Hz, 1H, aromatic), 4.36 (m, 2H, -N(CH2-)), 4.13 (m, 2H,
-N(CH2)-), 4.34 (s, 3H, OCH3), 1.76 (s, 15H, Cp*). 13C{1H} NMR (100 MHz, methanol-d4): δ 173.1, 165.9,
146.2, 145.7, 123.4, 119.4, 114.4, 89.9, 59.1, 54.0, 47.1, 9.8. Anal. Calcd for C21H28N3O8IrF6S2•2H2O: C,
29.44; H, 3.76; N, 4.90. Found: C, 29.72; H, 3.73; N, 4.84.

3.3. General Procedures for the Dehydrogenative Oxidation of 1-Phenylethanol (Tables 1 and 2)

In a flask under argon atmosphere, catalyst 1 (0.0025 mmol, 0.25 mol %), 1-phenylethanol
(1.0 mmol), degassed distilled water (3.0 mL) and 0.1 M Na2CO3 aq. (25 µL) were placed. The mixture
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was stirred under reflux for 20 h in an oil bath (135 ◦C). After cooling to room temperature, the mixture
was diluted with THF (10 mL). The conversion of 1-phenylethanol and the yield of acetophenone were
determined by GC analysis using biphenyl as an internal standard.

3.4. General Procedure for the Dehydrogenative Oxidation of Secondary Alcohols (Table 3)

In a flask under argon atmosphere, catalyst 1 (0.0025 mmol, 0.25 mol %), secondary alcohol
(1.0 mmol), degassed distilled water (3.0 mL) and 0.1 M Na2CO3 aq. (25 µL, 0.0025 mmol, 0.25 mol %)
were placed. The mixture was stirred under reflux for 20 h in an oil bath (135 ◦C). After cooling to room
temperature, the produced ketones were isolated by column chromatography on silica-gel (eluent:
hexane/ethyl acetate).

4′-Methylacetophenone (6b) [27]: 1H NMR (400 MHz, CDCl3): δ 7.87 (m, 2H, aromatic), 7.26 (m, 2H,
aromatic), 2.58 (s, 3H, -COCH3), 2.41 (s, 3H, -CH3). 13C{1H} NMR (100 MHz, CDCl3): δ 197.8, 143.8,
134.7, 129.2, 128.4, 26.5, 21.6.

4′-Methoxyacetophenone (6c) [28]: 1H NMR (400 MHz, CDCl3): δ 7.95 (m, 2H, aromatic), 6.93 (m,
2H, aromatic), 3.87 (s, 3H, OCH3), 2.56 (s, 3H, -COCH3). 13C{1H} NMR (100 MHz, CDCl3): δ 196.8,
163.5, 130.6, 130.3, 114.0, 55.5, 26.3.

4′-(N,N-dimethylamino)acetophenone (6d) [27]: 1H NMR (400 MHz, CDCl3): δ 7.86 (d, J = 6.8 Hz, 2H,
aromatic), 6.64 (m, 2H, aromatic), 3.03 (s, 6H), 2.49 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 196.4,
153.4, 130.5, 125.1, 110.6, 40.0, 26.0.

4′-Trifluoromethylacetophenone (6e) [29]: 1H NMR (400 MHz, CDCl3): δ 8.04 (d, J = 8.4 Hz, 2H,
aromatic), 7.71 (d, J = 7.6 Hz, 2H, aromatic), 2.63 (s, 3H, -COCH3). 13C{1H} NMR (100 MHz, CDCl3):
δ 197.1, 139.8, 134.4 (q, JCF = 32.4 Hz), 128.7, 125.8 (d, JCF = 2.8 Hz), 123.7 (q, JCF = 271.8 Hz), 26.9.

4′-Fluoroacetophenone (6f) [29]: 1H NMR (400 MHz, CDCl3): δ 7.94 (m, 2H, aromatic), 7.08 (t,
J = 8.8 Hz, 2H, aromatic), 2.54 (s, 3H, -COCH3). 13C{1H} NMR (100 MHz, CDCl3): δ 196.5, 165.8 (d, JCF
= 253.6 Hz), 133.6, 131.0 (d, JCF = 8.5 Hz), 115.6 (d, JCF = 21.9 Hz), 26.5.

4′-Chloroacetophenone (6g) [30]: 1H NMR (400 MHz, CDCl3): δ 7.89 (ddd, J = 8.4, 2.4, 1.6 Hz, 2H,
aromatic), 7.42 (dt, J = 8.8, 2.0 Hz, 2H, aromatic), 2.59 (s, 3H, -COCH3). 13C{1H} NMR (100 MHz,
CDCl3): δ 196.7, 139.6, 135.5, 129.6, 128.9, 26.6.

3′-Methylacetophenone (6h) [31]: 1H NMR (400 MHz, CDCl3): δ 7.75 (m, 2H, aromatic), 7.33 (m, 2H,
aromatic), 2.57 (s, 3H, -COCH3), 2.40 (s, 3H, -CH3). 13C{1H} NMR (100 MHz, CDCl3): δ 198.4, 138.3,
137.1, 133.9, 128.8, 128.4, 125.6, 26.7, 21.3.

3′-Methoxyacetophenone (6i) [28]: 1H NMR (400 MHz, CDCl3): δ 7.50 (m, 1H, aromatic), 7.45 (m,
1H, aromatic), 7.33 (m, 1H, aromatic), 7.07 (m, 1H, aromatic), 3.81 (s, 3H, -OCH3) 2.56 (s, 3H, -COCH3).
13C{1H} NMR (100 MHz, CDCl3): δ 197.9, 159.8, 138.5, 129.6, 121.1, 119.6, 112.4, 55.4, 26.7.

3′-Chloroacetophenone (6j) [31]: 1H NMR (400 MHz, CDCl3): δ 7.88 (m, 1H, aromatic), 7.79 (m, 1H,
aromatic), 7.49 (m, 1H, aromatic), 7.37 (t, J = 8.0 Hz, 1H, aromatic), 2.56 (s, 3H, -COCH3). 13C{1H} NMR
(100 MHz, CDCl3): δ 196.8, 138.6, 134.9, 133.1, 130.0, 128.4, 126.5, 26.7.

1-Indanone (6k) [32]: 1H NMR (400 MHz, CDCl3): δ 7.70 (d, J = 7.6 Hz, 1H, aromatic), 7.54 (m, 1H,
aromatic), 7.44 (m, 1H, aromatic), 7.32 (m, 1H, aromatic), 3.09 (t, J = 6.0 Hz, 2H), 2.70–2.63 (m, 2H).
13C{1H} NMR (100 MHz, CDCl3): δ 207.0, 155.2, 137.2, 134.6, 127.2, 126.7, 123.6, 36.2, 25.8.

α-Tetralone (6l) [32]: 1H NMR (400 MHz, CDCl3): δ 8.01 (m, 1H, aromatic), 7.45 (m, 1H, aromatic),
7.32–7.18 (m, 2H, aromatic), 2.92 (m, 2H), 2.61 (m, 2H), 2.07 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3):
δ 198.1, 144.4, 133.2, 132.9, 128.7, 126.9, 126.4, 39.0, 29.5, 23.1.

Propiophenone (6m) [31]: 1H NMR (400 MHz, CDCl3): δ 7.95 (m, 2H, aromatic), 7.52 (m, 1H,
aromatic), 7.43 (m, 2H, aromatic), 2.99 (q, J = 7.2 Hz, 2H, CH2CH3), 1.21 (t, J = 7.2 Hz, 3H, CH2CH3).
13C{1H} NMR (100 MHz, CDCl3): δ 200.8, 136.9, 132.9, 128.6, 128.0, 31.8, 8.3.
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3.5. Procedure for the Quantitative Analysis of the Evolved Hydrogen Gas in the Dehydrogenative Oxidation of
1-Indanol (Equation (1))

In a flask connected with a gas burette through a condenser under argon atmosphere, catalyst
1 (20.3 mg, 0.025 mmol), distilled water (30 mL), 0.1 M Na2CO3 aq. (250 µL) and 1-indanol (1.35 g,
10 mmol) were placed. The mixture was stirred under reflux for 20 h in an oil bath (135 ◦C). The yield
of 1-indanone was determined by 1H NMR (CDCl3) using triphenylmethane as an internal standard.
The volume of evolved gas was measured by a gas burette. The molar amount of hydrogen was
calculated using the ideal gas law. The purity of evolved hydrogen gas was confirmed by GC analysis
(experimental detail is described in the Supplementary Materials).

3.6. Preparation of Monocationic Complex 9 (Equation (2))

In a flask under argon atmosphere, complex 1 (101.6 mg, 0.126 mmol) was placed. 0.1 M Na2CO3

aq. (1.25 mL) was added and stirred for 10 min at room temperature. Then, the solvent water was
evaporated by the vacuum pump and the deposed dark green powder remained. The powder was
dissolved in dry CH2Cl2 and filtered by Celite under argon atmosphere. The filtrate organic layer was
washed by distilled water (10 mL × 4) under argon atmosphere, then the solvent was removed by
evaporation and the dark green powder was obtained (27.2 mg, 0.041 mmol, 33%). Results of the NMR
analysis of complex 9 are shown in the Supplementary Materials.

3.7. General Procedure for the Dehydrogenative Lactonization of Diols (Table 4)

In two-necked test tube under argon atmosphere, catalyst 1 (0.0025 mmol, 0.25 mol %), diol
(1.0 mmol), distilled water (1.5 mL) and 0.1 M Na2CO3 aq. (25 µL, 0.0025 mmol, 0.25 mol %) were
placed. The mixture was stirred under reflux for 20 h in an oil bath (135 ◦C). After cooling to room
temperature, the solvent was evaporated. The yield of the product was determined by 1H NMR
using 1,3,5-trimethoxybenzene as an internal standard. The product was isolated by silica-gel column
chromatography (eluent: hexane/ethyl acetate).

Phthalide (8a) [33]: 1H NMR (500 MHz, CDCl3): δ 7.91 (d, J = 7.5 Hz, 1H, aromatic), 7.71 (td, J = 7.5,
1.0 Hz, 1H, aromatic), 7.56–7.52 (m, 2H, aromatic), 5.34 (s, 2H, -CH2-). 13C{1H} NMR (125 MHz, CDCl3):
δ 171.2, 146.6, 134.1, 129.0, 125.6, 125.6, 122.2, 69.7.

3-Phenyl-1(3H)-isobenzofuranone (8b) [34]: 1H NMR (500 MHz, CDCl3): δ 7.97 (d, J = 7.5 Hz, 1H,
aromatic), 7.66 (t, J = 7.5 Hz, 1H, aromatic), 7.56 (t, J = 7.5 Hz, 1H, aromatic), 7.41–7.36 (m, 3H, aromatic),
7.34 (d, J = 7.5 Hz, 1H, aromatic), 7.30–7.27 (m, 2H, aromatic). 13C{1H} NMR (125 MHz, CDCl3): δ 170.7,
149.8, 136.5, 134.5, 129.5, 129.4, 129.1, 127.1, 125.8, 125.7, 123.0, 82.9.

Naphtho[2,3-c]furan-1(3H)-one (8c) [33]: 1H NMR (400 MHz, CDCl3): δ 8.52 (s, 1H, aromatic), 8.06
(d, J = 8.4 Hz, 1H, aromatic), 7.96 (d, J = 8.4 Hz, 1H, aromatic), 7.92 (s, 1H, aromatic), 7.67 (td, J = 6.8,
1.2 Hz, 1H, aromatic), 7.61 (t, J = 8.0 Hz, 1H, aromatic), 5.5 (s, 2H, -CH2-). 13C{1H} NMR (125 MHz,
CDCl3): δ 171.1, 140.1, 136.3, 133.2, 130.0, 129.1, 128.2, 127.1, 127.1, 123.5, 120.1, 69.8.

1H,3H-Naphtho[1,8-cd]pyran-1-one (8d) [33]: 1H NMR (400 MHz, CDCl3): δ 8.35 (dd, J = 7.6, 0.8 Hz,
1H, aromatic), 8.08 (d, J = 8.0 Hz, 1H, aromatic), 7.81 (d, J = 8.4 Hz, 1H, aromatic), 7.62 (dd, J = 8.0,
7.2 Hz, 1H, aromatic), 7.53 (t, J = 7.2 Hz, 1H, aromatic), 7.34 (dd, J = 7.2, 0.8 Hz, 1H, aromatic), 5.79
(s, 2H, -CH2-). 13C{1H} NMR (125 MHz, CDCl3): δ 170.3, 139.0, 137.3, 132.7, 131.9, 130.7, 130.2, 128.8,
128.7, 128.6, 128.5, 69.2.

3,4-Dihydro-1H-2-benzopyran-1-one (8ea) [35], 1,4-Dihydro-3H-2-benzopyran-3-one (8eb) [36]: 1H
NMR (500 MHz, CDCl3): δ 8.08 (dd, J = 6.4, 0.8 Hz 1H), 7.55 (td, J = 6.0, 1.2 Hz, 1H), 7.41 (t, J = 6.0 Hz,
1H), 7.27 (m, 1H), 4.55 (t, J = 4.8 Hz, 2H), 3.08 (t, J = 4.8 Hz, 2H). 13C{1H} NMR (125 MHz, CDCl3):
δ 165.0, 139.5, 133.6, 130.1, 127.5, 127.2, 125.1, 67.2, 27.6. 1H NMR (400 MHz, CDCl3): δ 7.37–7.23 (m,
4H), 5.32 (s, 2H), 3.72 (s, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 170.7, 131.5, 130.9, 128.6, 126.9, 124.5,
69.9, 36.1.

6-Methyl-1(3H)-isobenzofuranone (8fa) [33], 5-Methyl-1(3H)-isobenzofuranone (8fb) [33]: 1H NMR
(500 MHz, CDCl3): δ 7.70 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 5.27 (s, 2H), 2.50 (s,
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3H). 13C{1H} NMR (125 MHz, CDCl3): δ 171.2, 143.8, 139.1, 135.1, 125.6, 125.3, 121.8, 69.6, 21.1. 1H
NMR (500 MHz, CDCl3): δ 7.79 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.29 (s, 1H), 5.29 (s, 2H),
2.47 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3): δ 171.1, 147.1, 145.2, 130.0, 125.3, 122.9, 122.4, 69.4, 21.9.

6-Fluoro-1(3H)-isobenzofuranone (8ga) [37]: 1H NMR (500 MHz, CDCl3): δ 7.58 (dd, J = 2.5, 7.0 Hz,
1H, aromatic), 7.49 (m, 1H, aromatic), 7.42 (td, J = 2.5, 8.5 Hz, 1H, aromatic), 5.32 (s, 2H, -CH2-). 13C{1H}
NMR (125 MHz, CDCl3): δ 170.1 (d, JCF = 3.5 Hz), 163.2 (d, JCF = 248.0 Hz), 142.0, 127.9 (d, JCF = 9.6
Hz), 123.9 (d, JCF = 8.4 Hz), 122.2 (d, JCF = 23.9 Hz), 112.3 (d, JCF = 23.9 Hz), 69.6 (s).

5-Fluoro-1(3H)-isobenzofuranone (8gb) [37]: 1H NMR (500 MHz, CDCl3): δ 7.93 (dd, J = 8.5, 5.0 Hz,
1H, aromatic), 7.25 (td, J = 8.8, 2.0 Hz, 1H, aromatic), 7.20 (dd, J = 7.5, 1.5 Hz, 1H, aromatic), 5.32 (s, 2H,
-CH2-). 13C{1H} NMR (125 MHz, CDCl3): δ 170.0, 166.7 (d, JCF = 255.1 Hz), 149.4 (d, JCF = 10.8 Hz),
128.2 (d, JCF = 9.5 Hz), 122.0, 117.5 (d, JCF = 23.8 Hz), 109.6 (d, JCF = 23.9 Hz), 69.1 (d, JCF = 3.6 Hz).

4. Conclusions

In summary, we have synthesized water-soluble and stable dicationic complexes 1–4
having a bidentate functional ligand that comprises substituted or non-substituted pyridine and
4,5-dihydro-1H-imidazol-2-yl moieties. Among the prepared complexes, derivative 1, which contained
an α-hydroxypyridine in the functional ligand, exhibited high catalytic performance in the
dehydrogenative oxidation of secondary alcohols to the corresponding ketones in aqueous media.
Furthermore, the complex 1 also exhibited high catalytic activity for the dehydrogenative lactonization
of diols in aqueous media. For both reactions, lower catalyst loadings were required as compared to
the requirement of the previously reported systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/8/312/s1.
Figure S1. Reaction setup for the quantitative analysis of the evolved hydrogen gas. Figure S2. GC analyses of the
hydrogen gas. a) The chromatogram of the evolved gas by the reaction of 1-indanol. b) The chromatogram of the
standard gas of pure hydrogen. Figure S3. 1H NMR(D2O) experiment for detection of the active species.
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