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Abstract: Chemical looping reforming (CLR) technique is a prospective option for hydrogen
production. Improving oxygen mobility and sintering resistance are still the main challenges of the
development of high-performance oxygen carriers (OCs) in the CLR process. This paper explores the
performance of Ni/CeO2 nanorod (NR) as an OC in CLR of ethanol. Various characterization methods
such as N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, transmission electron
microscopy (TEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction
(TPR), and H2 chemisorption were utilized to study the properties of fresh OCs. The characterization
results show the Ni/CeO2-NR possesses high Ni dispersion, abundant oxygen vacancies, and strong
metal-support interaction. The performance of prepared OCs was tested in a packed-bed reactor.
H2 selectivity of 80% was achieved by Ni/CeO2-NR in 10-cycle stability test. The small particle
size and abundant oxygen vacancies contributed to the water gas shift reaction, improving the
catalytic activity. The covered interfacial Ni atoms closely anchored on the underlying surface oxygen
vacancies on the (111) facets of CeO2-NR, enhancing the anti-sintering capability. Moreover, the strong
oxygen mobility of CeO2-NR also effectively eliminated surface coke on the Ni particle surface.
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1. Introduction

Hydrogen is considered an efficient energy carrier that is environmentally benign [1].
Chemical looping reforming (CLR) is a prospective alternative for hydrogen production due to its
energy efficiency and inherent CO2 capture [2,3]. The fixed-bed reactor configuration CLR process
(Figure 1) is performed by alternatively switching the feed gases; the oxygen carriers (OCs) are
stationary and periodically exposed to redox atmosphere [4]. The key to developing a CLR process
is to screen high-performance OCs. Ni-based OCs have been widely investigated because of their
ability for carbon–carbon and carbon–hydrogen bonds cleavage [5–7]. Zafar et al. [8] prepared a
series of OCs including Fe, Cu, Mn, and Ni supported by SiO2 and MgAl2O4 and concluded that NiO
supported on SiO2 exhibited high H2 selectivity in CLR. Löfberg et al. [9] demonstrated that Ni plays
two essential roles in CLR process, i.e., the anticipated activation of reactants as well as the regulation
of the oxygen supply rate from solids. Dharanipragada et al. [10] reported that the Ni-ferrites OC
suffers from the loss of oxygen storage capacity due to Ni sintering in chemical looping with alcohols.
Improving oxygen mobility and sintering resistance remain the major challenges of the development
of Ni-based OCs in the CLR process due to the high activation energy of oxygen anion diffusion in
NiO (2.23 eV in CLR) and the low Tammann temperature of Ni (691 ◦C) [11–14].
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Figure 1. Schematic description of CLR of ethanol.

Recent research has revealed that CeO2 exhibits excellent redox property due to abundant oxygen
storage capacity and the strong capability to stabilize Ni nanoparticles because of strong metal
support interaction (MSI) [15,16]. CeO2 can readily release lattice oxygen under reducing conditions,
thus creating oxygen vacancies which are associated with oxygen mobility [17]. The MSI between the
Ni and CeO2 could tune the physiochemical properties of Ni, contributing to high catalytic reactivity
and stability [18]. Jiang et al. [19] proposed that the oxygen vacancies of CeO2 could effectively
eliminate surface coke deposition, activate steam, and shorten the “dead time” in the CLR process.
Dou et al. [20] revealed that the surface oxygen originating from the CeO2 lattice can oxidize coke
precursors, keeping the OC surface free of coke deposition. It has been reported that MSI and the
mobility of lattice oxygen show strong dependence on the morphology of CeO2 [21]. Lykaki et al. [22]
have demonstrated CeO2 morphology dominates reducibility and oxygen mobility, which follow the
sequence: nanorod (NR) > nanopolyhedra (NP) > nanocube (NC). Moreover, the apparent activation
energy of these three CeO2 shapes for the CO oxidation in a hydrogen-rich gas shows the opposite
trend, implying the potential highest water gas shift (WGS) activity of NR [23].

Therefore, in this work, a Ni/CeO2-NR OC for CLR of ethanol for hydrogen production
is prepared by a hydrothermal method. The physicochemical properties are investigated by
N2 adsorption-desorption, X-ray diffraction (XRD), inductively coupled plasma optical emission
spectroscopy (ICP-OES), Raman spectra, high resolution transmission electron microscopy (HRTEM),
X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR).
The performances of the Ni/CeO2-NR OC are tested in a packed-bed reactor and compared with the
other reference bulk OC, i.e., Ni/CeO2.

2. Results and discussion

2.1. Characterization of OCs

Predominant physicochemical properties of fresh Ni/CeO2-NR and CeO2-NR are tabulated in
Table 1. The introduction of Ni species has a pronounced influence on the texture of CeO2-NR.
The CeO2-NR support showed higher Brunauer-Emmett-Teller (BET) surface area than that of
Ni/CeO2-NR. The average pore diameter and pore volume also exhibited the same trends. It has been
reported that the BET surface of CeO2-NR decreased by 13–18% after the incorporation of 7.5 wt %
CuO [22]. The actual Ni content of Ni/CeO2-NR determined by ICP-OES was 9.7 wt %.
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Table 1. Physicochemical properties of fresh Ni/CeO2-NR and CeO2-NR.

Sample Surface Area
(m2/g)

Average Pore
Diameter (nm)

Pore Volume
(cm3/g)

Ni Content
(wt %)

Ni Dispersion
(m2/gNi)

Ni Crystal Size/Ni
Average Particle Size (nm)

CeO2 Crystal
Size (nm)

Ni/CeO2-NR 75.1 18.2 0.37 9.7 1 6.5 2 8.9 3/8.1 4 16.1 3

CeO2-NR 90.3 26.5 0.80 N/A N/A N/A 14.8

1. Determined by ICP-OES; 2. Determined by H2 chemisorption; 3. Determined by XRD from Ni (111) and CeO2
(111) plane; 4. Calculated from the HRTEM images.

The XRD profiles of fresh Ni/CeO2-NR and CeO2-NR OCs are shown in Figure 2. The reflection
peaks at 28.5◦, 33.1◦, 47.5◦, 56.3◦, 59.1◦, 69.4◦, 76.7◦, and 79.1◦ could be indexed to (111), (200), (220),
(311), (222), (400), (331), (420), and (422) planes of a fluorite-structure CeO2 (Space group: Fm3m),
respectively. There were no other impurity peaks of the hexagonal structure of Ce(OH)3 or Ce(OH)CO3

detected, indicating the excellent crystalline purity of CeO2. Two peaks at 44.5◦ and 51.8◦, which could
be respectively attributed to (111) and (200) facets of Ni, were observed for Ni/CeO2-NR. The mean
crystal sizes of Ni and CeO2 were obtained from the Scherrer Equation (listed in Table 1). The crystal
sizes of CeO2 for CeO2-NR and Ni/CeO2-NR were 14.8 and 16.1 nm, respectively, indicating that
the incorporation of Ni would not significantly change the structure characteristics of CeO2 support.
Similar crystallite sizes of CeO2-NR prepared by the hydrothermal method have been reported in
other work [22,24].
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Raman spectroscopy was employed to characterize surface and bulk defects. As shown in Figure 3,
both samples present four characteristic peaks. The appreciable peak at 462.8 cm−1 resulted from
the first order F2g mode of the fluorite cubic structure. The Raman shift at 596.1 cm−1 could be
assigned to the defect-induced band (D band). The relocation of O atom from the interior of tetrahedral
cationic sub-lattice to the interior of ideally empty octahedral cationic sites (Frenkel interstitial sites)
would lead to the deformation of the anionic lattice of CeO2 [25]. The intensity of the D band is a
gauge of the distortion of ionic lattice, which results in punctual defects and oxygen vacancies [22].
Therefore, the value of ID/IF2g is commensurate with the number of defect sites in ceria. The relative
intensity of ID/IF2g decreased after the incorporation of Ni, suggesting NiO species suppress the
surface oxygen vacancy of CeO2-NR. Li et al. [26] reported that Vanadium atom would bond to the
surface of CeO2-NR by generating V–O–Ce species, thus covering oxygen defects and stabilizing
adjacent Ce atoms. The inconspicuous peak at 258.1 cm−1 results from the second order transverse
acoustic mode (2TA) or doubly degenerate transverse optical mode (TO), which are Raman inactive
in a perfect crystal [27]. The peak at 1179.9 cm−1 may be related to the stretching mode of the short
terminal Ce=O. Moreover, the Raman shift of Ni/CeO2-NR moved towards a low wavenumber in
comparison with that of CeO2-NR, indicating the incorporation of Ni affects the symmetry of Ce–O
bonds [21].
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The TEM of CeO2-NR and Ni/CeO2-NR are illustrated in Figure 4. The Ni/CeO2-NR maintained
the original nanorod shape after Ni incorporation. The CeO2-NR was approximately 14 nm in
diameter and several hundreds nm in length. As shown in Figure 4a, the calculated interference
fringe spacings (d) are 0.27 and 0.31 nm, revealing the CeO2-NR predominantly exposes the (100) and
(111) facets. The preferable exposure crystal facets of CeO2-NR are consistent with those of samples
derived from the CeCl3 precursor in other studies [28,29]. Theory calculation has demonstrated that the
(111) is the least reactive facet, followed by (100) and (110). In addition to the preferable crystal facets,
there are other aspects degerming CeO2 activity. Several ‘dark pits’ are shown in the box of Figure 4.
Liu et al. [29] have reported that these dark pits are related to the surface reconstruction and defects;
their study also concluded that these defects play a more important role in determining the CeO2

activity than the exposure planes. Sayle et al. [30] have performed a molecular dynamic modeling
to simulate the synthesis of CeO2-NR and discovered that the atomistic sphere model exhibits many
steps on the (111) planes of CeO2-NR. The migration of oxygen in CeO2 occurs by a vacancy hopping
mechanism; therefore, the clusters of defects are conducive to oxygen transfer. If the diffusion rate of
oxygen anions becomes adequately high, a consecutive oxygen flow is generated, resulting in high
reducibility. The Ni particle size distribution, which is calculated from 52 particles, was inserted in
Figure 4, and the average particle size was 8.1 nm (shown in Table 1). Shen et al. [31] have elucidated
that the strong interfacial anchoring effect, which exists between the surface oxygen vacancies on (111)
planes of CeO2-NR and the gold particles, only allows the gold particles to locally rotate or vibrate
but not to migrate to form aggregates. Therefore, the strong MSI would significantly improve the Ni
dispersion on the CeO2-NR surface, resulting in a small particle size of Ni.
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XPS was employed to investigate the valences of Ce and Ni cations. The XPS spectra of Ce 3d
of Ni/CeO2-NR (shown in Figure 5a) could be deconvoluted into two spin-orbit series, i.e., 3d5/2 (u)
and 3d3/2 (v). The multiplet splitting components labeled u0, u1, u2, v, v1 and v2 corresponds to
the 3d104f0 state of Ce4+, while the u0 and v0 are related to 3d104f1 state of Ce3+. These two Ce
species in Ni/CeO2-NR indicate the OC surface was partly reduced because of oxygen desorption
and the formation of oxygen vacancies. It is widely accepted that oxygen vacancies are produced to
maintain electrostatic balance once Ce3+ exists in fluorite Ce (Equation 1). The percentage of Ce3+

cations to the total Ce cations is determined by the area ratio of different Ce species in XPS spectra.
The Ce3+ ratio of Ni/CeO2-NR (16.9%) was lower than that of pure CeO2-NR (24.3%) reported in
Lykaki et al. [22], suggesting NiO species could inhibit the formation of surface-unsaturated Ce3+.
The decrease in surface Ce3+ species of Ni/CeO2-NR was consistent in the trend of ID/IF2g in the
Raman result. The Ni 2p XPS spectra (illustrated in Figure 5b) were characterized by two spin-orbit
groups, i.e., 2p3/2 (855.2 and 856.4 eV) and 2p1/2 (873.3 eV), as well as a shake-up peak at 861.8 eV.
The photoelectron peak of 2p3/2 over Ni/CeO2-NR shifted towards high-binding energy in contrast to
those over pure NiO (844.4 eV, reported in Lemonidou et al. [32]) and Ni/CeO2 (854.5 eV, reported in
Tang et al. [33]). This result implies there is an enhanced MSI between Ni and CeO2-NR. The Ni/Ce
atom ratio of the outer surface of CeO2-NR (0.49) is higher than the nominal one (0.32), suggesting a
Ni species enrichment from bulk to surface.

4Ce4+ + O2− → 4Ce4+ +
2e−

δ
+ 0.5O2 → 2Ce4+ + 2Ce3+ + δ + 0.5O2 (1)
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where δ represents an empty position derived from the removal of O2− from an oxygen tetrahedral
site (Ce4O).
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H2-TPR was performed to investigate MSI. As illustrated in Figure 6, the H2-TPR patterns of
CeO2-NR are comprised of two reduction peaks. An inconspicuous peak at 262 ◦C, which can be
assigned to the reduction of surface-adsorbed oxygen, was observed, while a broad peak ranging from
400 ◦C to 550 ◦C could be ascribed to the reduction of Ce4+ to Ce3+ [22,34]. With regard to Ni/CeO2-NR,
the TPR profiles consisted of three peaks. The small peak at 220 ◦C may have been attributable to the
reduction of the NiO species, which slightly interacted with CeO2-NR supports. Zhang et al. [21] have
reported that this NiO species is characterized by small radius and could incorporate into CeO2-NR
surface. The second peak at 356 ◦C could be ascribed to the reduction of NiO species, with a strong
interaction with CeO2-NR supports. The H2 consumption of the second peak was highest among
the three peaks, indicating most of the NiO strongly interacted with the support. The third peak at
494 ◦C was also attributed to the reduction of Ce4+ to Ce3+. However, the broad reduction peak of
Ni/CeO2-NR shifted to a lower temperature than that of pure CeO2-NR, suggesting the introduction
of Ni improves the reducibility of CeO2-NR. It has demonstrated that the promoted reduction behavior
is caused by the generated Ni-Ce-O species which improves the deformation of CeO2 [35].
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2.2. Activity Tests of OCs

The activity of Ni/CeO2-NR was tested in CLR of ethanol and compared with Ni/CeO2.
Figure 7 displays the performance of both OCs in CLR: H2 selectivity and ethanol conversion at
the fuel feed step as well as the concentration of CO, CO2 and O2 at the air feed step. The H2 selectivity
and ethanol conversion of both OCs remained relatively stable during the process. With regard to
Ni/CeO2-NR, the average ethanol conversion remained at 88.0%, and the average H2 selectivity was
78.9%. However, with the average ethanol conversion and H2 selectivity of conventional Ni/CeO2 at
72.9% and 60.5% respectively, the activity of Ni/CeO2-NR was superior to the Ni/CeO2. As the Ni
content and other experimental conditions were the same for both OCs, the improved activity therefore
resulted from the support.
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Various factors contributed to the enhanced catalytic activity. Notably, the CeO2-NR with
high specific-to-volume ratio guarantees excellent Ni dispersion, as evidenced by TEM and TPR
results. Such a one-dimensional nanostructure enables uniform and small Ni nanoparticles to be
finely dispersed on supports, thus generating many accessible catalytic active sites. Additionally,
the high concentration oxygen vacancies of CeO2-NR, which was proven via Raman and XPS analysis,
can activate and produce OH groups from steam. H2 and CO2 can be generated via the reaction
between the formed OH groups as well as intermediate species, thus improving H2 selectivity. It has
been proposed that the interface of the metal/CeO2 is the main site for steam reforming reaction [36].

The air feed process is highly oxygen consuming and is accompanied by the generation of
CO2 and CO due to coke oxidation and partial oxidation. As illustrated in Figure 7, all the samples
exhibited CO2 and CO evolution at the air feed stage. The integration areas of C-containing gas
concentrations corresponded to the quantity of carbon deposition. Ni/CeO2-NR exhibited small
peak areas compared with the Ni/CeO2 OC, indicating that the carbon deposition on Ni/CeO2-NR
was effectively suppressed. This is a result of the abundant oxygen vacancies and its strong oxygen
storage capacity, which enhanced the oxygen mobility and thereby facilitated the removal of carbon
deposition. In addition, the depleted CeO2-NR could be partially replenished by the air feed step.
The O2 concentration increased from 0%to 23% at the end of the air feed stage, indicating the end of
coke elimination and replenishment of lattice oxygen.

2.3. Stability Tests

The durability of Ni/CeO2-NR and Ni/CeO2 was tested in a 10-cycle CLR process. As shown
in Figure 8, the H2 selectivity of Ni/CeO2 slowly declined with the increase of the running cycles,
while the Ni/CeO2 NR maintained its activity throughout the test. During the tests, the H2 selectivity
of Ni/CeO2-NR decreased from 81.7% to 79.2%, while Ni/CeO2 exhibited a significant decrease in H2
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selectivity from 61.8% to 51.4%. The deactivation of OCs predominantly caused Ni sintering and carbon
deposition. Notably, the Ni/CeO2-NR OC exhibited a more durable performance than the Ni/CeO2,
revealing that the CeO2-NR supported metal was more resistant to deactivation. The superior
durability of the Ni/CeO2-NR sample resulted from the strong MSI between Ni and CeO2-NR support,
which improved the metal-sintering resistance. The abundant oxygen vacancies of CeO2-NR are
essential units for the anchoring of metal particles. The essential role of CeO2 is to disperse and
stabilize Ni particles over its surface oxygen vacancies, which depend on the morphology of CeO2.
As evidenced by XPS, the (111) plane of CeO2-NR plays an important role in anchoring the Ni particles.
It has been proposed that the interfacial Au atoms which are located away from the particle perimeter
(covered interfacial atoms) would closely interact with the underlying surface oxygen vacancies on
the (111) facets of CeO2-NR [31]. Because this interfacial region was not involved in the reforming
reaction, this strong interaction would effectively stabilize the Ni particles on CeO2-NR. Additionally,
small size Ni particles can lower the driving force for coke diffusion and thereby help to reduce the
carbon deposition. Furthermore, the strong oxygen mobility of CeO2-NR is indispensable to removing
the carbon deposition at the metal surface. It has been demonstrated that the oxygen deposited in
CeO2 lattice can react with the carbon species left over from the steam reforming reaction [37]. Overall,
CeO2-NR support not only promotes the anti-sintering capability of OCs but also reduces the carbon
deposition, thus improving the durability of OCs. A comparison of several investigations regarding
CLR over different Ni-based OCs is tabulated in Table 2. The Ni/CeO2-NR in this work showed higher
average fuel conversion in long-term tests despite the low Ni loading, indicating the strong sintering
resistance and high reforming activity of this OC.
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Table 2. Comparison of CLR over different OCs.

OCs Ni Loading
(wt %) T (◦C) S/C Tested Cycles Reactant Average

Conversion (%)
Average H2

Yield (%) References

CeNi/MCM-41 6 650 1.5 10 Glycerol ~90 6.2 [37]
LaNiO3/MMT 13 650 3 10 Ethanol ~90 - [3]

Ni/MMT 19.9 650 4 20 Ethanol ~78 - [13]
CeNi/PSNT 24.7 650 3 10 Glycerol ~100 12.5 [19]
CeNi/SBA-15 12 650 3 14 Ethanol ~84 - [20]
Ni/CeO2-NR 9.7 650 4 10 Ethanol ~90 - This work
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3. Materials and Methods

3.1. Preparation of OCs

CeO2-NR was synthesized on the basis of our previous work with small modifications [38]. Firstly,
1 g of CeCl3 (99.9%, Aladdin, Shanghai, China) and 19.3 g of NaOH (97%, Aladdin) were dissolved in
50 mL deionized water and continuously stirred for 25 min. The resulting mixture was then put into a
Teflon-lined autoclave and kept at 100 ◦C for 24 h. Subsequently, the sample was separated, washed,
then dried at 85 ◦C for 10 h and finally calcined at 400 ◦C for another five hours. The Ni/CeO2-NR
oxygen carrier was synthesized by a wet-impregnation method. Ni(NO3)2·6H2O (98%, Aladdin) of
0.2 g, equivalent to 10 wt % Ni loading, was first dispersed in 5 mL deionized water, and the prepared
CeO2-NR of 0.5 g was added into the solution. The mixture was stirred under sonication for three
hours at 60 ◦C and then dried at 85 ◦C for 10 h. The as-synthesized sample was then calcined at 700 ◦C
for two hours.

The other reference bulk Ni/CeO2 was also synthesized by a wet-impregnation method, and the
procedure has been reported in Xu et al. [39]. The Ni content of this OC was also set to 10 wt %.

3.2. Characterization of OCs

The texuture of OCs were analyzed by a Micrometric Acusorb 2100E apparatus
(Ottawa, ON, Canada) at 77 K. The OCs were degassed at 573 K for three hours before tests.

ICP-OES (Nijmegen, The Netherlands) was applied to measure the elemental composition.
Before tests, the sample was solved by hydrofluoric acid solution.

XRD was performed, using a Shimadzu XRD-600 instrument (Kyoto, Japan), to identify the phase
composition. The scanning 2θ degrees ranged from 10◦ to 80◦, and the scanning rate was set to 4◦/min.
A graphite-filtered Cu Kα radiation (λ = 1.5406 Å) was applied as a radiation source.

Raman spectra were employed by a Renishaw Spectroscopy (Gloucestershire, UK) with a visible
514 nm Ar-ion laser under ambient condtions. During the mesurement, the flowing gas was He,
and the test temperature was maintained at 300 ◦C.

TEM was conducted, using FEI Tecnai F30 (Cleveland, OH, USA), to investigate the morphology
of the Ocs. The samples were first solved in ethanol under sonication, followed by dispersal on a
copper grid-supported carbon foil and dried in air.

XPS was carried out by a ThermoFisher K-Alpha system with a 150 W Al Kα source
(Waltham, MA, USA). The samples were placed on the holder, and the scanning step was set to
0.15 eV.

H2-TPR was employed by a Micrometrics AutoChem 2920 instrument (Ottawa, ON, Canada). In a
typical procedure, a sample of 90 mg was preheated at 450 ◦C for one hour in an Ar flow of 35 mL/min
and subsequently cooled to 80 ◦C. A mixture of 10 vol % H2 in Ar flow (35 mL/min) was then
inserted, and the temperature was increased from 80 ◦C to 100 ◦C at a rate of 5 ◦C/min simultaneously.
H2 chemisorption was also performed by the same apparatus to analyze the Ni dispersion. The sample
was first reduced at 700 ◦C in a H2/Ar flow (30 mL/min) for one hour, followed by cooling to 100 ◦C
under Ar flow. Subsequently, H2 pulses were introduced until the eluted peaks of successive pulses
became steady. The Ni active surface area was obtained from the H2 adsorbption volume considering
the stoichiometric ratio Hadsorbed/Nisurface = 1 and a surface area of 6.5 × 10−20 m2 per Ni atom [40].

3.3. Activity and Stability Tests

The performance of CLR of ethanol by Ni/CeO2-NR and reference conventional bulk OCs, i.e.,
Ni/CeO2, were conducted in a packed-bed reactor, whose schematic was described in our previous
work [41,42]. The tested OCs of 0.5 g were loaded at the center of the quartz reactor. During a fuel feed
step, an ethanol solution (4 mL/h) with a steam to carbon ratio (S/C) of four was preheated to 150 ◦C
and then inserted into the reactor in a N2 flow of 180 mL/min. The reacter temperature of the fuel
feed step was 650 ◦C. An Agilent 7890A (Santa Clara, CA, USA) chromatography with two detectors,
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thermal conductivity detector (TCD) and flame ionization detector (FID), was applied to verify the
effluents. TCD with a TDX-01 column was applied to detect N2, H2, CO, CO2, and CH4; the FID with a
Porapak-Q column was applied to measure the concentration of C3H8O3, H2O, and CH3CHO. In an air
feed step, the air flow was 100 mL/min, and the reaction temperature was also 650 ◦C. The exhausted
gases were detected by another GC (Agilent 7890A) with a TCD detector. A 5A molecular sieve
column was used to detect the O2, and the TDX-01 column was applied to detect CO2, CO, and N2.
The durations of the fuel feed step and the air feed step were 60 and 10 min, respectively. A N2 purge
process of five minutes was performed between the fuel feed step and the air feed step to eliminate the
residue gas in the reactor.

The conversion and H2 selectivity were calculated as follows:

X =
Fin − Fout

Fin
× 100% (2)

SH2 =
1
6
× moles H2 produced

moles ethanol f eed× X
× 100% (3)

4. Conclusions

A Ni/CeO2-NR OC was synthesized by hydrothermal method and tested in CLR of ethanol
process in this work. H2 selectivity of 80% was achieved by Ni/CeO2-NR in a 10-cycle stability test.
The characterization results show that the Ni/CeO2-NR possesses high Ni dispersion, abundant oxygen
vacancies, and strong MSI. The small particle size and abundant oxygen vacancies contributed to the
WGS reaction, thus improving the catalytic activity. The buried interfacial Ni atoms strongly anchored
on the underlying surface oxygen vacancies on the (111) facets of CeO2-NR, therefore enhancing the
anti-sintering capability. Moreover, the strong oxygen mobility of CeO2-NR also effectively eliminated
surface coke on the Ni particle surface.
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