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Abstract: Sulfur poisoning is one of the most important factors deteriorating the purification
efficiency of diesel exhaust after-treatment system, thus improving the sulfur resistibility of
catalysts is imperative. Herein, ceria oxygen storage material was introduced into a sulfur-resistant
titania by a co-precipitation method, and the sulfur resistibility and catalytic activity of prepared
TiO2-CeO2 composite in the oxidation of diesel soluble organic fraction (SOF) were studied.
Catalytic performance testing results show that the CeO2 modification significantly improves the
catalytic SOF purification efficiency of TiO2-CeO2 catalyst. SO2 uptake and energy-dispersive X-ray
(EDX) results suggest that the ceria doping does not debase the excellent sulfur resistibility of bare
TiO2, the prepared TiO2-CeO2 catalyst exhibits obviously better sulfur resistibility than the CeO2

and commercial CeO2-ZrO2-Al2O3. X-ray powder diffraction (XRD) and Raman spectra indicate that
cerium ions can enter into the TiO2 lattice and not form complete CeO2 crystals. X-ray photoelectron
spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR) and oxygen storage capacity
(OSC) testing results imply that the addition of CeO2 in TiO2-CeO2 catalyst can significantly enhance
the surface oxygen concentration and oxygen storage capacity of TiO2-CeO2.

Keywords: cerium-doped titania; sulfur-tolerant materials; organic compounds purification;
diesel oxidation catalyst; vehicle exhaust

1. Introduction

Diesel engines have been widely used in passenger cars and vans, due to excellent fuel
efficiency and durability. However, diesel exhaust gases, such as carbon monoxide (CO), unburned
hydrocarbons (HCx), nitrogen oxides (NOx), particulate matter (PM) and soluble organic fraction
(SOF), are considered major sources of air pollutants [1–3]. Among these hazardous pollutants, SOF are
the heavy liquid hydrocarbons (C > 16 [4,5], aromatics and oxygenated compounds [6]) adsorbed on
soot, which mainly come from unburned fuel and lube oils [7,8]. The content of SOF is known to vary
with engine operating conditions and can reach about 5–60% of the whole mass of the particulate
matter [6,9–11]. Due to the fact that diesel SOF contains types of polycyclic aromatic hydrocarbons
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(PAHs) [12,13] which are recognized as strong carcinogens [14,15], purifying the SOF from diesel
exhaust is an important and essential work.

Diesel oxidation catalyst (DOC) was employed to accelerate the oxidation and purification of
diesel exhaust gases of CO, HCx and SOF. In recent decades, CeO2-ZrO2, Al2O3 and their mixed
oxide-based catalysts were widely used as commercial DOC and displayed excellent catalytic CO and
HCx oxidation activity. Focusing on the purification of SOF, CeO2-based oxygen storage materials
(OSM) have been greatly impressed by considerable researchers due to the superior catalytic activity
on hydrocarbons and SOF oxidation [16–18]. Meanwhile, controlled synthesized of nanostructured
CeO2-based catalysts and their catalytic performance in diesel soot oxidation are lucubrated [19,20].
However, CeO2-based catalysts are easily poisoned by SO2 [21–24]. And SO2 is a subsistent in the diesel
exhaust, since sulfur is present in almost all commercial diesel fuels [25–27], sulfur in fuels would be
oxidized to SO2 and then emitted from diesel engines [28,29]. Furthermore, sulfur poisoning resulting
from sulfur species accumulation is more destructive, since even using ultra-low sulfur diesel (ULSD),
cumulative exposure of a catalyst over its lifetime in a heavy-duty diesel may amount to kilograms
of sulfur [30]. A large amount of sulfur species accumulation inevitably results in the blocking of
channels of monolithic catalyst, and hence the strike of diesel exhaust after-treatment system. Thus, it
is important and realistic for a diesel oxidation catalyst to improve the sulfur resistibility.

TiO2 is known as an effective sulfur-resistant material [31–33], and our previous works [34–36]
also prove that TiO2-based diesel oxidation catalysts display excellent sulfur resistibility. However,
TiO2 is not active enough for catalytic diesel SOF combustion. Reports about the sulfur resistance
catalyst for diesel SOF oxidation are still scarce. Considering all of this, in this work, CeO2 was
introduced in TiO2 by a co-precipitation method, and its effects on sulfur resistibility and catalytic
activity for diesel SOF combustion were investigated.

2. Results and Discussion

2.1. Sulfur Resistibility

The sulfur resistibility values of catalysts were measured by sulfur uptake testing. As shown in
Figure 1, under SO2 exposure, the weight of all samples increased with time; final weight increments
tended to be flat after 1–3 h SO2 exposure, except for CeO2. After 4 h, chosen as representative exposure
time of simulative 160,000 km vehicle aged catalyst, the final weight increments of TiO2, TiO2-CeO2 and
CeO2 catalysts are 1.63 wt. %, 2.01 wt. % and 4.72 wt. %, respectively. The normalized sulfur uptake
results are calculated by supposing 1 g of sample as standard, and the results are listed in Table 1.
The normalized sulfur uptake values of TiO2, TiO2-CeO2 and CeO2 catalysts are 166 µg/m2, 170 µg/m2,
and 891 µg/m2, respectively. From the results it can be seen that the sulfur species accumulation is
severe on CeO2 catalyst but is slight on both TiO2 and TiO2-CeO2 catalysts, which implies that the
TiO2-based catalysts (TiO2 and TiO2-CeO2) present obviously better sulfur resistibility than the CeO2

catalyst. Since the non-sulfating material of TiO2 displays low SO2 adsorption and hence relieves
sulfate generation and exhibits superior sulfur resistibility [32,37]. Furthermore, the introduction of
moderate amounts of ceria in TiO2 has essentially no effect on the naturally excellent sulfur resistibility
of TiO2.

Table 1. Sulfur accumulation and normalized sulfur uptake of the TiO2, TiO2-CeO2 and CeO2 samples.

Samples Surface Area a (m2/g)
Sulfur Content (wt. %)

Normalized Sulfur Uptake c (µg/m2)
Sulfur Uptake EDX b

TiO2 98 1.63 1.02 166
TiO2-CeO2 118 2.01 1.04 170

CeO2 53 4.72 4.26 891
a Surface area was calculated by BET method from the N2 adsorption-desorption results; b EDX results were
obtained by detecting the simulative 160,000 km vehicle aged samples; c The normalized sulfur uptake = sulfur
uptake/(100 × surface area) [37,38].
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Figure 1. Sulfur uptake of the TiO2, TiO2-CeO2 and CeO2 catalysts.

Additionally, the accumulation amounts of sulfur species on simulative 160,000 km vehicle aged
TiO2, TiO2-CeO2 and CeO2 catalysts tested by EDX (Table 1) are 1.02 wt. %, 1.04 wt. % and 4.26 wt. %,
respectively, which shows the same trend with the sulfur uptake results. It is clear that the prepared
TiO2 and TiO2-CeO2 present significantly less sulfur species accumulation and better sulfur resistibility
than the CeO2 catalyst under the long-term exposure of diesel exhaust ambiences.

2.2. Catalytic Performance

Figure 2 shows the thermogravimetry-differential thermal analysis-differential thermogravimetry
(TG-DTA-DTG) curves of the bulk lube without catalysts and the lube impregnated on catalysts; all of
the DTA curves are the positive peaks indicating exothermic peaks, and all of the originally DTG
negative peaks are inverted into positive peaks for a better readability of the graph. The combustion
of lube without catalyst under air flow is shown in Figure 2a; the weight loss of bulk lube is tersely
distinguished into two stages; about 90% of lube is deflagrated at 220–350 ◦C, and then the rest of 10%
lubricating oil is consumed tardily after 350 ◦C till 500 ◦C, which implies that the commercial lube
contains a fraction of hydrocarbons hard to pyrolyze (may come from the lubricant additive). The onset
combustion temperature of T10% (the temperature at which 10% of the initial lube is converted) is
about 264 ◦C, the lube combustion fastest temperature of Tm (the temperature of weightlessness fastest
point in DTG curves) is about 324 ◦C, and the final reaction temperature of Tf (the temperature of lube
is completely converted) is about 507 ◦C. As shown in DTA curves of Figure 2a, a sharp and large
exothermic peak is seen at about 325 ◦C which result from the rapid pyrolysis of bulk lube. Due to the
decomposition of lube being an exothermic reaction, once ignition occurs, the heat continually increases
and accumulates, and hence, most of lube is removed rapidly. The multiple peaks at 400–500 ◦C imply
that the commercial lube contains multifarious hydrocarbons (lubricant additives) that are hard to
decompose. Figure 2b plots the lubricant oxidation on CeO2 catalyst. About 93% of the lube is rapidly
oxidized between 140 ◦C and 280 ◦C, and the rest of 7% of lube is fully burnt at 280–340 ◦C. The onset
combustion temperature of T10% is about 162 ◦C, the fastest weightlessness temperature of Tm is about
186 ◦C and the final reaction temperature of Tf is about 322 ◦C. Figure 2c shows the decomposition of
lubricant with TiO2, the TG-DTG curves can be divided into four stages with different decomposition
rates. About 16% of lube is decomposed at 205–266 ◦C, another 28% of the lube is burnt at 266–324 ◦C,
about 49% of the lubricant is consumed at 324–396 ◦C and the rest of 7% of uninflammable lube
is ignited between 396 ◦C and 420 ◦C. The onset combustion temperature of T10% is about 249 ◦C,
the final reaction temperature of Tf is about 420 ◦C, and three obviously fast weightlessness peaks
of lube combustion are observed at about 252, 289 and 363 ◦C. For the TiO2-CeO2 catalyzed lube
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combustion (Figure 2d), about 97% of the lubricating oil is rapidly combusted between 180 ◦C and
330 ◦C, and the rest of about 3% of lube is burnt out at 334–362 ◦C. The T10%, Tm and Tf is about 212,
261 and 362 ◦C, respectively.Catalysts 2018, 8, x FOR PEER REVIEW  4 of 13 
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Figure 2. Simultaneous TG-DTA-DTG curves for simulating the catalytic performance for the
combustion of SOF on (a) without catalyst; (b) CeO2; (c) TiO2 and (d) TiO2-CeO2 catalysts.

Due to the fact that the weight loss of lube can be ascribed either to evaporation or to combustion,
the activity of prepared catalyst is also identified by the integrated area of the exotherm. The normalized
DTA peak areas are described in units of µV·◦C/(mg lube)/(mg sample), and then different catalysts
can be directly compared on a common basis [39,40]. The larger the value of normalized DTA
exotherm peak area, the greater the fraction of lubricant combusted verses evaporated, and the better
the catalytic performance [39–41]. The oxidation activity data of catalysts for lube combustion are listed
in Table 2. CeO2 catalyst exhibits an outstanding catalytic lube oxidation activity, which is consistent
with our previous reports [40,41]. Although the introduction of TiO2 slightly lowers the combustion
temperature of lube, bare TiO2 is not active enough for catalytic SOF oxidation. About 60% of lube is
burnt at 350 ◦C in the lube/TiO2 sample, while the value of lube without catalyst sample is about 90%.
This is because the lube oxidation is an exothermic reaction; once ignition occurs, the heat continually
increases and accumulates. Thus, the burn of lube without catalyst (containing more lube oil) is more
violently than the lube/TiO2. The TiO2-CeO2 catalyst obviously lowers the onset temperature of lube
combustion and considerably promote the removing of lube resulting from combustion. Compared
to TiO2, the prepared TiO2-CeO2 catalyst presents obviously lower SOF removal temperature and
larger exothermal peak area, which indicates that the TiO2-CeO2 catalyst presents better catalytic lube
combustion activity.
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Table 2. Catalytic performances for the combustion of SOF over the prepared catalysts.

Samples T10% (◦C) Tm (◦C) Tf (◦C) Exothermal Peak Area
(µV·◦C/mg Lube)

Exothermal Peak Area
(µV·◦C/(mg Lube)/(mg Sample))

lube 264 324 507 283.9 -
lube/CeO2 162 186 322 1068.1 119.5
lube/TiO2 249 - a 420 901.6 102.6

lube/TiO2-CeO2 212 261 362 1029.5 115.5
a Three obviously fast weightlessness peaks are observed over the lube/TiO2 sample.

2.3. Catalyst Characterization

2.3.1. XRD and Raman Spectra

The XRD patterns of prepared catalysts are shown in Figure 3; both TiO2 and TiO2-CeO2 display
only characteristic peaks which refer to the typical anatase structure of TiO2. The peaks of TiO2 are
sharper than those of TiO2-CeO2, which indicates that the addition of CeO2 impedes the crystal growth
and sintering and lower crystallinity of the TiO2-CeO2 composite materials. In the case of TiO2-CeO2,
the typical reflections of CeO2 crystals at 28.7◦, 33.2◦, 47.7◦, 56.6◦ and 77.1◦ are not observed, and the
positions of typical anatase structure of TiO2 shift obviously to smaller angles, which suggest that a
complete CeO2 crystal is not formed and Ce ions (Ce4+ radius: 0.087 nm) possibly enter into the TiO2

(Ti4+ radius: 0.06 nm) lattice and resulting in an expansion of TiO2 unit cell, the unit cell volume of
anatase tetragonal cell of TiO2 is 134.95 Å3, for TiO2-CeO2, the value enlarges to 135.15 Å3. Thus, it can
be inferred that Ce ions entered into the TiO2 unit cell, and this is a possible reason why the addition
of ceria into TiO2 has no effect on the naturally excellent sulfur resistibility of TiO2.
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To further confirm the above conjecture, Raman spectra were employed. As can be seen in
Figure 4, CeO2 presents a strong peak at about 464 cm−1, which can be associated with the cubic
CeO2 [42]. TiO2 and TiO2-CeO2 catalysts show five visible peaks at 145, 196, 397, 517 and 639 cm−1,
which are the A1g + 2B1g + 3Eg Raman-active modes of TiO2 anatase phase (the peak at 517 cm−1

is complex of A1g and B1g) [43], for the TiO2-CeO2 catalyst, the characteristic Raman peak of CeO2

at 464 cm−1 is not observed. This result further confirmed that a CeO2 crystal is not formed in the
TiO2-CeO2 catalyst, which is consistent with the XRD result.
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2.3.2. Nitrogen Adsorption-Desorption

The nitrogen adsorption–desorption isotherms and pore size dispersion of TiO2 and TiO2-CeO2

are shown in Figure 5; both TiO2 and TiO2-CeO2 are mesoporous materials and show distinct H3 and
H4 complex hysteresis loops indicating slit pore features; compared to TiO2, the prepared TiO2-CeO2

displays obviously larger pore size; the textual features are listed in Table 3.
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Table 3. The texture properties of TiO2 and TiO2-CeO2 catalysts.

Samples Surface Area (m2/g) Pore Volume (cm3/g) Average Pore Diameter (nm)

TiO2 98 0.22 7.2
TiO2-CeO2 118 0.26 8.6
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The surface areas of TiO2 and TiO2-CeO2 catalysts are about 98 m2/g and 118 m2/g, respectively,
which indicates that the introduction of CeO2 slightly increases the surface area of TiO2. The pore
volume and average pore size of TiO2 are about 0.22 cm3/g and 7.2 nm, respectively; the pore volume
and average pore diameter of TiO2-CeO2 catalyst are 0.26 cm3/g and 8.6 nm, respectively. It can
be seen that the addition of CeO2 to TiO2 increases its surface area, pore volume and average pore
size; this is possibly due to the addition of CeO2 which impedes crystal growth and sintering and
lowers crystallinity of the TiO2-CeO2 composite materials, and this speculation is consistent with the
XRD results (Figure 3). The larger surface area, pore volume and pore size can be advantages to the
contacting, transmitting and diffusion of the lube molecules on the catalyst, and hence, be beneficial to
the catalytic SOF oxidation activity.

2.3.3. XPS

Figure 6 shows the XPS spectra of O 1s region of the CeO2, TiO2 and TiO2-CeO2 catalysts, all
samples show two XPS peaks, the peak at about 530.1 eV can be assigned to lattice oxygen, and the
peak with a binding energy of 532.1 eV is characteristic of surface adsorbed oxygen [37,44]. Due to
the superior oxygen storage capacity, the peak of surface adsorbed oxygen of CeO2 is obviously
stronger than the lattice oxygen; the surface adsorbed oxygen ratio is about 55%. For the TiO2 catalyst,
the surface adsorbed oxygen ratio is about 38%, and the addition of CeO2 obviously increases the
surface adsorbed oxygen ratio, where the value of TiO2-CeO2 is about 42%. Usually, surface adsorbed
oxygen is more reactive than lattice oxygen due to its higher mobility [45,46], and our previous work
also confirms that the adsorbed oxygen is more active than the lattice oxygen in the catalytic SOF
oxidation reaction [40]. Thus, the addition of CeO2 in TiO2 enhances the amounts of surface adsorbed
oxygen of TiO2-CeO2, which can be responsible for the improved catalytic activity of SOF oxidation.
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Additionally, the XPS (Ti2p) spectra of TiO2 and TiO2-CeO2 catalysts are both located at 458.5 eV
(2p3/2) and 464.2 eV (2p1/2), which are characteristic of TiO2 species. Compared to bare CeO2,
the cerium peaks of TiO2-CeO2 are very weak and indiscernible, which indicates that the surface
concentration of Ce in TiO2-CeO2 catalyst is very low; this phenomenon further confirms that Ce
dopants are not gathering on the surface and are possibly entering into TiO2 lattice, which is consistent
with the XRD results (Figure 3).
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2.3.4. H2-TPR

The redox property of a catalyst is closely related to the catalytic performance. The redox behavior
of the prepared catalysts is described by hydrogen temperature-programmed reduction (H2-TPR) and
shown in Figure 7.
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The TPR peak of individual TiO2 shows a weak peak at about 500–700 ◦C which may be ascribed
to the reduction of TiO2, and this phenomenon has been observed by other researchers [47,48].
The CeO2 obviously shows a two-step reduction, the multiple low-temperature reduction peak at about
300–600 ◦C can be assigned to the reduction of surface oxygen, and the peak after 700 ◦C is ascribed
to the reduction of CeO2 bulk oxygen [47]. For the TiO2-CeO2, the reduction peak at 300–700 ◦C can
be ascribed to the reduction of TiO2 and surface oxygen of CeO2; interestingly, the reduction peak of
bulk oxygen of CeO2 after 700 ◦C is poorly identified, which indicates that the TiO2-CeO2 catalyst
exhibits lots of surface oxygen, and this result is consistent with XPS result. Consequently, the prepared
TiO2-CeO2 catalyst with lots of surface oxygen species presents superior catalytic activity, due to the
surface oxygen is highly reactive [45,46].

2.3.5. OSC

The CeO2-based catalyst presents excellent oxygen storage capacity (OSC) and exhibits superior
catalytic SOF oxidation activity [16,41]. The OSC of prepared catalysts were tested by an oxygen pulse
injection technique and the results are listed in Table 4.

Table 4. The oxygen storage capacity (OSC) of TiO2, TiO2-CeO2 and CeO2-based catalysts.

Samples OSC (µmol O2/g Sample) Normalized OSC (µmol O2/g CeO2)

TiO2 2.9 -
TiO2-CeO2

a 101 524
CeO2 73 73

Ce0.35Zr0.60Nd0.05O2 269 [49] 638
a The prepared TiO2-CeO2 catalyst in this work is Ce0.1Ti0.9O2.

It can be seen that the OSC of TiO2 is about 2.9 µmol/g, which is very slight and may be within the
measurement uncertainties. While the addition of CeO2 significantly increases the OSC of TiO2-CeO2

catalyst, the OSC is about 101 (µmol O2)/(g sample), and the normalized OSC of TiO2-CeO2 catalyst is
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about 524 (µmol O2)/(g CeO2). For the pure CeO2 sample, the OSC is about 73 (µmol O2)/(g sample).
It should be mentioned that the static oxygen storage capacity testing for OSC of pure CeO2 is an
undervalued result, due to the oxygen mobility of bare CeO2 being very low. Thus, a CeO2-based
oxygen storage materials in our previous work [49] is used as reference, the normalized OSC of
Ce0.35Zr0.60Nd0.05O2 is about 638 (µmol O2)/(g CeO2). It can be seen that the normalized OSC of
prepared TiO2-CeO2 catalyst is almost as good as the CeO2-based oxygen storage materials. Based on
the results, it can be suggested that although Ce ions enter into the TiO2 lattice, the OSC of CeO2 in
TiO2 is not degraded, the TiO2-CeO2 still exhibits good OSC. The good OSC of TiO2-CeO2 is one of the
reasons that TiO2-CeO2 catalyst presents excellent catalytic SOF oxidation activity, this is consistent
with the catalytic performance results (Figure 2 and Table 2) and the reports [16,41].

3. Materials and Methods

3.1. Catalyst Preparation

The TiO2-CeO2 catalyst was prepared by a co-precipitation method. Desired TiOSO4·2H2O and
Ce(NO3)3·9H2O mixture solutions with the molar ratio of Ti:Ce = 9:1, which was the optimal ratio to
expose the single TiO2 crystal structure in our previous studies [35,36], were slowly added to NH3·H2O
solutions under vigorous stirring. And then the precipitate was filtered and washed many times, after
dried at 120 ◦C overnight and calcined for 3 h at 500 ◦C under airflow, the TiO2-CeO2 catalyst powder
was obtained. The TiO2 and CeO2 catalysts were prepared by the same method.

The simulative 160,000 km vehicle aged sample was obtained by following reference [50] and
our previous works [35,37]. Fresh catalyst was placed in a reactor and aged at 670 ◦C for 15 h and
then at 250 ◦C for 15 h in the gases mixture at flow rate of 800 mL/min: 600 ppm C3H6, 1500 ppm CO,
200 ppm NO, 50 ppm SO2, 5% O2, 4% CO2, 8% vapor and N2 balance.

3.2. Catalyst Evaluation

The catalytic activity for SOF combustion of prepared catalysts were tested using TG-DTA
method [16,39]. Due to the fact that the diesel SOF is comprised primarily of lube with a small
amount of unburned fuel [51], commercial lubricating oil was often used to simulate the diesel SOF
catalytic combustion [16,39].

For this test, the prepared powder catalyst was dried overnight at 120 ◦C to remove the effects of
surface adsorbed water, and then impregnated with 5.0 wt. % commercial lube (Shell Helix HX7 5W-40,
Shell Petrochemicals Company Limited, Jiaxing, China), the slurry of lube/catalyst mixture was stirred
and mixed till a homogeneous state was obtained. About 10 mg of the lube/catalyst mixture powder
was placed in the sample pan of TG-DTA unit (HCT-2, Beijing Henven Instruments, Beijing, China)
and dried at 120 ◦C for 1 h to eliminate the effects of adsorbed substances (water, volatile matters
etc.), and then heated to 550 ◦C with a temperature rate of 5 ◦C/min under airflow at 30 mL/min.
The TG-DTA curves were recorded to determine the catalytic performance for SOF combustion of the
prepared catalysts.

The test on lube without catalyst was carried out as a reference. About 10 mg of the lube was
placed in the sample pan of TG-DTA unit and dried at 120 ◦C for 1 h, and then heated to 550 ◦C with a
temperature rate of 5 ◦C/min under airflow at 30 mL/min.

3.3. Catalyst Characterization

Sulfur uptake was tested on a thermogravimetric analyzer (TGA) HCT-2 (Henven Instruments,
Beijing, China). Consulting the references [38,52] and our previous works [37,53], about 15 mg of
catalyst was placed in the sample crucible and pretreated under a 35 mL/min of N2 flow for 5 h at
300 ◦C, and then the gas mixture of 43 mL/min SO2(0.05 vol. %)-N2 and 31 mL/min O2(15.0 vol. %)-N2

was introduced at 300 ◦C for 4 h, the weight increase as a function of time was recorded by the TGA.
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The sulfur cumulant of catalysts after mimicking 160,000 km vehicle aging were analyzed by an
energy-dispersive X-ray (EDX) spectroscopy (IE-250, Oxford Instruments, Oxford, UK).

X-ray powder diffraction (XRD) patterns were collected on a powder X-ray diffractometer
(DX-1000, Dandong Fangyuan Instrument Ltd., Dandong, China) employing Cu Kα radiation
(λ = 0.1542 nm).

Raman spectra were recorded by a LabRAM HR Laser Raman spectrometer (HORIBA Jobin Yvon Inc.,
Paris, France) with an excitation wavelength of 532 nm.

N2 adsorption-description isotherms were measured on a QUADRASORB SI automated surface
area and pore size analyzer (Quantachrome Instruments Ltd., Boynton Beach, FL, USA). The specific
surface area and pore size were calculated by the Brunauer-Emmett-Teller (BET) method and
Barret-Joyner-Halenda (BJH) method, respectively. Before adsorption measurements, the samples were
degassed at 300 ◦C for 3 h under vacuum.

X-ray photoelectron spectroscopy (XPS) data were collected on a Kratos XSAM 800 spectrometer
(Kratos Analytic Inc., Manchester, UK) with Al Kα radiation. The binding energy shifts of the samples
were calibrated by fixing the C1s binding energy (BE 284.8 eV).

H2-temperature programmed reduction (H2-TPR) experiments were performed in a quartz tubular
reactor. Samples were pretreated at 450 ◦C for 1 h under the N2 flow (35 mL/min) and then cooled
to room temperature; after that, the samples were heated from room temperature to 800 ◦C with a
heating rate of 10 ◦C/min under the flow of H2 (5.0 vol. %)-N2 mixture. The hydrogen consumption
as a function of reduction temperature was recorded by a thermal conductivity detector (TCD) cell.

The oxygen storage capacity (OSC) of the samples was measured by a pulse injection
technique [54]. The sample was firstly reduced in a H2 flow (30 mL/min) at 550 ◦C for 1 h; after cooling
to 200 ◦C, an oxygen pulse was injected every 5 min to obtain a breakthrough curve, from which the
OSC was calculated.

4. Conclusions

From the aforementioned results, it can be concluded that moderate amounts of ceria dopants in
titania can obviously enhance the catalytic SOF oxidation activity of TiO2-CeO2 catalyst. Meanwhile,
the prepared TiO2-CeO2 catalyst can maintain the naturally excellent sulfur resistibility of titania;
the sulfur resistibility of TiO2-CeO2 is as well as the bare TiO2. The prepared TiO2-CeO2 catalyst
significantly enhances the sulfur tolerance of conventional CeO2-based SOF oxidation catalysts and
displays a good catalytic SOF oxidation activity. The TiO2-CeO2 catalyst exhibits a typical phase
of anatase, and the cerium ions can enter into the TiO2 unit cell, impede the crystal growth and
sintering and lower crystallinity of the TiO2-CeO2 composite materials and, hence, improve the surface
area, pore volume and pore size of TiO2-CeO2 catalyst. Moreover, the addition of CeO2 in TiO2 can
significantly enhance the surface oxygen concentration and oxygen storage capacity of TiO2-CeO2;
the normalized oxygen storage capacity of TiO2-CeO2 is almost as good as the CeO2-based oxygen
storage materials. The improvement of textual features and surface oxygen concentration of TiO2-CeO2

catalyst are the main reasons for the enhancement of catalytic SOF oxidation activity.
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