

# Article Solvent-free Mizoroki-Heck reaction applied to the synthesis of abscisic acid and analogues

#### Geoffrey Dumonteil, Mohammed Loubidi and Sabine Berteina-Raboin\*

#### **Experimental Section**

- 1. Materials and Methods
- 1.1. General Methods
- 1.2. Procedure for synthesis of 1-Ethenyl-3-methylcyclohex-2-en-1-ol
- 1.3. Procedures for synthesis of Methyl (2Z)-3-iodobut-2-enoate, (2Z)-3-Iodobut-2-enenitrile, Methyl (2Z)-3-iodoacrylate and 4-Nitrophenyl (2Z)-3-iodo-2methylprop-2-enoate, Methyl (2Z,4E)-3-methyl-5-(4',4',6'-trimethyl-1',3',2'-dioxaborinan-2'-yl)penta-2,4-dienoate, Methyl (2Z,4E)-5-iodo-3methylpenta-2,4-dienoate.
- 1.4. General procedure for Mizoroki-Heck optimized reaction. References
- 1.5. <sup>1</sup>*H* NMR and <sup>13</sup>*C* NMR Spectra of all Products and references

#### 1. Materials and Methods

#### 1. Materials and Methods

#### 1.1. General Methods

All reagents were purchased from commercial suppliers and were used without further purification. THF was dried with a dry station GT S100 instantaneously prior to use. The reactions were monitored by thin-layer chromatography (TLC) analysis using silica gel (60 F254) plates. Compounds were visualized by UV irradiation. Flash column chromatography was performed on silica gel 60 (230 - 400 mesh, 0.040 - 0.063 mm). Melting points (mp [°C]) were taken on samples in open capillary tubes and are uncorrected. The infrared spectra of compounds were recorded on a Thermo Scientific Nicolet iS10. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker avance II spectrometer at 250 MHz (<sup>13</sup>C, 62.9 MHz) and on a Bruker avance III HD nanobay 400 MHz (<sup>13</sup>C 100.62 MHz). Chemical shifts are given in parts per million from tetramethylsilane (TMS) or deterred solvent (MeOH-*d*<sub>4</sub>, Chloroform-d) as internal standard. The following abbreviations are used for the proton spectra multiplicities: b : broad, s: singlet, d: doublet, t: triplet, q: quartet, p: pentuplet, m: multiplet. Coupling constants (*J*) are reported in Hertz (Hz). High-resolution mass spectra (HRMS (ESI)) were performed on a Maxis Bruker 4G by the "Federation de Recherche" ICOA/CBM (FR2708) platform.

#### 1.2 Procedure for synthesis of 1-Ethenyl-3-methylcyclohex-2-en-1-ol

**1-Ethenyl-3-methylcyclohex-2-en-1-ol 1**:To a solution of vinylmagnesium bromide (22.7 mL, 22.7 mmol) 2.5 equiv) in dry THF (10 mL), was added the corresponding ketone (1.000 g, 9.1 mmol 1 equiv) at 0 °C. The mixture was stirred at this temperature for 2 – 3 hours. Then a saturated solution of NH<sub>4</sub>Cl (50 mL) was added, and the reaction mixture was extracted with EtOAc (3 x 40 mL). The organic phases were combined, dried on MgSO<sub>4</sub> and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel PE-AE: (8:2, v/v), to provide 1 (1.065 g, 85 %) as a pale yellow oil. <sup>1</sup>H NMR (250 MHz, Chloroform-*d*)  $\delta$  5.93 (dd, *J* = 17.3, 10.6 Hz, 1H, Hı'), 5.29 (q, *J* = 1.6 Hz, 1H, H<sub>2</sub>), 5.21 (dd, *J* = 17.3, 1.4 Hz, 1H, H<sub>2</sub>), 5.06 (dd, *J* = 10.6, 1.5 Hz, 1H, H<sub>2</sub>'), 1.97 – 1.88 (m, 2H, H<sub>4</sub>), 1.80 – 1.59 (m, 8H, H<sub>6</sub>, H<sub>5</sub>, H<sub>7</sub>, OH); <sup>13</sup>C NMR (63 MHz, Chloroform-*d*)  $\delta$  144.7 (Cı'), 138.5 (C<sub>3</sub>), 125.6 (C<sub>2</sub>), 112.5 (C<sub>2</sub>), 71.4 (Cı), 36.0 (C<sub>6</sub>), 30.0 (C<sub>4</sub>), 23.7 (C<sub>7</sub>), 19.3 (C<sub>5</sub>); IR (ATR, cm<sup>-1</sup>): 3355, 2966, 2866, 1669, 1638, 1436, 988; HRMS (ESI): *m*/z [M+Li]<sup>+</sup> calc for C<sub>9</sub>H<sub>14</sub>LiO 145.1199, found 145.1195.

1.3 Procedures for synthesis of Methyl (2Z)-3-iodobut-2-enoate, (2Z)-3-Iodobut-2-enenitrile, Methyl (2Z)-3-iodoacrylate and 4-Nitrophenyl (2Z)-3-iodo-2-methylprop-2-enoate, Methyl (2Z,4E)-3-methyl-5-(4',4',6'-trimethyl-1',3',2'-dioxaborinan-2'-yl)penta-2,4-dienoate, Methyl (2Z,4E)-5-iodo-3-methylpenta-2,4-dienoate.

**Methyl (2***Z***)-3-iodobut-2-enoate (2)**. [1]: To a solution of methyl butynoate (2.0 g, 20 mmol) in AcOH (18 mL), was added NaI (4.89 g, 33 mmol). The mixture was under reflux for 2 hours. After completion, the reaction was quenched with water (10 mL), treated with a saturated solution of sodium carbonate (100 mL) and extracted with ethyl acetate (3 x 20 mL). The organic phases were combined, dried with MgSO<sub>4</sub> then concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-AE: (9:1, v/v), to provide **2** (3.8 g, 83 %) as a brown oil. <sup>1</sup>H NMR (250 MHz, Chloroform-*d*)  $\delta$  6.30 (q, *J* = 1.5 Hz, 1H, H<sub>2</sub>), 3.75 (s, 3H, H<sub>5</sub>), 2.73 (d, *J* = 1.4 Hz, 3H, H<sub>4</sub>); <sup>13</sup>C NMR (63 MHz, Chloroform-*d*)  $\delta$  164.9 (C<sub>1</sub>), 125.3 (C<sub>2</sub>), 113.8 (C<sub>3</sub>), 51.7 (C<sub>5</sub>), 36.7 (C<sub>4</sub>).

(2Z)-3-Iodobut-2-enenitrile (<u>2a</u>). [2]: To a solution of (2Z)-3-iodobut-2-enamide (537 mg; 2.5 mmol) in DCM (2mL) at 0°C, were added triethyamine (369  $\mu$ L; 3.3 mmol) and trichloroacetyle chloride (711  $\mu$ L; 5.1 mmol). The mixture was stirred at 0°C for 1.5 h. After

completion, the reaction was quenched with water (10 mL), treated with a saturated solution of sodium carbonate (100 mL) and extracted with ethyl acetate (3 x 20 mL). The organic phases were combined, dried with MgSO<sub>4</sub> then concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-AE: (9:1, v/v), to provide <u>**2a**</u> (453 mg, 92 %) as a brown oil. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  6.13 (s, 1H, H<sub>2</sub>), 2.70 (s, 3H, H<sub>4</sub>); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  122.6 (C<sub>3</sub>), 118.1 (C<sub>1</sub>), 110.2 (C<sub>2</sub>), 34.6 (C<sub>4</sub>).

**Methyl (2Z)-3-iodoacrylate (2b).** [3]: To a solution of methyl propynoate (500 mg; 5.9 mmol) in AcOH (5 mL), was added NaI (1.43 g; 9.4 mmol). The mixture was stirred under reflux for 2 h. After completion, the reaction was quenched with water (20 mL), treated with a saturated solution of sodium carbonate (100 mL) and extracted with ethyl acetate (3 x 20 mL). The organic phases were combined, dried with MgSO<sub>4</sub> then concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-AE: (9:1, v/v), to provide <u>2b</u> (635 mg, 50 %) as a brown oil. <sup>1</sup>H NMR (250 MHz, Chloroform-*d*)  $\delta$  7.44 (d, *J* = 8.9 Hz, 1H, H<sub>3</sub>), 6.89 (d, *J* = 8.9 Hz, 1H, H<sub>2</sub>), 3.76 (s, 3H, H<sub>4</sub>).

**4-Nitrophenyl (2Z)-3-iodo-2-methylprop-2-enoate (2c).** To a solution of (Z)-3-iodobut-2-enoic acid (147 mg; 0.7 mmol) in Toluene (10 mL) at 0 °C, was added SOCl<sub>2</sub> (251 µL; 3.5 mmol) and *p*-nitrophenol (124 mg; 1.0 mmol). The mixture was stirred at 0 °C for 30 min. After completion, the reaction was quenched with water (20 mL), treated with a saturated solution of sodium carbonate (100 mL) and extracted with ethyl acetate (3 x 20 mL). The organic phases were combined, dried with MgSO<sub>4</sub> then concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-AE: (9:1, v/v), to provide **2c** (159 mg, 69 %) as a yellow solid. mp: 129 - 130 °C <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.26 (d, *J* = 8.7 Hz, 2H, H<sub>2</sub>'), 7.33 (d, *J* = 8.7 Hz, 2H, H<sub>3</sub>'), 6.57 (d, *J* = 2.4 Hz, 1H, H<sub>2</sub>), 2.85 (s, 3H, H<sub>4</sub>); <sup>3</sup>C RMN (101 MHz, Chloroform-*d*)  $\delta$  161.7(C<sub>1</sub>) 155.2 (C<sub>4</sub>'), 145.4 (C<sub>1'</sub>), 125.3 (C<sub>2</sub>'), 124.1 (C<sub>2</sub>), 122.5 (C<sub>3'</sub>), 119.3 (C<sub>3</sub>), 37.3 (C<sub>4</sub>). HRMS (ESI): m/z [M+H]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>9</sub>INO<sub>4</sub>: 333.9571, found: 333.9577.

**Methyl (2Z,4E)-3-methyl-5-(4',4',6'-trimethyl-1',3',2'-dioxaborinan-2'-yl)penta-2,4-dienoate (2d).** To a solution of **2** (500 mg; 0.7 mmol) in ACN (10 mL) were successively added the 2'-ethenyl-4,4,6-trimethyl-1,3,2-dioxoborinane (572 µl; 3.32 mmol), AgOAc (554 mg; 3.32 mmol), P(*o*-tolyl)<sub>3</sub> (741 mg; 2.43 mmol) and Pd(OAc)<sub>2</sub> (248 mg; 0.5 mmol). The mixture was stirred at 60 °C for 6 h. After completion, the reaction was quenched with water (20 mL), treated with a saturated solution of sodium carbonate (100 mL) and extracted with ethyl acetate (3 x 20 mL). The organic phases were combined, dried with MgSO<sub>4</sub> then concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-AE: (9:1, v/v), to provide **2d** (464 mg, 83 %) as a yellow oil. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.26 (d, *J* = 18.2 Hz, 1H, H<sub>4</sub>), 5.93 (d, *J* = 18.3 Hz, 1H, H<sub>5</sub>), 5.76 (s, 1H, H<sub>2</sub>), 4.25 (dqd, *J* = 12.2, 6.1, 2.8 Hz, 1H, H<sub>5</sub>), 3.72 (s, 3H, H<sub>7</sub>), 1.99 (s, 3H, H<sub>6</sub>), 1.81 (dd, *J* = 13.9, 2.9 Hz, 1H, H<sub>4</sub>), 1.51 (d, *J* = 13.9 Hz, 1H, H<sub>4</sub>), 1.32 (d, *J* = 4.1 Hz, 6H, H<sub>7</sub>), 1.29 (d, *J* = 6.2 Hz, 3H, H<sub>8</sub>); <sup>3</sup>C RMN (101 MHz, Chloroform-*d*)  $\delta$  166.4 (C<sub>1</sub>), 151.6 (C<sub>3</sub>), 142.4 (C<sub>4</sub>), 118.4 (C<sub>2</sub>), 71.1 (C<sub>3'</sub>), 64.9 (C<sub>5'</sub>), 51.1 (C<sub>7</sub>), 46.0 (C<sub>4'</sub>), 31.2 (C<sub>7'</sub>), 28.1 (C<sub>7'</sub>), 23.1 (C<sub>8'</sub>), 20.7 (C<sub>6</sub>). HRMS (ESI): m/z [M+H]<sup>+</sup> calcd. for C<sub>13</sub>H<sub>22</sub>BO<sub>4</sub>: 253.1608, found: 253,1607.

**Methyl (2Z,4E)-5-iodo-3-methylpenta-2,4-dienoate (2e).** To a solution of **2d** (200 mg; 0.79 mmol) in THF (10 mL) at -78 °C was added a solution of NaOMe 0.5M in MeOH (2 mL; 1 mmol). The mixture was stirred for 30 min then a solution of ICl (133 mg; 0.82 mmol) was added at – 78 °C The mixture was still stirred for 1 h then the temperature is allowed to rise to room temperature. The reaction was quenched with water (20 mL), treated with a saturated solution of sodium carbonate

(100 mL) and extracted with ethyl acetate (3 x 20 mL). The organic phases were combined, dried with MgSO<sub>4</sub> then concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-AE: (9:1, v/v), to provide <u>2e</u> (464 mg, 83 %) as a yellow oil. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.61 (d, 1H, *J* = 16 Hz, H4 or H5), 5.65 (m, 1H, H2), 6.94 (d, 1H, *J* = 16 Hz, H4 or H5) , 3.71 (s, 3H, H7), 1.98 (s, 3H, H6); <sup>3</sup>C RMN (101 MHz, Chloroform-*d*)  $\delta$  166.3 (C1), 149.4 (C3), 142.7 (C4 or C5), 117.4 (C4 or C5), 102.9 (C3), 51.4 (C7), 20.4 (C6). HRMS (ESI): m/z [M+H]<sup>+</sup> calcd. for C<sub>7</sub>H<sub>10</sub>IO<sub>2</sub>: 252.9720, found: 252.9724.

#### 1.4. General procedure for Mizoroki-Heck optimized reaction

Iodinated substrate (0.53 mmol), vinylic compound (0.44 mmol), silver carbonate (0.66 mmol) and palladium acetate (5 % mol) were placed in a round bottom flask, stirred at 50 °C for the corresponding time. After completion, the reaction mixture was diluted in EtOAc (5 mL) and a saturated solution of ammonium chloride (5 mL). The aqueous phase was extracted with EtOAc ( $3 \times 10 \text{ mL}$ ). Then the combined organic layers were dried with MgSO4 and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel to provide the expected product.

#### Methyl (2Z,4E)-5-(1-hydroxy-3-methylcyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoate 3a

PE-AE: (8:2, v/v), pale yellow oil (59 mg, 63 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.73 (d, *J* = 16.2 Hz, 1H, H<sub>5</sub>), 6.18 (d, *J* = 16.2 Hz, 1H, H<sub>4</sub>), 5.69 (s, 1H, H<sub>2</sub>), 5.36 (d, *J* = 1.4 Hz, 1H, H<sub>2</sub>), 3.70 (s, 3H, H<sub>7</sub>), 2.01 (d, *J* = 1.3 Hz, 3H, H<sub>6</sub>), 1.99 – 1.93 (m, 2H, H<sub>4</sub>'), 1.82 – 1.64 (m, 8H, H<sub>5</sub>' H<sub>6</sub>' H<sub>7</sub>' OH); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.6 (C1), 150.8 (C3), 143.6 (C4), 139.1 (C3'), 125.2 (C<sub>5</sub>, C<sub>2</sub>'), 117.2 (C<sub>2</sub>), 71.3 (C1'), 51.0 (C7), 36.0 (C6'), 30.0 (C4'), 23.8 (C7'), 21.1 (C6), 19.2 (C5'); IR (ATR, cm<sup>-1</sup>): 3459, 2947, 1713, 1436, 1157; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C13H18NaO3 245.1148, found 245.1145.

# Methyl (2*Z*,4*E*)-5-(1-hydroxy-3,5-dimethylcyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoate <u>3b</u>

PE-AE: (8:2, v/v), pale yellow oil (84 mg, 76 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.65 (dd, *J* = 16.1, 0.9 Hz, 1H, H4), 6.17 (d, *J* = 16.1 Hz, 1H, H5), 5.70 (s, 1H, H2), 5.29 (q, *J* = 1.4 Hz, 1H, H2'), 3.71 (s, 3H, H7), 2.01 (d, *J* = 1.3 Hz, 3H, H6), 2.00 – 1.96 (m, 1H, H6'), 1.91 (ddt, *J* = 12.5, 2.8, 1.6 Hz, 1H, H4'), 1.75 (d, *J* = 1.4 Hz, 3H, H7'), 1.69 – 1.58 (m, 3H, OH, H5', H6'), 1.46 – 1.33 (m, 1H, H4'), 0.99 (d, *J* = 6.5 Hz, 3H, H8'); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.7 (C1), 150.8 (C3), 142.8 (C5), 137.7 (C3'), 126.0 (C4), 125.7 (C2'), 117.6 (C2), 73.7 (C1'), 51.2 (C7), 45.4 (C4'), 39.1 (C6'), 27.3 (C5'), 23.4 (C7'), 21.9 (C8'), 21.3 (C6); IR (ATR, cm<sup>-1</sup>): 3427, 2967, 1717, 1436, 1157; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C15H22NaO3 273.1461, found 273.1458.

#### Methyl (2Z,4E)-5-(1-hydroxy-2-methylcyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoate 3c

PE-AE: (8:2, v/v), colorless oil (84 mg, 76 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.73 (dd, *J* = 16.3, 0.9 Hz, 1H, H4), 6.12 (d, *J* = 16.1 Hz, 1H, H5), 5.69 (s, 1H, H2), 5.63 (t, *J* = 1.8 Hz, 1H, H3'), 3.70 (s, 3H, H7), 2.07 – 2.00 (m, 5H, H6, H4'), 1.88 – 1.76 (m, 2H, H6'), 1.72 (bs, 1H, OH), 1.67 (q, *J* = 1.9 Hz, 5H, H7', H5'); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.6 (C1), 150.5 (C3), 142.4 (C4), 135.5 (C2'), 126.5 (C3'), 126.2 (C5), 117.1 (C2), 73.7 (C1'), 51.0 (C7), 37.9 (C6'), 25.5 (C4'), 21.2 (C6), 19.2 (C5'), 18.1 (C7'); IR (ATR, cm<sup>-1</sup>): 3459, 2947, 1713, 1436, 1157; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C1<sub>4</sub>H2<sub>0</sub>NaO<sub>3</sub> 259.1304, found 259.1304.

#### Methyl (2Z,4E)-5-(1-hydroxycyclohexyl)-3-methylpenta-2,4-dienoate 3d

PE-AE: (9:1, v/v), colorless oil (47 mg, 47 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.77 (d, *J* = 16.2 Hz, 1H, H4), 6.20 (d, *J* = 16.2 Hz, 1H, H5), 5.70 (s, 1H, H2), 3.70 (s, 3H, H7), 2.01 (d, *J* = 1.3 Hz, 3H, H6), 1.70 – 1.52 (m, 10H), 1.47 (s, 1H, OH), 1.35 – 1.23 (m, 1H); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.7 (C1), 150.9 (C3), 144.8 (C5), 124.6 (C4), 117.1 (C2), 71.8 (C1'), 51.0 (C7), 37.5 (C2'), 25.5 (C4'), 21.9 (C3'), 21.0 (C6); IR (ATR, cm<sup>-1</sup>): 3401, 2929, 1698, 1447, 1157; HRMS (ESI): *m/z* [M+Na]<sup>+</sup> calcd. for C13H20NaO3 247.1304, found 247.1297.

#### Methyl (2Z,4E)-5-(1-hydroxy-3,5-dimethylcyclohexyl)-3-methylpenta-2,4-dienoate <u>3e</u>

PE-AE: (8:2, v/v), colorless oil (59.9 mg, 63 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.73 (d, *J* = 16.2 Hz, 1H, H4), 6.17 (d, *J* = 16.2 Hz, 1H, H5), 5.68 (s, 1H, H2), 3.70 (s, 3H, H7), 1.99 (s, 3H, H6), 1.91 – 1.79 (m, 2H, H3', H5'), 1.72 – 1.61 (m, 3H), 1.52 (s, 1H, OH), 1.08 (t, *J* = 12.8 Hz, 2H), 0.91 (d, *J* = 1.3 Hz, 3H), 0.89 (s, 3H), 0.55 (q, *J* = 12.2 Hz, 1H, H4'); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.9 (C1), 151.1 (C3), 145.8 (C5), 123.9 (C4), 117.1 (C2), 73.2 (C1'), 51.2 (C7), 45.4 (C6', C2'), 43.4 (C4'), 27.7 (C3', C5'), 22.4 (C7', C8'), 21.3 (C6); IR (ATR, cm<sup>-1</sup>): 3411, 2946, 1698, 1434, 1155; HRMS (ESI): *m*/z [M+Na]<sup>+</sup> calcd. for C15H24NaO3 275.1617, found 275.1617.

#### Methyl (2Z,4E)-5-(1-hydroxy-3,3-dimethylcyclohexyl)-3-methylpenta-2,4-dienoate 3f

PE-AE: (8:2, v/v), colorless oil (70 mg, 64 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.75 (d, *J* = 16.2 Hz, 1H, H4), 6.17 (d, *J* = 16.1 Hz, 1H, H5), 5.71 (s, 1H, H2), 3.72 (s, 3H, H7), 2.02 (s, 3H, H6), 1.90 – 1.80 (m, 1H, H5'), 1.70 – 1.61 (m, 1H, H4'), 1.61 – 1.38 (m, 5H, H4', H6', H2'), 1.33 (s, 1H, OH), 1.23 – 1.17 (m, 1H, H6'), 1.13 (s, 3H, H7'), 0.92 (s, 3H, H7'); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.7 (C1), 150.9 (C3), 146.0 (C5), 123.8 (C4), 117.1 (C2), 72.9 (C1'), 51.0 (C7), 49.3 (C2'), 38.9 (C6'), 37.2 (C4'), 33.1 (C7'), 30.8 (C3'), 27.9 (C7'), 21.1 (C6), 18.5 (C5'); IR (ATR, cm<sup>-1</sup>): 3443, 2948, 1716, 1455, 1190; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C15H24NaO3 275.1617, found 275.1618.

#### Methyl (2Z,4E)-5-(1-hydroxycyclopentyl)-3-methylpenta-2,4-dienoate 3g

PE-AE: (9:1, v/v), dark yellow oil (25 mg, 27 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 16.1 Hz, 1H, H4), 6.28 (d, *J* = 16.2 Hz, 1H, H5), 5.69 (s, 1H, H2), 3.70 (s, 3H, H7), 2.02 (d, *J* = 1.3 Hz, 3H, H6), 1.96 – 1.85 (m, 2H, H3'), 1.81 – 1.70 (m, 6H, H2', H3'); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 166.7 (C1), 150.7 (C3), 143.5 (C5), 124.1 (C4), 116.9 (C2), 82.2 (C1'), 51.0 (C7), 40.7 (C2'), 23.8 (C3'), 21.1 (C6); IR (ATR, cm<sup>-1</sup>): 3472, 2965, 1687, 1452, 1164; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C12H18NaO3 233.1148, found 233.1147.

#### Methyl (2Z,4E)-6-cyclohexyl-6-hydroxy-3-methylhexa-2,4-dienoate 3h

PE-AE: (8:2, v/v), pale yellow oil (74 mg, 70 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.67 (d, *J* = 16.0 Hz, 1H, H4), 6.10 (d, *J* = 16.0 Hz, 1H, H5), 5.70 (s, 1H, H2), 4.02 (t, *J* = 6.8 Hz, 1H, H6), 3.70 (s, 3H, H8), 2.01 (s, 3H, H7), 1.88 (d, *J* = 13.1 Hz, 1H), 1.80 – 1.71 (m, 2H), 1.66 (dd, *J* = 17.7, 5.6 Hz, 3H), 1.47 (tdd, *J* = 11.9, 6.4, 3.2 Hz, 1H, H1'), 1.30 – 1.11 (m, 3H), 1.08 – 0.96 (m, 2H); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.6 (C1), 150.4 (C3), 138.8 (C5), 128.2 (C4), 117.2 (C2), 77.4 (C6), 51.1 (C8), 43.8 (C1'), 28.9 (CH2), 28.5 (CH2), 26.5 (CH2), 26.1 (CH2), 26.0 (CH2), 21.1 (C7); IR (ATR, cm<sup>-1</sup>): 3399, 2923, 1714, 1449, 1157; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C14H22NaO3 261.1461, found 261.1463.

#### Methyl (2Z,4E)-5-cyclohexyl-3-methylpenta-2,4-dienoate <u>3i</u>

PE-AE: (8:2, v/v), pale yellow oil (195 mg, 42 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.56 (d, *J* = 16.3 Hz, 1H, H4), 6.08 (dd, *J* = 16.0, 7.0 Hz, 1H, H5), 5.61 (s, 1H, H2), 3.69 (s, 3H, H7), 2.14 (dtt, *J* = 11.4, 7.6, 3.7 Hz, 1H, H1'), 1.98 (s, 3H, H6), 1.81 – 1.70 (m, 4H, H2'), 1.34 – 1.10 (m, 6H, H3', H4'); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.9 (C1), 152.0 (C3), 144.7 (C4), 125.3 (C5), 115.3 (C2), 50.9 (C7), 41.4 (C1'), 32.6 (C2'), 26.1 (C4'), 25.9 (C3'), 21.1 (C6); IR (ATR, cm<sup>-1</sup>): 2923, 1713, 1448, 1157; HRMS (ESI): *m*/*z* [M+H]<sup>+</sup> calcd. for C13H21O2 209.1536, found 209.1535.

#### Methyl (2Z,4E)-3-methyl-5-phenylpenta-2,4-dienoate 3j [4]

PE-AE: (8:2, v/v), white solid (208 mg, 76 %). mp: 36 - 38 °C (litt 38 - 40 °C)<sup>31</sup>; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.41 (d, *J* = 16.4, 1H, H<sub>5</sub>), 7.59 - 7.52 (m, 2H, H<sub>2</sub>), 7.38 - 7.32 (m, 2H, H<sub>3</sub>'), 7.31 - 7.27 (m, 1H, H<sub>4</sub>'), 6.93 (d, *J* = 16.3 Hz, 1H, H<sub>4</sub>), 5.77 - 5.74 (s, 1H, H<sub>2</sub>), 3.74 (s, 3H, H<sub>7</sub>), 2.14 (d, *J* = 1.3 Hz, 3H, H<sub>6</sub>); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.8 (C1), 151.1 (C3), 136.7 (C1'), 135.5 (C4), 128.7 (C3'), 128.7 (C4'), 127.4 (C2'), 125.9 (C5), 117.2 (C2), 51.1 (C7), 20.9 (C6); IR (ATR, cm<sup>-1</sup>): 2999, 1706, 1619, 1598, 1457, 1148; HRMS (ESI): *m*/*z* [M+H]<sup>+</sup> calcd. for C1<sup>3</sup>H<sub>15</sub>O<sub>2</sub> 203.1066, found 203.1063.

#### Methyl (2Z,4E)-3-methyl-5-phenylpenta-2,4-dienoate <u>3k</u>

PE-AE: (8:2, v/v), pale yellow oil (46 mg, 44 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.50 (dd, *J* = 15.5, 11.3 Hz, 1H, H<sub>4</sub>), 6.59 (td, *J* = 11.3, 0.8 Hz, 1H, H<sub>3</sub>), 6.12 (d, *J* = 15.5 Hz, 1H, H<sub>5</sub>),

5.69 - 5.64 (s, 1H, H<sub>2</sub>), 5.34 (s, 1H, H<sub>2</sub>), 3.73 (s, 3H, H<sub>6</sub>), 2.02 - 1.88 (m, 2H, H<sub>4</sub>'), 1.81 - 1.62 (m, 8H, H<sub>5</sub>', H<sub>6</sub>', H<sub>7</sub>', OH); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.8 (C<sub>1</sub>), 149.8 (C<sub>5</sub>), 144.7 (C<sub>3</sub>), 139.3 (C<sub>3</sub>'), 124.8 (C<sub>2</sub>'), 124.1 (C<sub>4</sub>), 117.1 (C<sub>2</sub>), 71.1 (C<sub>1</sub>'), 51.2 (C<sub>6</sub>), 35.9 (C<sub>6</sub>'), 30.0 (C<sub>4</sub>'), 23.8 (C<sub>7</sub>'), 19.2 (C<sub>5</sub>'); IR (ATR, cm<sup>-1</sup>): 3436, 2950, 1716, 1437, 1173; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C<sub>13</sub>H<sub>18</sub>NaO<sub>3</sub> 245.1148, found 245.1145.

#### Methyl (2Z,4E)-5-cyclohexyl-3-methylpenta-2,4-dienoate 31

PE-AE: (9:1, v/v), dark yellow oil (50 mg, 49 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  6.84 (d, *J* = 15.7 Hz, 1H, H<sub>5</sub>), 6.21 (d, *J* = 15.7 Hz, 1H, H<sub>4</sub>), 5.32 (s, 1H, H<sub>2</sub>), 5.16 (s, 1H, H<sub>2</sub>), 2.01 (d, *J* = 1.3 Hz, 3H, H<sub>6</sub>), 2.00 – 1.94 (m, 2H, H<sub>4</sub>), 1.81 – 1.65 (m, 8H, H<sub>5</sub>', H<sub>6</sub>', H<sub>7</sub>', OH); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  156.2 (C<sub>3</sub>), 145.0 (C<sub>4</sub>), 139.9 (C<sub>3</sub>'), 125.4 (C<sub>5</sub>), 124.6 (C<sub>2</sub>), 116.7 (C<sub>1</sub>), 96.6 (C<sub>2</sub>'), 71.1 (C<sub>1</sub>'), 36.1 (C<sub>6</sub>'), 29.9 (C<sub>4</sub>'), 23.8 (C<sub>7</sub>'), 19.6 (C<sub>6</sub>), 19.1 (C<sub>5</sub>'); IR (ATR, cm<sup>-1</sup>): 3438, 2935, 2211, 1165; HRMS (ESI): *m*/z [M+Na]<sup>+</sup> calcd. for C<sub>13</sub>H<sub>17</sub>NNaO 226.1202, found 226.1199.

#### 4-Nitrophenyl-(2*Z*,4*E*)-5-(1-hydroxy-3-methylcyclohex-2-en-1-yl)-3-methylpenta-2,4dienoate <u>3m</u>

PE-AE: (8:2, v/v), yellow oil (60 mg, 58 %). <sup>1</sup>H NMR (250 MHz, Chloroform-*d*)  $\delta$  8.33 – 8.21 (m, 2H, H<sub>8</sub>), 7.74 (d, *J* = 16.8 Hz, 1H, H<sub>5</sub>), 7.36 – 7.26 (m, 2H, H<sub>9</sub>), 6.32 (d, *J* = 16.7 Hz, 1H, H<sub>4</sub>), 5.90 (s, 1H, H<sub>2</sub>), 5.33 (p, *J* = 1.3 Hz, 1H, H<sub>2</sub>'), 2.13 (d, *J* = 1.2 Hz, 3H, H<sub>6</sub>), 1.99 – 1.90 (m, 2H, H<sub>4</sub>'), 1.80 – 1.62 (m, 8H, H<sub>5</sub>', H<sub>6</sub>', H<sub>7</sub>', OH); <sup>13</sup>C NMR (63 MHz, Chloroform-*d*)  $\delta$  163.1 (C<sub>1</sub>), 155.6 (C<sub>10</sub>), 155.4 (C<sub>3</sub>), 145.7 (C<sub>7</sub>), 145.1 (C<sub>4</sub>), 139.5 (C<sub>3</sub>'), 125.1 (C<sub>8</sub>), 124.8 (C<sub>2</sub>'), 124.8 (C<sub>5</sub>), 122.6 (C<sub>9</sub>), 115.2 (C<sub>2</sub>), 71.3 (C<sub>1</sub>'), 36.0 (C<sub>6</sub>'), 30.0 (C<sub>4</sub>'), 23.8 (C<sub>7</sub>'), 21.4 (C<sub>6</sub>), 19.1 (C<sub>5</sub>'); IR (ATR, cm<sup>-1</sup>): 3389, 2932, 1731, 1632, 1613, 1521, 1111; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C<sub>19</sub>H<sub>21</sub>NNaO<sub>5</sub> 366.1311, found 366.113.

# Methyl (2*Z*,4*E*,6*E*)-7-(1-hydroxy-3-methylcyclohex-2-en-1-yl)-3-methylhepta-2,4,6-trienoate <u>3n</u>

PE-AE: (85:15, v/v), yellow oil (64 mg, 56 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.74 (d, *J* = 15.5 Hz, 1H, H4), 6.60 (dd, *J* = 15.6, 10.6 Hz, 1H, H5), 6.40 (dd, *J* = 15.3, 10.6 Hz, 1H, H6), 5.97 (d, *J* = 15.3 Hz, 1H, H7), 5.66 (s, 1H, H2), 5.31 (q, *J* = 1.6 Hz, 1H, H2'), 3.70 (s, 3H, H9), 2.02 (d, *J* = 1.2 Hz, 3H, H8), 1.94 (dt, *J* = 10.8, 5.8 Hz, 2H, H4'), 1.81 – 1.57 (m, 8H, H5', H6', H7', OH); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.7 (C1), 151.0 (C3), 143.8 (C4), 138.9 (C3'), 135.6 (C6), 129.6 (C7), 129.0 (C5), 125.3 (C2), 116.7 (C2'), 71.4 (C1'), 51.0 (C9), 36.3 (C6'), 30.0 (C4'), 23.7 (C7'), 20.8 (C8), 19.3 (C5'); IR (ATR, cm<sup>-1</sup>): 3391, 2932, 1711, 1609, 1613, 1450, 1378, 1155, 993; HRMS (ESI): *m/z* [M+Na]<sup>+</sup> calcd. for C16H22NaO3 285.1461, found 285.1462.

#### Methyl (2Z,4E)-5-(3-hydroxy-3-methylcyclohex-1-en-1-yl)-3-methylpenta-2,4-dienoate 4

PE-AE: (8:2, v/v), yellow oil (17.0 mg, 20 %). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.83 (d, *J* = 16.2 Hz, 1H, H<sub>5</sub>), 6.56 (d, *J* = 16.2 Hz, 1H, H<sub>4</sub>), 5.81 (s, 1H, H<sub>2</sub>), 5.68 (s, 1H, H<sub>2</sub>), 3.70 (s, 3H, H<sub>7</sub>), 2.40 – 2.30 (m, 1H, H<sub>4</sub>'), 2.24 – 2.16 (m, 1H, H<sub>4</sub>'), 2.04 (t, *J* = 1.6 Hz, 3H, H<sub>6</sub>), 1.85 – 1.64 (m, 5H, H<sub>5</sub>', H<sub>6</sub>', OH), 1.33 (s, 3H, H<sub>7</sub>); <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.8 (C<sub>1</sub>), 151.3 (C<sub>3</sub>), 138.2 (C<sub>4</sub>), 138.0 (C<sub>2</sub>'), 137.5 (C<sub>1</sub>'), 125.5 (C<sub>5</sub>), 116.8 (C<sub>2</sub>), 68.8 (C<sub>3</sub>'), 51.0 (C<sub>7</sub>), 37.8 (C<sub>7</sub>'), 29.2 (C<sub>6</sub>'), 24.5 (C<sub>4</sub>'), 20.8 (C<sub>6</sub>), 19.4 (C<sub>5</sub>'); IR (ATR, cm<sup>-1</sup>): 3459, 2950, 1717, 1445, 1157; HRMS (ESI): *m/z* [M+Na]<sup>+</sup> calcd. for C<sub>14</sub>H<sub>20</sub>NaO<sub>3</sub> 259.1304, found 259.1302.

#### (25,35)-7,9,9-trimethyl-2,3-diphenyl-1,4-dioxaspiro[4.5]dec-6-en-8-one 6

To a solution of (*S*,*S*)-(-)-hydrobenzoin (2.000 g, 9.3 mmol, 1 equiv) in cyclohexane (50 mL), was added the 2,6,6-trimethyl-2-cyclohexene-1,4-dione (3.552 g, 23.3 mmol, 2.5 equiv) and pyridinium p-toluensulfonate (258 mg, 1.0 mmol, 0.11 equiv). Then, the reaction mixture was heated under reflux overnight using a *Dean Stark* trap to remove water. The reaction was cooled, diluted with EtOAc/H<sub>2</sub>O (30 mL/ 20 mL) and extracted with EtOAc (2 x 30 mL). The organic phases were combined, dried with MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-AE: (9:1, v/v), to provide **6** (3.130 g, 96 %) as a pale yellow oil. <sup>1</sup>H NMR (250 MHz, Chloroform-*d*)  $\delta$  7.35 – 7.31 (m, 6H, H<sub>3</sub>', H<sub>4</sub>'), 7.25 – 7.20 (m, 4H, H<sub>2</sub>'), 6.63 (t, *J* = 1.2, 1H, H2'), 4.78 (m, 2H, H<sub>2</sub>, H<sub>3</sub>), 2.45 (d, *J* = 14.0 Hz, 1H, H<sub>10</sub>), 2.36 (dd, *J* = 14.0, 1.4 Hz, 1H, H<sub>10</sub>), 1.89 (d, *J* = 1.4 Hz, 3H,

H<sub>11</sub>), 1.30 (s, 3H, H<sub>12</sub>), 1.28 (s, 3H, H<sub>12</sub>); <sup>13</sup>C NMR (63 MHz, Chloroform-*d*)  $\delta$  204.2 (C<sub>8</sub>), 140.4 (C<sub>6</sub>), 136.1 (C<sub>7</sub>), 135.9 (C<sub>1'</sub>), 135.9 (C<sub>1'</sub>), 128.5 (C<sub>3'</sub>, C<sub>4'</sub>), 126.7 (C<sub>2'</sub>), 126.7 (C<sub>2'</sub>), 104.4 (C<sub>5</sub>), 85.2 (CH), 85.2 (CH), 47.4 (C<sub>10</sub>), 42.3 (C<sub>9</sub>), 27.0 (C<sub>12</sub>), 26.3 (C<sub>12</sub>), 16.4 (C<sub>11</sub>); IR (ATR, cm<sup>-1</sup>): 3032, 2922, 1674, 1094, 896; HRMS (ESI): *m/z* [M+Na]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>24</sub>NaO<sub>3</sub> 371.1618, found 371.1617.

#### (25,35)-8-ethenyl-7,9,9-trimethyl-2,3-diphenyl-1,4-dioxaspiro[4.5]dec-6-en-8-ol 7

To a solution of 1M vinylmagnesium bromide (4.3 mL, 4.3 mmol 5 equiv) in dry THF (10, mL) at 0 °C, was added 6 (300 mg, 0.86 mmol, 1 equiv). The reaction mixture was stirred at 0 °C for 1 hour under inert atmosphere. Then a saturated solution of NH4Cl (50 mL) was added, and the reaction mixture was extracted with EtOAc (3 x 40 mL). The organic phases were combined, dried with MgSO4 and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-AE: (8:2, v/v), to provide 7 (316 mg, 100 %) as a colorless gum. <sup>1</sup>H NMR (250 MHz, Chloroform-d)  $\delta$  7.34 – 7.30 (m, 6H,  $H_{3'}, H_{4'}, 7.25 - 7.20$  (m, 4H,  $H_{2'}$ ), 5.94 (dd, J = 17.3, 10.7 Hz, 1H,  $H_{11}$ ), 5.78 - 5.73 (m, 1H,  $H_{6}$ ), 5.40 - 5.23 (m, 2H, H12), 4.84 - 4.69 (m, 2H, H2, H3), 2.31 - 1.97 (m, 2H, H10), 1.77 (d, J = 1.4 Hz, 3H, H14), 1.58 (s, 1H, OH), 1.18 (s, 3H, H13), 1.01 (s, 3H, H13); <sup>13</sup>C NMR (101 MHz, Chloroformd) δ 141.8 (C7), 138.9 (C11), 136.8 (C1'), 136.6 (C1'), 128.6 (CHAr), 128.5 (CHAr), 128.5 (CHAr), 128.4 (CHAr), 128.4 (CHAr), 128.3 (CHAr), 127.0 (CHAr), 127.0 (CHAr), 126.9 (CHAr), 126.8 (CHAr), 125.0 (C<sub>6</sub>), 114.8 (C<sub>12</sub>), 105.7 (C<sub>5</sub>), 85.0 (CH), 84.7 (CH), 79.5 (C<sub>8</sub>), 46.1 (C<sub>10</sub>), 38.9 (C<sub>9</sub>), 24.8 (C<sub>13</sub>), 23.2 (C13), 17.9 (C14); IR (ATR, cm<sup>-1</sup>): 3499, 2969, 2875, 1666, 1604, 1439, 1093, 972; HRMS (ESI): *m/z* [M+Na]<sup>+</sup> calcd. for C<sub>25</sub>H<sub>28</sub>NaO<sub>3</sub> 399.1930, found 399.1928. HLPC: Hitachi Chiralpack IA+precolomn 250X4.6 mm; det DAD 254 nm; Mobile phase: 95% acetonitrile, 5% Ethanol, flow: 0,9 mLmin<sup>-1</sup>; T = 30 °C; P = 40 bar; sample preparation: conc. 0.5 mgmL<sup>-1</sup> in Acetonitrile/Ethanol (95/5), 10 μL injected. Retention time: t1 = 4.096 min for 66.88 %, t2 = 4.338 min for 33.12 %.

#### Methyl(2Z,4E)-5-[(2S,3S)-8-hydroxy-7,9,9-trimethyl-2,3-diphenyl-1,4-dioxaspiro[4.5]dec-6-en-8-yl]-3-methylpenta-2,4-dienoate <u>8</u>

2 (100 mg, 0.44 mmol), 7 (250 mg, 0.53 mmol), silver carbonate (153 mg, 0.55 mmol) and palladium acetate (10 mg, 5 % mmol) were placed in a round bottom flask, stirred at 50 °C for 17 h. After completion, the reaction mixture was diluted in EtOAc (5 mL) and in a saturated solution of ammonium chloride (5 mL). The aqueous phase was extracted with EtOAc (3  $\times$  10 mL). Then the combined organic layers were dried with MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-EA: (8:2, v/v), to provide 8 (88 mg, 96 %) as a pale yellow gum. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.84 (dd, J = 16.0, 11.8 Hz, 1H, H<sub>5</sub>), 7.36 – 7.27 (m, 5H,  $H_{Ar}$ ), 7.28 - 7.18 (m, 5H,  $H_{Ar}$ ), 6.16 (d, J = 15.9 Hz, 1H,  $H_4$ ), 5.80 - 5.68 (m, 2H,  $H_2$ ,  $H_6$ ), 4.85 - 4.68 (m, 2H, H2, H3), 3.68 (s, 3H, H7), 2.33 - 2.01 (m, 2H, H10), 2.00 (s, 3H, H6), 1.78 (s, 3H, H12'), 1.19 (s, 3H, H11'), 1.01 (s, 3H, H11'); <sup>13</sup>C NMR (101 MHz, Chloroform-d) δ 166.7 (C1), 150.2 (C7'), 141.9 (C3), 138.4 (C4), 136.9 (CAr), 136.7 (CAr), 128.6 (CHAr), 128.6 (CHAr), 128.5 (CHAr), 128.5 (CHAr), 128.4 (CHAr), 127.3 (CHAr), 127.0 (CHAr), 127.0 (CHAr), 126.9 (CHAr), 126.7 (CHAr), 125.1 (C2), 117.4 (C6'), 105.7 (C5'), 85.1 (CH), 84.8 (CH), 79.3 (C8'), 51.2 (C7), 46.4 (C10'), 39.6 (C9'), 25.3 (C11'), 23.6 (C11'), 21.5 (C6), 18.0 (C12'); IR (ATR, cm<sup>-1</sup>): 3460, 2969, 2875, 1717, 1666, 1604, 1439, 1157, 1093, 972; HRMS (ESI): m/z [M+Na]+ calcd. for C30H24NaO5 497.2298, found 497.2292.

# (2Z,4E)-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoic acid (abscisic acid, ABA). [5,6]

To **8** (178.3 mg, 0.38 mmol, 1 eq) in THF (2 ml), was added a 1N solution of sodium hydroxide (300  $\mu$ L, 4 equiv) and tetrabutylammonium chloride (2 drops). The mixture was stirred at 40 °C for 2 hours. After completion the reaction was concentrated under reduced pressure. The crude mixture was placed at 0 °C and a 1N solution of HCl (4 mL, 10 equiv) was added. The reaction was stirred at room temperature for 1 hour. Next, the reaction mixture was diluted in EtOAc (5 mL). The aqueous phase was extracted with EtOAc (3 × 10 mL). Then the combined organic layers were dried with MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel PE-EA-AcOH: (7:2.9:0.1, v/v/v) to provide **ABA** as a grey solid, which was recrystallized in a mixture of

heptane-EA: (9:1, v/v) to provide **ABA** (62 mg, 62 %) as a white solid. mp: 159 – 162 °C (Litt 161 – 163 °C);<sup>25b</sup> <sup>1</sup>H NMR (400 MHz, Methanol-*d*4) δ 7.77 (d, *J* = 16.2 Hz, 1H, H4), 6.23 (d, *J* = 16.1 Hz, 1H, H5), 5.92 (s, 1H, H3'), 5.75 (s, 1H, H2), 2.53 (d, *J* = 17.0 Hz, 1H, H5'), 2.26 (s, 1H, OH), 2.18 (d, *J* = 16.9 Hz, 1H, H5'), 2.03 (s, 3H, H6), 1.92 (s, 3H, H7'), 1.06 (s, 3H, H8'), 1.03 (s, 3H, H8'); <sup>13</sup>C NMR (101 MHz, Methanol-*d*4) δ 201.0 (C4'), 169.7 (C1), 166.6 (C2'), 150.6 (C3), 137.7 (C5), 129.5 (C4), 127.5 (C3'), 120.0 (C2), 80.6 (C1'), 50.7 (C5'), 42.8 (C6'), 24.7 (C8'), 23.6 (C8'), 21.2 (C6), 19.6 (C7'). IR (ATR, cm<sup>-1</sup>): 3389, 2957, 1676, 1643, 1597, 1196, 1023, 979; HRMS (ESI): *m*/*z* [M+Na]<sup>+</sup> calcd. for C15H20NaO4 287.1253, found 287.1254. HLPC: Hitachi Chiralpack IA+pre-colomn 250X4.6 mm; det DAD max plot; Mobile phase: 90% heptane, 10% Ethanol, flow: 1 mLmin<sup>-1</sup>; T = 30 °C; P = 40 bar; sample preparation: conc. 0.5 mgmL<sup>-1</sup> in Heptane/Ethanol (90/10), 20 μL injected. Retention time: t1 = 10.713 min for 35.69 %, t2 = 23.773 min for 61.79 %.

References:

- 1 Dudley, G.B.; Takaki, K.S.; Cha, D.D.; Danheiser, R.L. Total Synthesis of (–)-Ascochlorin via a Cyclobutenone-Based Benzannulation Strategy. *Org. Lett.* **2000**, *2*, 3407–3410, doi:10.1021/ol006561c.
- 2 Bair J.S., Palchaudhuri R., Hergenrother P.J., Chemistry and biology of deoxynyboquinone, a potent inducer of cancer cell death *J. Am. Chem. Soc.* **2010**, 132, 5469–5478, doi:10.1021/ja100610m.
- Bartoli G., Cipolletti R., Di Antonio D., Giovannini R., Lanari S., Marcoline M., Marcantoni E., Regio- and Stereocontrolled Hydroiodination of Alkynes Promoted by the Cerium (III) Chloride Heptahydrate/Sodium Iodide System: A Convergent Approach to (R)-Tiagabin. Org. Biomol. Chem. 2010, 8, 3509–3517, doi: 10.1039/C005042C.
- 4 Shin, L.; Xiao, W.; Wen, X.; Huang, Y. The Use of an Arsorane as Isoprenoid Reagent: Synthesis of 5-Substituted 3-Methyl-2,4-pentadienoic Esters (ABA Ester Analogs). *Synthesis* **1987**, 370–371, doi:10.1055/s-1987-27947.
- 5 Smith, T.R.; Clark, A.J.; Clarkson, G.J.; Taylor, P.C.; Marsh, A. Concise enantioselective synthesis of abscisic acid and a new analogue. *Org. Biomol. Chem.* **2006**, *4*, 4186–4192, doi:10.1039/B611880A
- 6 Zhang, G.; Zhang, P.; Wang, X.; Yu, S.; Ma, S.; Qu, J.; Li, Y.; Liu, Y.; Zhang, Y.; Yu, D. Sesquiterpenes from the roots of Illicium jiadifengpi. *Planta Med.* **2013**, *79*, 1056–1062, doi:10.1055/s-0032-1328768.

1.5 <sup>1</sup>H NMR and <sup>13</sup>C NMR Spectra of all Products

## NMR Spectra – Iodine compounds <u>Compound 2</u>:



0.5

0.0











Compound 2c :



















































### Compound 3c :









































Compound 3k :









### Compound 3m :













1H

## NMR spectra – Synthesis of ABA

## Compound 6 :













#### Compound 7 :









### Compound 8 :



68







71