Supplementary Materials: Structural Changes of Highly Active Pd/MeO_x (Me = Fe, Co, Ni) during Catalytic Methane Combustion

Dominik Seeburg ¹, Dongjing Liu ^{1,2}, Joerg Radnik ^{1,3}, Hanan Atia ¹, Marga-Martina Pohl ¹, Matthias Schneider ¹, Andreas Martin ¹ and Sebastian Wohlrab ^{1,*}

Figure S1. Catalytic activity tests for methane combustion, feed gas consisting of CH₄:O₂:N₂ = 1:18:81, catalyst masses: 300, 200 and 50 mg, catalysts: 1Pd/Fe₂O₃, 1Pd/Co₃O₄ and 1Pd/NiO.

Figure S2. Catalytic activity tests for methane combustion, feed gas consisting of CH₄:O₂:N₂ = 1:18:81, at 22.500 L·kg⁻¹·h⁻¹: (left) 5Pd/Fe₂O₃, 5Pd/Co₃O₄, 5Pd/NiO (right) 10Pd/Fe₂O₃, 10Pd/Co₃O₄, 10Pd/NiO.

Figure S3. XRD Diffraction patterns of (a) Fe₂O₃, 1Pd/Fe₂O₃, 5Pd/Fe₂O₃, 10Pd/Fe₂O₃, (b) Co₃O₄, 1Pd/Co₃O₄, 5Pd/Co₃O₄, 10Pd/Co₃O₄ and (c) NiO, 1Pd/NiO, 5Pd/NiO, 10Pd/NiO; * PdO reference (ICSD 24692, [1]).

Figure S4. *In situ* XRD under H₂ reduction (a) Fe₂O₃ and (b) 1Pd/Fe₂O₃, 5 vol% H₂ in He, 10 ml·min⁻¹ with a heating rate of 10 K/min (slightly higher phase transition temperatures are specific for the method).

Figure S5. *In situ* XRD under H₂ reduction (a) Co₃O₄ and (b)1Pd/Co₃O₄, 5 vol% H₂ in He, 10 ml·min⁻¹ with a heating rate of 10 K/min (slightly higher phase transition temperatures are specific for the method).

Figure S6. *In situ* XRD under H₂ reduction (a) NiO and (b)1Pd/NiO, 5 vol% H₂ in He, 10 ml/min with a heating rate of 10 K/min (slightly higher phase transition temperatures are specific for the method).

Figure S7. HAADF-STEM images of fresh and spent samples after long-term tests (at T₁₀₀, feed gas consisting of CH₄:O₂:N₂ = 1:18:81, at 22,500 L·kg⁻¹·h⁻¹): 1Pd/Fe₂O₃.

Catalysts 2017, 7, x FOR PEER REVIEW

Figure S8. HAADF-STEM, FFT and inverse FFT of fresh 1Pd/Fe₂O₃.

Figure S9. HAADF-STEM, FFT and inverse FFT of 1Pd/Fe₂O₃ after 1h on stream.

Figure S10. HAADF-STEM, FFT and inverse FFT of 1Pd/Fe₂O₃ after 1h on stream.

Figure S11. HAADF-STEM, FFT and inverse FFT of 1Pd/Fe₂O₃ after 70 h on stream.

Figure S12. SEM images of fresh and spent samples after 1 h of the long-term tests (at T_{100} , feed gas consisting of CH₄:O₂:N₂ = 1:18:81, at 22,500 L·kg⁻¹·h⁻¹): 1Pd/Co₃O₄.

Figure S13. HAADF-STEM images of fresh and spent samples after long-term tests (at T₁₀₀, feed gas consisting of CH₄:O₂:N₂ = 1:18:81, at 22,500 L·kg⁻¹·h⁻¹): 1Pd/Co₃O₄.

Catalysts **2017**, 7, x FOR PEER REVIEW

Figure S14. HAADF-STEM, FFT and inverse FFT of 1Pd/Co₃O₄ after 1 h on stream.

Figure S15. HAADF-STEM, FFT and inverse FFT of 1Pd/Co₃O₄ after 70 h on stream.

Figure S16. HAADF-STEM images of fresh and spent samples after long-term tests (at T_{100} , feed gas consisting of CH₄:O₂:N₂ = 1:18:81, at 22,500 L·kg⁻¹·h⁻¹): 1Pd/NiO.

Figure S17. HAADF-STEM, FFT and inverse FFT of 1Pd/NiO after 1 h on stream.

Figure S18. HAADF-STEM, FFT and inverse FFT of 1Pd/NiO after 70 h on stream.

Figure S19. 1Pd/Fe₂O₃ - XPS spectra of fresh and spent samples, after 1 h, 70 h and after test with exhaust gas (EGT).

Figure S20. 1Pd/Co₃O₄ - XPS spectra of fresh and spent samples, after 1 h, 70 h and after test with exhaust gas (EGT).

Figure S21. 1Pd/NiO - XPS spectra of fresh and spent samples, after 1 h, 70 h and after test with exhaust gas (EGT).

References

Waser, J., H.A. Levy, and S.W. Peterson, *The structure of PdO*. Acta Crystallographica, 1953. 6 (7): p. 661-663.