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Abstract: Photocatalytic H2 generation via water splitting is increasingly gaining attention as a
viable alternative for improving the performance of H2 production for solar energy conversion.
Many methods were developed to enhance photocatalyst efficiency, primarily by modifying its
morphology, crystallization, and electrical properties. Here, we summarize recent achievements in
the synthesis and application of various photocatalysts. The rational design of novel photocatalysts
was achieved using various strategies, and the applications of novel materials for H2 production
are displayed herein. Meanwhile, the challenges and prospects for the future development of
H2-producing photocatalysts are also summarized.
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1. Introduction

The development of renewable green energy sources is a critical challenge for modern society.
H2 is environmentally friendly, renewable, and considered to be an ideal candidate for an economically
and socially sustainable fuel [1–6], and was previously regarded as an alternative energy source.
Interestingly, some researchers also found that H2-rich water has neuron effects owing to its antioxidant
properties. Although the deep mechanism is not clear, more and more researchers made an effort
to study the biological function of H2 [7–21]. To date, almost all H2 gas production processes in the
industry are based on natural gas, coal, petroleum, or water electrolysis. These traditional preparation
methods are limited due to the associated CO2 emissions and high energy consumption. Hence, it is
urgent to develop a low-cost method for efficient H2 generation and, thus, support the emerging
H2 economy.

The sun provides an energy output of ~3 × 1024 J per year, which is approximately 12,000 times
higher than the current energy demand. Therefore, solar energy can act as a sustainable alternative
energy source in the future. To date, the transformation of solar energy into H2 via water splitting is
deemed as a desirable H2 preparation method to solve the energy crisis [22,23].

The proper use of H2 requires insight into the physical properties of H2 molecules. As we
know, the lengths and strengths of hydrogen bonds are exquisitely sensitive to temperature and
pressure. Meanwhile, the charges of H2 molecules also vary with temperature [24] because the spin
direction of the nucleus in the H2 molecule changes depending on the temperature, and an energy
difference occurs between H2 molecules. The para-H2 fraction changes with temperature, and it is
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necessary to understand the characteristics of H2 molecules according to temperature [25]. During
the reaction, hydrogen can be used safely at room temperature; however, it is rather dangerous in
high-temperature environments.

As we know, H2 gas, often called dihydrogen or molecular H2, is a highly flammable gas with a
wide range of concentrations between 4% and 75% by volume. Meanwhile, H2 is the world’s lightest
gas. The density of H2 is only 1/14 of that of air. At 0 ◦C, the density of H2 is only 0.0899 g/L at
standard atmospheric pressure, which is the smallest-molecular-weight substance; it is mainly used
as a reducing agent. The enthalpy of combustion is about −286 kJ/mol, which can be displayed
by the following equation: 2H2(g) + O2(g) → 2H2O(l) + 572 kJ (286 kJ/mol). Currently, H2 is the
main industrial raw material and the most important industrial gas. It has various applications in
the petrochemical, electronic, and metallurgical industry, as well as in food processing, float glass,
fine organic synthesis, aerospace, and other fields. At the same time, H2 is also an ideal secondary
energy source. Owing to the properties of H2, the aerospace industry uses liquid H2 as fuel. Now, it is
common to produce H2 from water gas rather than using high-energy-consuming water. The produced
H2 is used in large quantities in the cracking reaction of the petrochemical industry and the production
of ammonia. Unfortunately, all H2 production methods are highly energy (thermal and electrical)
demanding, which limits their application. Thus, it is crucial to find a new method of H2 production.

Fujishima and Honda first reported photocatalytic water splitting using a TiO2 electrode in
1972 [26]. Research on solar H2 production attracted researchers in various fields, such as (1) chemists
for the design and synthesis of various catalysts to investigate structure–property relationships;
(2) physicists to fabricate semiconductor photocatalysts with novel electronic structures, as predicted
by theoretical calculation; and (3) material scientists to construct unique photocatalytic materials with
novel structures and morphologies [27–30]. When photocatalysts are illuminated at wavelengths
which are suitable to their band gap energy, after the excitation, the charge carriers will either combine
or transfer to the surface of the photocatalysts to participate in photocatalytic reactions. For the
generation of efficient semiconductor photocatalysts, long-lived charge carriers and high stability are
required [31–33].

Significant developments were made toward H2 generation via water splitting over the last
several decades by a number of talented researchers [34–38].

Herein, we attempt to sum up the advances achieved to date. Therefore, we briefly summarize the
background related to various photocatalysts for H2 generation and the achievements of high-efficiency
photocatalysts. The main synthesis routes and modifications for adjusting the band structure to harvest
light and enhance charge separation are also discussed.

2. Principle of H2 Generation via Water Splitting

In the pioneering study by Fujishima and Honda [27], electrochemical cells were made up for
the splitting of the water into H2 and O2, as shown in Figure 1. While the TiO2 electrode was under
ultraviolet (UV) light irradiation, water oxidation (oxygen evolution) occurred on its surface, while the
reduction reaction (H2 evolution) occurred on the surface platinum black electrode. With this study
in mind, semiconductor photocatalysts were later developed by Bard et al. in their design of a novel
photocatalytic system.
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Many photocatalysts were created as photocatalysts for hydrogen evolution. Based on these 
species, they can be divided into three major parts: (1) graphene-based photocatalyst; (2) graphitic 
carbon nitride (g-C3N4)-based photocatalysts; and (3) heterojunction photocatalysts (semiconductor–
semiconductor or semiconductor–(metal, element)). 

Figure 1. Schematic of a photoelectrochemical cell (PEC). Reproduced with permission from
Reference [26]; copyright (1972), Nature Publishing Group.

Figure 2a shows a display of hydrogen evolution by photocatalysts. The photocatalytic reaction
occurring on the semiconductor photocatalysts can be divided into three parts: (1) obtaining photons
with energy exceeding that of the photocatalyst’s band gap, generating electron and hole pairs;
(2) separating carriers by migration in the semiconductor photocatalyst; and (3) reaction between these
carriers and H2O [39–46]. In addition, electron–hole pairs will combine with each other simultaneously.
As shown in Figure 2b, while photocatalysts are involved in hydrogen evolution, the lowest position of
the conduction band (CB) should be lower than the reduction position of H2O/H2, while the position
of the valence band (VB) should be higher than the potential of H2O/O2 [47–50].
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Figure 2. Schematic illustration of hydrogen evolution over photocatalysts. Reproduced with
permission from Reference [39]; copyright (2014), Elsevier.

Various photocatalysts were reported to decompose water into H2 and O2 (Equation (1)). As we
know, the hydrogen evolution reaction can be separated into two parts: oxidation for the evolution of
O2 (Equation (2)) and water reduction to produce H2 (Equation (3)) [51–56]:

H2O→ 2H2 + O2 ∆E0 = 1.23 V (1)

H2O→ 4H+ + 4e− + O2 E0 = +1.23 V vs. NHE, pH = 0 (2)

4H+ + 4e− → 2H2 ∆E0 = 0 V vs. NHE, pH = 0 (3)

3. Photocatalysts for Water Splitting

Many photocatalysts were created as photocatalysts for hydrogen evolution. Based on
these species, they can be divided into three major parts: (1) graphene-based photocatalyst; (2)
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graphitic carbon nitride (g-C3N4)-based photocatalysts; and (3) heterojunction photocatalysts
(semiconductor–semiconductor or semiconductor–(metal, element)).

3.1. Graphene-Based Photocatalysts

Recently, graphene-based photocatalysts attracted significant attention for enhancing
photocatalytic H2 production performance. Graphene is used to enhance photocatalytic efficiency
owing to its novel structure and electrochemical properties (Figure 3).
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To date, many reports regarding the synthesis of graphene-based photocatalysts with improved
photocatalytic efficiency were published. Graphene is a well-known two-dimensional (2D) material,
which can improve surface area, and its 2D membrane-like structure imparts unique electrochemical
properties [57–60]. Generally speaking, photocatalysts prepared by simple physical mixing with
graphene will involve only a bit of direct contact with the graphene sheets. This small amount of
contact between the photocatalyst and graphene results in weak interactions and inhibits charge
transfer rates. Hence, the synthesis of photocatalysts with more interactions is highly needed.

Previously, Kim et al. synthesized novel graphene oxide (GO)-TiO2 photocatalysts [58] in
2013, comprising a core–shell nanostructure with enhanced photocatalytic efficiency (Figure 4).
The improved H2 production activity compared to that of TiO2 revealed that the utilization of
the core–shell structure enhanced photocatalytic efficiency. This novel structural design offers
three-dimensional (3D) close contact between the materials and provides more active sites, which will
enhance the charge separation rate and H2 production efficiency [61–63].
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Currently, many researchers are more interested in visible-light-driven photocatalysts, which
are achieved using band-gap modification or taking graphene as a photosensitizer to broaden the
visible-light adsorption range [64–66]. Significant efforts were conducted for building visible-light
response systems because of the UV-only response of TiO2, and its nontoxic properties [67]. Recently,
it was found that graphene regulating TiO2 involves visible-light adsorption activity. The carbon-layered
structure of graphene with enriched π electrons forms bonds with titanium atoms. As a result,
this strong interaction will shift the band position and reduce the band gap [68–70]. Lee et al. [71]
also achieved a lower band gap using a graphene/TiO2 photocatalyst. The improved photocatalytic
efficiency of the graphene/TiO2 composite owes to the band-gap regulation, which consequently
promotes charge transfer rates through the graphene sheets.

3.2. g-C3N4-Based Photocatalysts

Currently, carbon-nitride-based photocatalysts receive significant attention for their photocatalytic
H2 generation owing to a unique electronic structure (Figure 5) [72–77]. This section summarizes recent
significant achievements in building C3N4-based photocatalysts for H2 evolution. Methods including
nanostructure regulation, band-gap modification, dye sensitization, and heterojunction fabrication are
highlighted herein.
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Recently, carbon nitride attracted significant attention following the pioneering research of Wang
et al. in 2009 for photocatalytic hydrogen evolution [78,79]. The assumed structure of C3N4 is a
2D framework with the tri-s-triazine linked by tertiary amines (Figure 6); it is thermally stable and
chemically stable. Pioneering studies regarded g-C3N4 as a visible-light-driven phorocatalyst with a
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band gap of approximately 2.7 eV and an appropriate band position for water splitting [80–85]. Hence,
g-C3N4 is an ideal candidate for photocatalytic H2 evolution.
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H2 generation performance using g-C3N4 can be promoted with noble-metal particles such
as Au or Pd, which obtain electrons in the CB to inhibit the charge recombination rate [86–90].
Many researchers are developing metal-free photocatalysts for H2 evolution, and recent reports
involved the introduction of non-noble-metal catalysts into g-C3N4 photocatalysts, displaying
enhanced photocatalytic performance compared to noble-metal catalysts [91–95]. Hou et al. [86]
synthesized MoS2/g-C3N4 composite photocatalysts (Figure 7) in 2018. MoS2/g-C3N4 increased the
surface area and decreased the barrier when the electrons transported, thereby improving the charge
transfer rate. The formation of band alignment enabled electron transfer from the CB (g-C3N4) to MoS2.
Therefore, the MoS2/gC3N4 nanojunction significantly enhanced H2 evolution efficiency, achieving
the highest H2 evolution rate and an optimum quantum efficiency of up to 2.1% (420 nm), which was
higher than g-C3N4/Pt.
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3.3. Metal-Loading-Based Photocatalysts

Metal loading is also regarded as a useful method for photocatalytic enhancement. Song et
al. [96] constructed Ag-rGO-TiO2 composite photocatalysts (Figure 8) in 2018. In order to analyze the
photocatalytic mechanism of the architectural Ag-TiO2 and Ag-rGO-TiO2 composites, their structures
with Ag nanocubes for light absorption and TiO2 nanosheets were well displayed. The difference
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between Ag-TiO2 and Ag-rGO-TiO2 is the interface between Ag nanocubes and TiO2 nanosheets,
which enhances the electron transfer capability. For Ag-TiO2, the direct contact between the two
materials results in the formation of Ag (100)/(001) TiO2 interface. Meanwhile, for Ag-rGO-TiO2,
both Ag(100)/rGO and rGO/(001) TiO2 interfaces are formed by rGO. As mentioned above, the
synergistic effect of Ag(100)/rGO and rGO/(001)TiO2 interfaces, rather than the Ag(100)/(001) TiO2

interface, offers quicker electron transfer. As shown in Figure 8, no Schottky barrier is formed between
Ag and TiO2, and the hot electrons on the surface of TiO2 flow back to Ag and then recombine with
holes. Meanwhile, for the Ag-rGO-TiO2 sample, no barrier is necessary to facilitate the electron transfer.
The electrons generated on the surface of Ag nanocubes with smaller work function flow to rGO via a
contact so as to equilibrate the electron Fermi distribution on the interface [97,98]. Moreover, the rGO
nanosheets can act as conductive channels, further transferring the electron to the rGO/TiO2 interface.
Owing to the light absorption of rGO, the transferred electrons within the rGO nanosheets can be
further transferred to the CB of TiO2 under light excitation. The proposed photocatalytic mechanism
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3.4. Z-Scheme Photocatalysts

An illustration of Z-scheme water splitting is shown in Figure 9. During an H2 evolution reaction,
the reactions which happen on the surface of photocatalysts include the reduction of protons by CB
electrons and the oxidation of an electron donor (D) by VB holes, yielding the corresponding electron
acceptor (A), as follows:

2H+ + 2e− → H2
(

photoreduction o f H+ to H2
)

D + nh+ → A (photooxidation o f D to A)

On the other hand, the forward reactions on an O2 evolution photocatalyst are as follows:

A + ne− → D (photoreduction o f A to D)

2H2O + 4h+ → O2 + 4H+ ((photooxidation o f H2O to O2)
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where the electron acceptor generated by the paired H2 evolution photocatalyst is converted to D,
and the water oxidation process occurs via the valence band holes. Thus, the water-splitting process
can be achieved.
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Amal et al. reported a Z-scheme photocatalytic water-splitting system using Ru/SrTiO3

and partially reduced GO (PRGO)/BiVO4 (Figure 10) in 2011 [100]. As described in the report,
the PRGO/BiVO4 (O2 photocatalyst) and Ru/SrTiO3:Rh (H2 photocatalyst) were attached due to
surface charge modification in acidic conditions, as depicted in Figure 10. Under irradiation, electrons
are excited from the VB (BiVO4) or an impurity level in Rh (Ru/SrTiO3:Rh) to the CB. We can indicate
that the PRGO does not contribute to the electron and hole generation. In other words, the RGO in
this work acts as an electron conductor. PRGO transfers the electrons from the CB of BiVO4 to the
Ru/SrTiO3:Rh. Meanwhile, the electrons in Ru/SrTiO3:Rh reduce the water to H2 on the surface of the
Ru co-catalyst, while the holes left in BiVO4 oxidize the water to O2. Additionally, the PRGO provides
a pathway for photogenerated electrons in the BiVO4 photocatalyst. Each reaction can migrate as
follows: reduction of water, transfer of electrons to PRGO, and transfer of holes to PRGO for oxidation.
Because the majority of the photocatalyst surface is surrounded by water and only relatively small
portions are in contact with PRGO [101], most electrons in Ru/SrTiO3:Rh and holes in BiVO4 are used
for water splitting.Catalysts 2018, 8, x FOR PEER REVIEW  8 of 18 
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Figure 10. (a) Schematic display of a suspension of Ru/SrTiO3 and partially reduced GO
(PRGO)/BiVO4 in water. (b) Mechanism of water splitting using Z-scheme system consisting of
Ru/SrTiO3 and PRGO/BiVO4 under irradiation. Reproduced with permission from Reference [99];
copyright (2018), American Chemical Society.

3.5. Defect Engineering Photocatalyst

Among the various photocatalyst designs, the defect engineering strategy is regarded as an
important way of modifying the photocatalysts. Defects are places where the atoms or molecules
in the materials are disrupted, and they greatly influence photocatalytic performance. The defects
in the lattice of photocatalysts not only act as an electron–hole recombination center, but also break
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the electronic structure and display a scattering center for electron and hole travel. Nevertheless,
the positive effect of defects in photocatalytic performance enhancement were also recognized with
the development of defect photocatalysts and the development of the photocatalytic field.

Chen et al. reported the synthesis of a bismuth subcarbonate (Bi2O2CO3, BOC) with controllable
defect density (BOC-X) (Figure 11) in 2018. The BOC-X with defect density displayed a photocatalytic
nitrogen fixation of 957 µmol·L–1 under irradiation within 4 h, which was 9.4 times higher than that of
pristine BOC. This photocatalytic performance enhancement of BOC-X can be attributed to the surface
defects. These defects contribute to the defect levels in the forbidden band, which improves the light
harvest percentage. Meanwhile, surface defects can also inhibit the electron–hole recombination rate
to promote the separation efficiency of charge carriers. Photocatalytic nitrogen fixation by BOC-X is
displayed in Figure 11. If the light energy is higher than the band-gap energy, the electrons on the VB
surface of BOC-X are transferred to the CB and react with N2 to form NH3. Moreover, some of the
VB electrons are transferred to the defect level and then react with N2. However, if the light energy is
lower than the band-gap energy, the electrons of BOC-X are also excited from VB to the defect level
and then participate in the reaction. Defects modulate the band gap of BOC-X and improve the light
absorption range, thereby enhancing the carrier transport, and leading to photocatalytic enhancement.Catalysts 2018, 8, x FOR PEER REVIEW  9 of 18 
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3.6. Heterojunction Photocatalysts

During the H2 evolution reaction, the formed electron–hole charges are transferred to the surface
of the photocatalyst for the next step of the reaction or recombine with each other [102–106]. To better
reveal this point, we assumed it as a simple case [107]: the influence of gravity on a man jumping
(Figure 12a,b). When a man (electron) jumps from the ground (VB) to the sky (CB), it can return to
the floor immediately (recombination of the electron and hole) owing to gravity. In order to let the
people rise off the floor (separation of the charge carrier pairs), an instrument (semiconductor B) can be
used (Figure 12c,d). Subsequently, the previously mentioned people can drop to the instrument rather
than the ground (inhibition of the electron and hole pair recombination). Although the inhibition of
electron–hole recombination rate is an urgent issue, it can be achieved via suitable construction of
materials. Many methods were conducted to achieve better electron–hole pair separation rate, such as
element combining [108,109], metal doping [110,111], or the use of heterojunctions [112,113]. Among
these strategies, heterojunctions were proven to be the most desirable method for achieving efficient
photocatalysis due to their improved separation ability of electron–hole pairs (Figure 12d).



Catalysts 2018, 8, 655 10 of 19

Catalysts 2018, 8, x FOR PEER REVIEW  9 of 18 

 

 
Figure 11. Mechanism of photocatalytic nitrogen fixation on defective Bi2O2CO3. Reproduced with 
permission from Reference [101]; copyright (2010), American Chemical Society. 

3.6. Heterojunction Photocatalysts 

During the H2 evolution reaction, the formed electron–hole charges are transferred to the surface 
of the photocatalyst for the next step of the reaction or recombine with each other [102–106]. To better 
reveal this point, we assumed it as a simple case [107]: the influence of gravity on a man jumping 
(Figures 12a,b). When a man (electron) jumps from the ground (VB) to the sky (CB), it can return to 
the floor immediately (recombination of the electron and hole) owing to gravity. In order to let the 
people rise off the floor (separation of the charge carrier pairs), an instrument (semiconductor B) can 
be used (Figures 12c,d). Subsequently, the previously mentioned people can drop to the instrument 
rather than the ground (inhibition of the electron and hole pair recombination). Although the 
inhibition of electron–hole recombination rate is an urgent issue, it can be achieved via suitable 
construction of materials. Many methods were conducted to achieve better electron–hole pair 
separation rate, such as element combining [108,109], metal doping [110,111], or the use of 
heterojunctions [112,113]. Among these strategies, heterojunctions were proven to be the most 
desirable method for achieving efficient photocatalysis due to their improved separation ability of 
electron–hole pairs (Figure 12d). 

 
Figure 12. Schematic display of (a) the influence of gravity on a person jumping, (b) electron–hole 
pair combination using a photocatalyst, (c) utilization of a stool to keep the person from returning to 
the ground, (d) electron–hole pairs separated in composite catalyst. Reproduced with permission 
from Reference [105]; copyright (2010), John Wiley & Sons, Inc. 

Figure 12. Schematic display of (a) the influence of gravity on a person jumping, (b) electron–hole pair
combination using a photocatalyst, (c) utilization of a stool to keep the person from returning to the
ground, (d) electron–hole pairs separated in composite catalyst. Reproduced with permission from
Reference [105]; copyright (2010), John Wiley & Sons, Inc.

A heterojunction is regarded as the connection between two kinds of photocatalysts with different
band structures, which leads to a new band arrangement [114,115]. Generally, three kinds of composite
photocatalysts are developed (Figure 13). As shown in Figure 13a, the CB and VB of A are a bit
over and under the band position of B, respectively [116]. As a result, when the light irradiates,
the generated electrons and holes are transferred to the CB and VB of B. Because the generated
electrons and holes move to the same photocatalyst, the recombination rate of electron–hole pairs is
not efficiently inhibited. The photocatalytic process happens on photocatalyst B with a mild potential
requirement; thus, the photocatalytic ability of the photocatalyst using this heterojunction will be lower
than others. As dispalyed in Figure 13b, the band positions of CB and VB are over that of photocatalyst
B. Hence, during the photocatalytic reaction, the generated electron moves to photocatalyst B, while
the holes are transferred to photocatalyst A, which leads to the formation of long lived electron–hole
pairs [117–119]. Parallel to Figure 13a, the photocatalytic performance of the type-II composite
photocatalysts is inhibited by the redox process occurring on B. Meanwhile, as displayed in Figure 13c,
the band structure of type-III composite photocatalysts is parallel to type II, apart from the interlaced
gap changing into non-overlapping band gaps [120,121]. Thus, the generated electron–hole pairs
cannot be transferred between the two photocatalysts, resulting in them being inappropriate for long
lived electron–hole pair separation. We can determine that the type-II heterojunctions are desirable
for enhancing redox ability due to their optimum structure for long-lived electron–hole separation.
In previous reports, great efforts were conducted to synthesize type-II composite photocatalysts,
including g-C3N4/TiO2 [122], WO3/BiVO4 [123], WO3/g-C3N4 [124], and BiPO4/g-C3N4 [125].
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Yu et al. designed CdS/NiS composites photocatalysts using various heterojunctions in 2012,
which greatly enhanced the hydrogen evolution performance. As shown in Figure 14a, around 20 nm
of NiS particles were loaded onto the CdS uniformly, which supported a close connection between CdS
and NiS. The formation of p–n heterojunctions facilitates charge transfer between the NiS and CdS,
and inhibits charge-carrier recombination (Figure 14b,c). We can see that the holes left on the n-type
catalyst are transferred to the p-type catalyst, providing a negative specie. The electron–hole pair
distribution keeps moving until a Fermi-level equilibrium is achieved [126–128]. The generated active
species move through the internal electric field of the composite photocatalysts, resulting in long-lived
electron–hole pair separation rates. Thus, the electron–hole recombination rate is efficiently inhibited
owing to the synergistic effect between the two photocatalysts. The photocatalytic H2 production rate
over CdS/NiS composite photocatalysts with 5 wt.% NiS was found to be higher than that of the CdS
and 1 wt.% Pt/CdS (Figure 14d). More NiS doping resulted in a reduction in photocatalytic efficiency
due to NiS catalysts reducing the number of redox sites during the reaction.
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4. Summary and Perspectives

Over the last several decades, photocatalysis was shown to be a promising method for
H2 production. Even though the principles controlling photocatalytic activity in the developed
semiconductors were identified, several aspects remain unclear. Therefore, practical applications
and the commercialization of photocatalytic H2 production require further research. Meanwhile,
the charge transfer among photocatalysts due to the influence of structure and electrochemical
properties is also not very clear, while the influence of various preparation methods on the catalytic
performance is not well understood. The development of improved photocatalysts will benefit from
advances in science. Improved building of novel co-catalysts will arise from using efficient catalysts.
Many researches are underway investigating new synthesis methods for sample preparation and novel
system construction. Herein, we concluded the most prominent achievements associated with H2

production via photocatalysis. We hope this report will assist further research efforts regarding the
development of photocatalysts.
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