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Abstract: Diphosphorous (P2) side-on coordinated to a dicobalt (Co–Co) moiety was described
45 years ago. This discovery had several links to actual problems of homogeneous molecular
catalysis. The new type of organometallic complexes induced several ingenious new ramifications
in main-group/transition metal cluster chemistry in the last decades. The present review traces the
main lines of these research results and their contacts to actual problems of industrial catalysis.

Keywords: heteronuclear transition metal clusters; phosphorous-cobalt clusters; arsenic-cobalt
clusters; main group element–transition metal clusters; catalysis by clusters; homogeneous catalysis

1. Introduction

(µ2-P2)Co2(CO)6(Co–Co) (1) (Figure 1A) and (µ3-S=P)Co3(CO)9(3Co–Co) (2) (Figure 2A) were
reported [1,2] in 1973. The structure of 1 was confirmed by X-ray crystal diffraction of its
triphenylphosphane derivative (µ2-P2)Co2(CO)5P(C6H5)3(Co–Co) (3) (Figure 1B) a few years later [3];
while the structure of 2 was based on infrared ν(C–O) spectroscopic analogy [4] (Figure 2B).
These compounds, even if new at that time, were prepared as a part of important research trends,
which were and are also today intimately linked to very practical problems of homogeneous molecular
catalysis. Since then, reference [1] was cited 69 times and these 69 papers were cited more than
2300 times (Web of Science, 12 September 2018). The following discussion will be based on references
selected from these and on some additional related publications.

One of the related challenges was the (at that time) recent discovery of the possibility of dinitrogen
fixation by transition metal-based systems [6], and the related preparation of monometallic dinitrogen
complexes [7] as well as the hypothesis (which later became proved) that the biological nitrogen fixation
proceeds through side-on coordination of the N2 molecule [8–11]. At that time such µ-coordinated
N2-complexes had not yet been described. Obviously, the side-on µ2-coordinated P2 moiety in
complexes 1 and 3 counted as a “next” model of the nitrogen-fixation problem.

Another viewpoint came from the mechanistic studies of transition metal catalyzed petrochemical
reactions [12–16]. It has been found that unsaturated hydrocarbon molecules, or fragments of these, get
coordinated to one or more transition metal atoms in the catalytic (and side reaction) processes and in
the latter case the transition metal atoms are often linked by metal–metal bonds [17]. These intermediate
(or side reaction) compounds could also be regarded as 3D, heteronuclear “cluster” molecules of
transition metals and (main group) carbon atoms [5,18]. It became obvious to extend this “Bauprinzip”
to the introduction of main group elements other than carbon into the 3D skeleton of transition metal
cluster complexes too. Compounds 1 to 3 were early representatives of this research goal.
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Figure 1. Schematic view of the structure (A) of complex 1 [1,2]; Schematic view of the structure (B) 

of complex 3 [3]. 
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Figure 2. Schematic views of the structures of complex 2 (A) [1,2] and of its organic analog, 

(μ3-RC)Co3 (CO)9 (3Co–Co), R = organic groups, halogens, etc. (B) [4,5]. 

Figure 1. Schematic view of the structure (A) of complex 1 [1,2]; Schematic view of the structure (B) of
complex 3 [3].
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Figure 2. Schematic views of the structures of complex 2 (A) [1,2] and of its organic analog, 

(μ3-RC)Co3 (CO)9 (3Co–Co), R = organic groups, halogens, etc. (B) [4,5]. 
Figure 2. Schematic views of the structures of complex 2 (A) [1,2] and of its organic analog, (µ3-RC)Co3

(CO)9 (3Co–Co), R = organic groups, halogens, etc. (B) [4,5].

Another background aspect of this new chemistry was the research concerning the petrochemical
catalytic transformations of sulfur containing mineral oils. In the 1960ies it was found that the sulfur
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content in raw mineral oil gets (in part) transformed during transition metal catalyzed processes, to
various S-containing transition metal compounds, for example paramagnetic (µ3-S)Co3(CO)9(3Co–Co)
(4) [19,20] (Figure 3A) and diamagnetic (µ3-S)Co2Fe(CO)9(Co–Co, 2Co–Fe) (5) [21] (Figure 3B), as well
as several other, higher nuclearity complexes [22].

Here we discuss the chemistry of mixed, transition metal/main group element compounds,
prevalently from the viewpoint of the transition metal chemistry, and catalysis [23], but this approach
is carrier of useful information for main group chemistry too [24–28].
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Figure 3. Schematic view of the structure (A) of complex 4 [19,20]; Schematic view of the structure (B) 

of complex 5 [21]. 

  

Figure 3. Schematic view of the structure (A) of complex 4 [19,20]; Schematic view of the structure
(B) of complex 5 [21].

2. Isolobal Principle and Small Clusters

Complexes (1) to (4) can easily be described with the general formula En[Co(CO)3]4−n where
E = P, S and n = 1, 2. The question, whether this formula could be extended to additional main group
elements (E) and/or other values of n, emerged evidently. Particularly, since (µ2-As2)Co2(CO)6(Co–Co)
(6) (Figure 4) was reported contemporaneously by Larry Dahl’s group [29]. At the same time appeared
Ron Hoffmann’s brilliant idea about “isolobality”, that is organic or organometallic groups can
“substitute” each other in molecules, if these groups have a similar electron donor (or acceptor) orbitals
with right symmetry behavior [30–32]. These main group elements vs. transition metal complexes
appeared to be ideal models for the preparative realization of this principle.

The “lacking” (µ3-P)Co3(CO)9(3Co–Co) (7) (Figure 5) and (η-P3)Co(CO)3 (8) (Figure 6) derivatives
could be prepared from phosphorous trihalogenides and Na[Co(CO)4] following the experience with
the carbon analogs [4,5], as well as from white phosphorous (P4) and dicobalt octacarbonyl [33].
The µ3-P derivative (7), however, was proved to be fairly instable against the formation of a
dark crystalline fraction, which turned out to be P3Co9(CO)24(9Co–Co) (9) [34]. Compound 9 was
identified as the cyclic trimer of complex 7 where the “monomeric” 7 unit substituted one of the
carbonyl ligands on one of the Co atoms in the “next” 7 unit, giving an unexpected derivative of a
1,3,5-triphospha-2,4,6-tricobalta-cyclo-hexatriyne-1,3,5 with the triple bonds linked by µ2-coordination
to Co2(CO)6 units, as in compound 1.
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The next step in this kind of research could have been done in several directions: (a) to introduce
E elements other than P in structures like 1, 2, 7, 8, and 9, or (b) to try metals other than cobalt or to
study the reactivity of the known heterometallic complexes.

A successful attempt to prepare the arsenic analog of complex 1 was reported contemporaneously,
as mentioned earlier in this paper, resulting the side-on bridging As2 complex 6 [29]. Other group 15
E2 derivatives have not yet (?) been described. Theoretical studies [35,36] of the highly interesting
side-on coordination of N2 were published, but the hypothetic (µ2-N2)Co2(CO)6(Co–Co) (Figure 7) had
no preparative realization to the best of our knowledge.

The arsenic analog of 7, (µ3-As)Co3(CO)9(3Co–Co) (10), could easily be prepared from AsI3 and
Co2(CO)8, however the reaction of AsX3 (X = Cl, Br, I) with Na[Co(CO)4] yielded beside the expected
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10 also 6 and a deep green fraction with 12 ν(C-O) IR bands, which turned out to be the As analog of
the cyclic complex 9, with the formula As3Co9(CO)24(9Co–Co) (11) [34] (Figure 8), which again can be
regarded as a fully inorganic cyclo-hexatriyne stabilized by alternating Co2(CO)6 moieties coordinated
to the triple bonds. The overall structure of complex 11 was confirmed also by an X-ray diffraction
study [37,38] but details were not yet published.
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E = As [34,37,38]. (B): Schematic view of the 1,3,5-triphospha- and 1,3,5-triarsa-2,4,6-tricobalta-
cyclo-hexatriyne rings in complexes 9 (E = P) and 11 (E = As).
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Attempts have been made at preparing antimony and bismuth analogs of 7 and 10; however, the
products obtained were not exactly that what was expected. Antimony gave an octanuclear, cubane-like
structure, (µ3-Sb)4Co4(CO)12 (12) (Figure 9) where each Sb atom was linked to three Co atoms, but
where no Co–Co bonds are present (average Co–Co distance 411.5 (4) pm) [39]. An additional attempt
at preparing Sb-analogs of the previously discussed P- and As-complexes by a tertiary phosphorous
ligand containing cobalt reagent, K[Co(CO)3PR3] (R = OPh, OMe, Ph, Tolyl, R3 = Ph2Me) was made
and the corresponding open Sb[Co(CO)3PR3]3 (13) complexes were obtained [40]. This structural
difference can be attributed to the relatively long Sb–Co distances (~260 pm). The first attempts at
preparing bismuth analogs of complexes 7 and 10 appeared to show the same tendency: Bi[Co(CO)4]3

(14) could be prepared from BiCl3 or elementary Bi and [Co(CO)4]- reagent [41]. The X-ray diffraction
structure of 14 showed again a fairly long Bi-Co distance (~280 pm), suggesting that the tetrahedral
cluster skeleton could not be closed because of the large size of the Bi atom. In an elegant additional
attempt at clearing up this point Günter Schmid and Coworkers prepared the iridium/bismuth
analog of 7 and 10, (µ3-Bi)Ir3(CO)9(3Ir–Ir) (15) (Figure 10), which showed the “closed” BiIr3 trigonal
pyramidal structure [42]. (µ3-Bi)Co3(CO)9(3Co–Co) could also be prepared under somewhat more
favorable conditions and characterized by X-ray single crystal diffraction [43].
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One of the main goals of these experiments was to test analogies and differences to the
hypothetic (µ2-N2)Co2(CO)6(Co–Co) (Figure 7) and its presumed role in molecular nitrogen activation.
Experiments did not result in preparative success (reaction of NH3·NCl3 with Na[Co(CO)4] failed [36],
yet(?)), theoretical calculations (EH [35], CNDO/2 [36,44,45]) indicate that the ambition in this direction
is not hopeless. It is an important conclusion of these calculations that the 3d orbitals of P in complex 1
contribute significantly to the bonding strength, while this is absent at the hypothetical N2 analog [35].
This could be the reason why this latter complex could not be prepared.

The above-discussed complexes 1 and 6 show a striking similarity to the (µ2-acetylene)Co2(CO)6

(Co–Co) (18) complex family [15–18]. This similarity gave the brilliant idea to Dietmar Seyferth and his
coworkers trying to prepare dicobalt hexacarbonyl derivatives of phospha- (µ2-RCP)Co2(CO)6(Co–Co),
(R = Me, Ph, tBu, Me3Si) (16) (Figure 11, E = P) and arsaacetylenes (µ2-RCAs)Co2(CO)6(Co–Co) (R = H,
Me, Ph, Me3Si) (17) (Figure 11, E = As) [46–48]. These very sensitive molecules got remarkably
stabilized by the coordination to the Co2(CO)6 moiety and the complexes could be isolated and
characterized. The bonding properties and photoelectron spectra indicate that at these complexes
the stability (or even the existence) of these molecules is considerably assisted by the participation
of the d orbitals of P and (presumably also) of As in bonding [49]. This, however, this is not possible
at the hypothetic analog (µ2-RCN)Co2(CO)6(Co–Co) (Figure 11 E = N) complexes, which have been
supposed as intermediates (or models thereof) in the cocyclization of acetylenes and alkyl cyanides in
the cocatalyzed synthesis of pyridines [50–52].
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3. Substituting CO Ligands in Heteronuclear Clusters

Carbonylation reactions (hydroformylation, alkoxycarbonylation, etc.) catalyzed prevalently by
cobalt and rhodium complexes are favorably influenced by tertiary organic derivatives of phosphane
(or phosphine, PH3) [24,53–56]. As a consequence of this industrially important fact in mechanistic
studies on suspected intermediates of these reactions the tertiary phosphane derivatives [57–62] were
almost always prepared. The presence of the tertiary phosphane ligand according to laboratory
and industrial experience remarkably contributed to the catalytic activation of the substrate to be
carbonylated and of CO. Such influence was found also in the catalytic carbonylation of acetylenes in
the presence of cobalt carbonyl catalysts [63,64]. In this reaction the (µ2-R1C2R2)Co2(CO)6 (Co–Co) (18)
(Figure 12) complexes, analogs of 1 and 6, are proved to act as intermediates of bifurandione synthesis
(Figure 13) [65,66]. The activation of the µ2-acetylene ligand in complex 18 was supported also by
CNDO/2 calculations [67]. An X-ray structural proof for the activation of the bridging As2 unit in
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complex 6 by its mono- and bis-substitution with triphenylphosphane was found by lengthening of
the the As–As bond [29].Catalysts 2018, 8, x FOR PEER REVIEW  9 of 20 
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Figure 13. Example of the favorable effect of the PR3 ligand additive in catalysis: Carbonylation of
acetylenes to bifurandiones without [14,16] and with [63–67] additive.

Beyond these viewpoints from catalytic chemistry there was also a very practical reason for
preparing derivatives with soft Lewis bases (mostly tertiary organophosphane ligands). Ultimate
structural information of chemical compounds can be obtained primarily by single crystal X-ray
diffraction. For the preparation of suitable crystals of organometallic compounds, as those discussed
above, it is usual to introduce large rigid groups as triphenylphosphane, P(C6H5)3 and related ligands.
This technique was used in several occasions also in the experiments cited above.

In the field of transition metal pnicogenic complexes most of the efforts in this direction have
been made with complexes 1 and 6 (both are oily substances at room temperature). One of these
reports on the substitution of complex 6 with phosphane and phosphite ligands [68]. It turned out that
up to 2 PMe3 but up to 4 P(OMe)3 ligands could be introduced in this molecule by substitution
of CO ligands and without structural changes in the starting As2Co2 tetrahedral cluster unit.
The phosphane/phosphite substitution increased the basicity of the As atoms as soft Lewis bases for
transition metals different from cobalt. The molecular s structure of [(CO)5W]2As2Co2(CO)4[P(OMe)3]2

(Co–Co) (19) could be determined by single crystal X-ray diffraction.
Formally an exhaustive substitution of the CO ligands in complex 8 (Figure 6) was achieved by a

“tripod” ligand, leading to (η3-P3)Co[(Ph2PCH2)3CCH3 (20) [69], but this complex was prepared not
through 8, but by a different approach which does not belong to the scope of the present review.
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A systematic study of the comparison of monosubstitution of the structurally related
(µ2-L)2Co2(CO)6 complex series, including L2 = acetylene, P2 (a), As2 (b), and CO plus but-2-en-4-
olid-4-ylidene (c) (21) (Figure 14) bridging units with trivalent phosphorous, PR3 and P(OR)3 (R = alkyl,
aryl) was also reported [70]. This study allows two important conclusions. First, the introduced
P-ligand appears to occupy always an axial position that is the X-ray structural results on 3 and its
As2 analog (22) can be generalized. The second important point is that the very sensitive position of
the ν1(C–O) band indicates P(nBu)3 or P(cHex)3 as the most electron donor (activating) ligand, which
is in accordance with trends of observations in catalytic carbonylations. It should be noted, that the
addition of a non-CO ligand to only one of the cobalts in complexes 21 generates a center of chirality
on the 4-C atom of the butenolide ring, but the enantiomers could not be resolved [65,66].
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4. Pnicogen/Cobalt Clusters as Ligands

The pnicogenic elements in the En[Co(CO)3]4−n clusters discussed above are in (trivalent) bonding
conditions where the formation of a “free” donor orbital (derived from an sp3 hybrid, with more-less d
contribution) should be present. This theoretical consideration prompted to explore this possibility
also experimentally. In a systematic study, the more readily accessible complex 10 was used as ligand
for substituting CO in low valent transition metal carbonyls. Complex 10, as ligand was reacted
either in apolar (n-hexane) solvent under UV irradiation or in more polar environment (THF) at
room temperature with M(CO)6 (M = Cr, Mo, W) or with Fe2(CO)9 which resulted the formation of
(CO)5MAsCo3(CO)9(3Co–Co) (M = Cr, Mo, W) (23) (Figure 15) and (CO)4FeAsCo3(CO)9(3Co–Co) (24)
(Figure 15 adducts which could be isolated and characterized by analyses, characteristic ν(C-O), and
mass spectra. The ligand/complex 10 reacted also with the hard Lewis acid AlCl3 but the product
could not be isolated only characterized by IR spectra [71]. A few years later, these experiments were
successfully repeated and supplemented by similar substitutions with complex 7 and the preparation
of (η5-C5H5)(CO)2MnECo3(CO)9 (3Co–Co) (E = P, As) (25) derivatives [72].

An analogous systematic study has been performed with compound 1, as “ligand” and
mononuclear transition metal carbonyls (Cr, Mo, W, and Fe) [73]. In this series of preparative
experiments complex 1 could be used both as monodentate and bidentate ligand, yielding
[(CO)nM]P2Co2(CO)6 (Co–Co) (M = Cr, Mo, W, n = 5; M = Fe, n = 4] (26) (Figure 16A) as well as
[(CO)nM]2P2Co2(CO)6 (Co–Co) (M = Cr, Mo, W, n = 5; M = Fe, n = 4] (27) (Figure 16B), or even “mixed”
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[(CO)5M][(CO)5M’]P2Co2(CO)6 (Co–Co) (M = Cr, M’ = W) (28) derivatives. A few mono-tercier
phosphane substituted derivatives (by P(nBu)3 or PPh3) were also reported. The X-ray diffraction
structure of complex 28 was determined (Figure 17). It is interesting that the two bulky M(CO)5

groups do not significantly alter the structure of the “ligand” fragment in complex 28, but the P2

unit undergoes additional activation, as indicated by the length of the P–P bond: P2 in gas phase
189.3 pm [74], in complex 3 201.0 pm [3], in the homobimetallic 26 (M = Cr, n = 5) 206.6 pm [26]
and in the heterobimetallic complex 28, 206.1 pm [73]. It should be observed that the phosphane
derivative of complex 28, [(CO)5Cr][(CO)5W]P2Co2(CO)5[P(nBu)3] (Co–Co) (29) (Figure 18) has a center
of chirality in the center of the P2Co2 pseudotetrahedral unit. The separation and characterization of
the enantiomers due to this particular case of chirality represents an interesting research challenge for
the future.Catalysts 2018, 8, x FOR PEER REVIEW  11 of 20 
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Coordinated or noncoordinated E (E = P, As, Sb) and E2 (E = P, As) atoms or molecules behave
as donor groups also in transition metal complexes other than Co, giving cluster or open structures,
e.g., [27,28,75–82]. These interesting reports are beyond the scope of the present review.

5. Interconversions of Pnicogen/Cobalt Clusters

Studies on interconversions of cluster compounds have been surprisingly rare [5,23,83–87] and
one could say that the rules governing these processes are not yet fully understood even today. On the
other hand, clusters could be important catalysts and (as we have seen above) models of industrially
important processes. It was the goal to contribute to these problems by starting a systematic study,
asking how do the relatively small, tetrahedral pnicogene/cobalt clusters En[Co(CO)3]4−n (E = P, As)
undergo interconversion processes [88].
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The interconversion processes have been found accidentally in an attempt at preparing transition
metal derivatives from complex 6 using its As atom(s) as Lewis base(s) and adding UV-excited M(CO)6

(M = Cr, Mo W) carbonyls as precursors of expected Lewis acid M(CO)5 intermediates. The reaction,
however, led to trinuclear derivatives 11 and 23. Adding also Co2(CO)8 increased the yields of the
more Co-rich trinuclear complexes. Starting from complex 1 the reaction gave essentially similar
results. This transformation, which could be written simplified as E2Co2 => ECo3 is analogous to the
reaction of (µ2-IC2I)Co2(CO)6 (aided with excess Co2(CO)8) providing [CCo3(CO)9]2 [85], with the
exception, that in the latter case the “last” C–C bond from the triple bond of the starting acetylene
remains unaltered (Figure 19).
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Treatment of the trinuclear complex 10 with P(OPh)3 yielded in apolar solvent a mixture
of its monosubstituted derivative, AsCo3(CO)8[P(OPh)3] (30) and that of the dinuclear 6,
As2Co2(CO)5[P(OPh)3], indicating an ECo3 => E2Co2 transformation, that is, the opposite of the former.

These cluster transformations are in accordance with the observation that the diphosphorous P–P
bridge in complex 1 gets cleaved under hydroformylation conditions [87].

6. Outlook and Conclusions

The above-outlined results induced several additional research efforts. We cannot list here all,
but some interesting preparative developments should be mentioned.

Coordination was proved to stabilize such phosphorous molecules which are not known in the
free state, that is P5 [89] (Figure 20A) and P8, which appears only in the lattice of Hittorf’s monoclinic
phosphorous allotrope [90] (Figure 20B).

Preparative efforts at combining experiences of the chemistry of large clusters [84] and the above
outlined results enabled the synthesis of clusters with interstitial pnicogene atoms in transition metal
cages, e.g., [91].

These outstanding results might indicate the way to new preparative research activities.
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From catalytic point of view two aspects should be underlined:
(1) The above-mentioned catalytic synthesis of bifurandiones aided by tertiary phosphorous

compounds [65,65] proceeds through a C2Co2 cluster (18) is one of the “greenest” carbonylation
reactions (100% atom utilization). The synthesis in the presence of tertiary phosphines resulted
a dramatic diminution of the necessary reaction pressure, but this is not yet enough to make it
industrially economic. Additional research in this direction appears to be promising, probably for
green fine-chemical industry.

(2) The really great challenge in this field is to achieve progress in the field of atmospheric
N2 fixation. The world’s production of ammonia by high pressure/high temperature (essentially
Haber–Bosch, 15–25 MPa, 400–500 ◦C) synthesis amounts 176 Mt/year (2014) [92], while the
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coordination-based, transition metal-catalyzed biological nitrogen fixation proceeds at cca. room
temperature and atmospheric pressure, yielding approximately the same amount of fixed N as the
industrial process does. Finding the possibility of a lower reaction temperature and lower pressure
would mean enormous energy savings. For this goal it is really worth to continue the above outlined
efforts on pnicogenic complexes, which are close relatives of the molecular events displaying in
the enzymatic nitrogen fixation. The first outstanding results in this direction have been reported
recently [93].
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