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Abstract: In this paper, different NaOH concentrations (2, 5, 10, and 15 M) were used to treat
{001}TiO2. The effect of NaOH on the crystal structure, morphology, optical properties, light raw
electronic-hole recombination, and degradation performance of {001}TiO2 on methylene blue were
studied. The results demonstrate that rutile TiO2 appeared when the NaOH concentration was as
high as 10 M, showing much better photolytic performance than others. As the concentration of
sodium hydroxide increases, the morphology changes accordingly. The specific surface area increases
and the optical electronic-hole recombination rate decreases. Radical scavenging tests showed that
hydroxyl radical and hole are very important in photocatalysis.
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1. Introduction

Photocatalytic degradation oxidizes complex organic compounds into small molecular inorganic
substances, such as carbon dioxide and water, under light. The reaction is thorough and causes no
secondary pollution [1,2].

Methylene blue is used not only to dye paper and office supplies but also to tone up silk colors.
It has largely been used in human and veterinary medicine for several therapeutic and diagnostic
procedures. It cannot be degraded through the conventional water treatment process due to its complex
aromatic structures, hydrophilic nature, and high stability against light, temperature, water, chemicals,
etc., and it may cause substantial environment pollution.

Photocatalytic oxidation is considered to be one of the most effective ways of degrading methylene
blue. A number of catalysts have been reported for methylene blue (MB) degradation over the past
decade. A Pd-supported Cu-doped Ti-pillared montmorillonite catalyst was synthesized for MB
degradation [3], and modified TiO2/BiVO4 photocatalysts were found to be active in the degradation
of MB [4]. Mn-doped ZrO2 nanoparticles [5], an MgO–SCCA-Zn hybrid ozonation catalyst [6],
Fe3O4/TiO2 core/shell nanocubes [7], magnetic SrFe12O19 [8], ZnO/NiFe2O4 nanoparticles [9],
Co–Mn–Fe complex oxide catalysts [10], CdS nanowire [11], silver nanoparticle decorated polymeric
spheres [12], and Au/ZnO–CeO2 [13] have been reported for MB degradation.
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Due to its non-toxic, stable quality, and low price [14,15], TiO2 has been shown to be the most
effective photocatalyst in environmental pollution treatment [16], energy storage [17], biological
applications [18], and dye solar cells [19]. However, TiO2 can only be excited through ultraviolet
lighting, accounting for only 2–4% of the solar spectrum and has a low utilization rate [20]. In addition,
the high composite rate of photogenic electron holes greatly reduces its degradation efficiency,
which significantly limits its practical application [21,22].

As a result, many scientists strive to reduce the width of the band gap and to lower the light
electrons and holes of TiO2 through composite metals (Cu [23], Ag [24], Au [25], and Ni [26]),
non-metallics (N [27], reductive graphene [28], carbon nanotubes [29], etc.), and other semiconductors
(CdS [30], MoS2 [31], WO3 [32], C3N4 [33], etc.) with TiO2 to improve its photocatalytic oxidation
or reduction capability. The proportion of highly active surfaces also affects its catalytic properties.
Research has shown that the photocatalytic oxidation {001} facet of anatase titanium dioxide is better
than that of the {101} facet, while the surface energy of the {001} plane (0.90 J/m−2) is greater than that of
the {101} plane (0.44 J/m−2) [34]. Therefore, anatase crystal is mainly composed of the thermodynamic
stability of the {101} crystal form [35,36]. Yang presented a 47% exposure of the {001} crystal TiO2

catalyst with titanium tetrachloride as the precursor and hydrofluoric acid as the growth control
agent in 2008 [37], and scientists strive to improve its catalytic performance through composite
Ag [38], SnS2 [39], Bi2WO6 [40], MoS2 [41] etc., but there is so far no report on varying concentrations
toward {001}TiO2.

In this paper, the effect of NaOH on the crystal structure, morphology, optical properties, light
raw electronic–hole recombination and degradation performance of {001}TiO2 on methylene blue (MB)
was studied. Radical scavenging experiments were also investigated to identify active radicals.

2. Results

2.1. Structural Characterization

In Figure 1, it can be seen that the sample with the absence of NaOH (0 M) showed peaks at
25.28◦, 37.80◦, 48.04◦, 53.89◦, 55.06◦, 62.68◦, 70.31◦, and 75.03◦, indicating high purity anatase TiO2

(JCPDS No. 21-1272). When the concentration of NaOH increased to 10 and 15 M, the peak at 27.24◦

appeared, indicating the appearance of rutile TiO2 (JCPDS No. 21-1276). Meanwhile, the peaks are
wider with the increase concentration of NaOH, indicating the crystallinity of the samples became
poorer. The 15 M sample has the worst crystallinity among them.

Table 1 is the rutile content of each catalyst. The formula is as follows:

XR =
1

1 + 0.8 × IA
IR

where XR is rutile content; IA is anatase {101} peak intensity; IR is rutile {110} peak intensity. It was
found that the rutile contents of 10 and 15 M are 43.48% and 52.91%, respectively.

Table 1. Rutile content of catalysts.

Samples IR (2θ = 27.24◦) IA (2θ = 25.28◦) XR

0 M - 307.87 _
2 M - 233.31 _
5 M - 176.88 _

10 M 69.36 112.84 43.48%
15 M 69.09 76.83 52.91%



Catalysts 2018, 8, 575 3 of 13
Catalysts 2018, 8, x FOR PEER REVIEW  3 of 13 
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that d = 0.352 nm and d = 0.235 nm, corresponding the {101} and {001} surface of the anatase titanium 
dioxide, respectively, which indicates that the synthesized catalyst is {001} titanium dioxide; in Figure 
2b, it can be seen that the catalyst treated with 10 M NaOH not only has a {101} and {001} surface of 
anatase titanium but also has a {110} surface of rutile titanium (where d = 0.324 nm). Therefore, the 
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XRD results. 

 

Figure 2. HRTEM diagram of catalyst: (a) 0 M; (b) 10 M. 

2.3. Optical Performance 

As can be seen in Figure 3, the intensity absorption of the sample in the visible light region is not 
as strong as that of the sample without the effect of NaOH, indicating that the absorption of light 
after NaOH treatment is not enhanced by NaOH. 

Figure 1. XRD patterns of as-prepared samples.

2.2. Lattice Spacing Analysis

Figure 2 presents the lattice spacing of the 0 and 10 M samples, respectively. Figure 2a shows
that d = 0.352 nm and d = 0.235 nm, corresponding the {101} and {001} surface of the anatase
titanium dioxide, respectively, which indicates that the synthesized catalyst is {001} titanium dioxide;
in Figure 2b, it can be seen that the catalyst treated with 10 M NaOH not only has a {101} and {001}
surface of anatase titanium but also has a {110} surface of rutile titanium (where d = 0.324 nm).
Therefore, the catalyst treated with 10 M NaOH is anatase and rutile-mixed crystal, which is consistent
with the XRD results.
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2.3. Optical Performance

As can be seen in Figure 3, the intensity absorption of the sample in the visible light region is not
as strong as that of the sample without the effect of NaOH, indicating that the absorption of light after
NaOH treatment is not enhanced by NaOH.
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from a rough surface to a smooth irregular shape. Figure 4e shows that the sample after the 5 M 
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for the follow-up reaction. Figure 4i shows that, after the 15 M NaOH treatment, the samples still 
have a slight reunion. As shown in Figure 4j, the size of the sample is different and the morphology 
is divided into flower grades. The interlaced structure provides an abundant surface area for the 
catalyst. In conclusion, with the increase in the NaOH concentration, the catalyst appears to have a 
slight reunion. At a low concentration (2 and 5 M), the surface of the catalyst is smooth, and the pore 
size of the catalyst (10 and 15 M) becomes rich at a high concentration (10 and 15 M). 

Figure 3. Optical absorption spectra of catalysts.

2.4. Crystal Morphology Analysis

As can be seen in Figure 4a, when NaOH is not added, the size of the sample is essentially the
same and it is dispersed uniformly. In Figure 4b, it can be seen that it is made up of a rough ellipsoid
on the surface. Figure 4c demonstrates that the sample after 2 M NaOH treatment is dispersed evenly,
but the size is different, and in Figure 4d it can be seen that the morphology has been transformed
from a rough surface to a smooth irregular shape. Figure 4e shows that the sample after the 5 M
NaOH treatment has a slight reunion. Figure 4f shows that the sample size is different and the surface
is smooth and irregular. In Figure 4g, it can be seen that the sample change after the 10 M NaOH
treatment is light. Concerning the micro agglomeration phenomenon. Figure 4h shows that the size
of the sample particles is significantly reduced; they are connected to each other through a number
of network hubs, and there are more holes between them. These holes will provide more active sites
for the follow-up reaction. Figure 4i shows that, after the 15 M NaOH treatment, the samples still
have a slight reunion. As shown in Figure 4j, the size of the sample is different and the morphology
is divided into flower grades. The interlaced structure provides an abundant surface area for the
catalyst. In conclusion, with the increase in the NaOH concentration, the catalyst appears to have a
slight reunion. At a low concentration (2 and 5 M), the surface of the catalyst is smooth, and the pore
size of the catalyst (10 and 15 M) becomes rich at a high concentration (10 and 15 M).

2.5. BET Analysis

The pore size distribution and pore volume were analyzed using the Barrett–Joyner–Halenda
(BJH) method, and the surface area was calculated using the Brunauer–Emmett–Teller (BET) method.
Figure 5a demonstrates that the 0, 2, 5, 10, and 15 M samples all show a typical IV type N2

adsorption–desorption isotherm and a significant opening of the hysteresis loops was observed for all
samples, indicating developed mesopores [42]. The adsorption amounts of the samples rose with the
increase to high P/P0, where multilayer adsorption occurred. Furthermore, for 10 M, a sharp increase
in the adsorption amount in the P/P0 range of 0.8–1.0 and a more significant opening of the hysteresis
loop were observed, indicating stronger multilayer adsorption and better developed mesopores [43].
Considering the data in Table 2, the specific surface area of 0 and 15 M was small and not conducive to
the adsorption of methylene blue. The specific surface area of 2 and 5 M was large, but the pores were
too small and not conducive to macromolecular methylene blue adsorption. The best conduction was
in the 10 M sample, and this construction may be attributed to its characteristics of mixed crystals.
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Figure 5. (a) N2 adsorption–desorption isotherm of as-prepared samples; (b) pore diameter of the
as-prepared samples.

Table 2. Physicochemical properties of samples.

Samples BET Surface Area (m2/g) Pore Volume (cm3/g) Pore Size (nm)

0 M 21.31 0.08 14.73
2 M 136.19 0.14 4.22
5 M 109.25 0.12 4.50
10 M 63.65 0.16 10.14
15 M 45.65 0.09 7.48

2.6. FT-IR Analysis

Figure 6 is the Fourier infrared image of the samples.The broad absorptions centered around 3396
and 2919 cm−1 were, respectively, ascribed to the hydroxyl free radicals and the associated hydrogen
bonds, and the peak around 1618 cm−1 was attributed to the absorption of the water molecule [44];
the peak around 1300 cm−1 was attributed to the in-plane bending vibration of OH bond, and the peak
near 548 cm−1 was caused by the absorption of Ti–O–Ti [45].Catalysts 2018, 8, x FOR PEER REVIEW  7 of 13 
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2.7. Photoluminescence Analysis

Figure 7 presents the fluorescence spectrum of the XM series of catalysts. The fluorescence
intensity in the fluorescence emission spectrum of a semiconductor photocatalyst can be used to
characterize the recombination of photogenerated electrons and photogenerated holes; the lower
the fluorescence intensity of the photogenerated electrons, the more effective the separation of the
photogenerated cavitation [46]. It can be seen that the photogenerated electrons and holes in the
catalyst after the 2 M NaOH treatment were easily compounded, and the photogenerated electrons
and holes of the catalyst after 5, 10, and 15 M NaOH treatment, especially after 10 M NaOH treatment,
were not easily compounded compared to the 0 and 2 M catalysts, which will greatly enhance the
ability of the catalyst to degrade the contaminants.
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Figure 7. Photoluminescence (PL) emission spectra of as-prepared samples.

Five peaks were observed in the spectra. The broad emission bands centered at 382.5 nm (Peak 1),
397.5 nm (Peak 2), and 410.5 nm (Peak 3) were ascribed to the formation of boundaries of exciton
emission due to the trapping of free excitons by the titanite groups near the defects. The long
wavelength range of 451.8–468.8 nm (Peaks 4 and 5) is attributed to the oxygen vacancy with two
trapped electrons. Oxygen vacancy sites are important for the formation of superoxide (O2

−) and
hydroxyl (OH) radicals for photocatalytic degradation [47].

2.8. Photocatalytic Activity

The degradation diagram of the prepared samples for methylene blue can be seen in Figure 8.
It can be seen in Figure 8a that, when there was no photocatalyst without light (Dark, no catalyst),
when there was only light (Light, catalyst), and when there was no catalyst (No catalyst),
the concentration of methylene blue almost did not change, indicating that the properties of methylene
blue are more stable. When catalysts were added, however, the concentration decreased dramatically,
indicating that the reduction in methylene blue is a photocatalytic path. When the catalysts were
treated with NaOH (2, 5, 10, and 15 M), the degradation performance was obviously improved.
The best performance could be seen with the 10 M NaOH treatment. Figure 8b shows the degradation
of 10 M methylene blue with different amounts of 10 M. When the amount of catalyst was 5 and
10 mg, respectively, it could not contact with the methylene blue molecule sufficiently, resulting in an
unobvious degradation of methylene blue. The 10 M catalyst of 20 mg not only has a strong adsorption
capacity to the methylene blue molecule, but also shows excellent photodegradation performance.
The 30 and 50 mg 10 M catalysts were sufficient to make most of the methylene blue in the dark
reaction stage. The subsurface of the catalyst was adsorbed on the surface of the catalyst, showing the
excellent adsorption properties of the catalyst, which means that the photodegradation performance
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was not outstanding. Figure 8c shows the UV-vis absorption spectral changes of the 20 mg 10 M
sample. It can be seen that methylene blue had two absorption peaks at 256 and 665 nm. The UV-vis
absorption could detect the oxidation of methylene blue; at the same time, we observed that the color
of the methylene blue gradually became colorless from dark blue, indicating that methylene blue was
gradually oxidized. Figure 8d presents the free radical scavenging results. Potassium iodide and
hole were reduced by the free radical (OH) binding of terephthalic acid to the hydroxyl group (h+).
The activity of the catalyst was reduced. The quinone could be combined with a superoxide free radical
(O2

−) to reduce the activity of the catalyst. When the methylene blue was degraded, the addition of
quinone was obviously better than the addition of potassium iodide and terephthalic acid, indicating
that hydroxyl radicals and holes play a leading role in photocatalysis.
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Figure 8. Degradation diagram of the prepared samples for methylene blue. (a) Photocatalytic
performance of MB samples; (b) the effect of the different amount of 10 M samples on methylene blue;
(c) UV-vis absorption spectral changes with photocatalytic degradation time of MB with the 20 mg
10 M sample; (d) radical-scavenging experiments of the 10 M sample.

3. Discussion

From the above results, after NaOH treatment, the crystal shape of the anatase F–TiO2 samples
changed. In particular, when the concentration of NaOH increased to 10 and 15 M, rutile TiO2

appeared, while the crystallinity of the 15 M samples was poor compared to the other samples.
This was confirmed by the HRTEM results. Considering the UV-vis diffuse reflectance and FTIR
spectra of the samples, NaOH treatment did cause a bandgap and surface bonds changes, but these
did not lead to the best performance of the 10 M sample. The BET and PL data revealed that the 10 M
sample had the best adsorption potentiality and that its recombination of photogenerated electrons
and photogenerated holes was the most inhibited.
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Therefore, the reason why the 10 M sample showed the best performance may be that it has the
best adsorption potentiality and can adsorb more MB onto its surface. It comprises rutile and anatase
mixtures, too, whose recombination of photogenerated electrons and photogenerated holes is most
inhibited; therefore, more electrons can react with the dissolved oxygen molecules to yield superoxide
radical anions (O2

−) [48]. MB can also be decomposed by holes directly [47]. This is in accordance
with the radical scavenging experiments.

4. Materials and Methods

4.1. Materials

Materials used are as follows: butyl titanate, 1–4 of benzoquinone (AR, Chengdu Cologne
Chemical Co., LTD., Chengdu, China), anhydrous ethanol (AR, Chongqing in East Sichuan
Chemical Co., LTD., Chongqing, China), hydrofluoric acid (AR, Sichuan West Long Chemical Co.,
LTD., Chengdu, China), P25 (Degussa) and methylene blue (AR, Guangzhou Jinhua Large Chemical
Reagent Co., LTD., Guangzhou, China), sodium hydroxide (AR, Chengdu xindu OuMuLan town
industrial development zone), terephthalic acid (AR, Shanghai McLean Biological Co., LTD., Shanghai,
China), and potassium iodide (AR, Chemical Engineering and Technology Research and Development
Center of Guangdong Province). Ultrapure water (18.2 MΩ cm) was used as water all the experiments.

4.2. Preparation of Catalysts

A total of 15.20 mL of anhydrous ethanol was added to 17.60 mL of butyl titanate, which was
denoted as Solution A. A total of 15.20 mL of anhydrous ethanol was added to 90 mL of distilled water
and 6 mL of HF was added at the same time, denoted as Solution B. Solution A was added to Solution
B dropwise, 4 drops per second, and mixed at a low speed for 2 h. The TiO2 gel was obtained and aged
at room temperature for 24 h. The aged gel was removed to a stainless-steel reaction kettle containing
a PTFE bladder 100 ◦C for 2 h, then cooled and centrifugal sedimented. The sediment was washed
three times with ultrapure water and ethanol and then dried at 100 ◦C in a drum wind drying oven.
The as-prepared powder was F–TiO2.

An amount of 1.5 g of TiO2 was added to 100 mL of 0, 2, 5, 10, and 15 M sodium hydroxide
solution for 100 min, and the powder was centrifugally sedimented, washed with ultrapure water
three times, and dried in a 100 ◦C drum wind drying oven; the as-prepared powder was denoted as
XM (X = 2, 5, 10, 15). We marked the untreated samples as {001}TiO2 or 0 M.

4.3. Catalyst Characterization

The crystal structure was analyzed using an XD-2 X-ray diffractometer (Beijing Purkinje, Beijing,
China) with Cu Kα radiation. The morphology was examined using SEM (JEOL JSM6700, Tokyo, Japan)
and high-resolution transmission electron microscopy (HRTEM; Tecnai G2 F20, FEI, Hillsborough,
OR, USA) with an accelerating voltage of 200 kV. The specific surface area and porosimetry were
measured using Micromeritic TriStar II 3020 micrometrics (Micromeritics, Norcross, GA, USA),
and the BET method was used to calculate the surface area (SBET). Fourier transform infrared (FT-IR)
spectra were recorded using a TENSOR27 (Bruker, Frankfurt, Germany). The optical properties were
determined using UV-vis diffuse reflectance spectroscopy (UV-vis DRS; Shimadzu 2600, Kyoto, Japan).
Photoluminescence (PL) emission spectra were measured at room temperature with a fluorescence
spectrophotometer (Hitachi F-2700, Tokyo, Japan) using a 325 nm line with an Xe lamp.

4.4. Photocatalytic Activity Tests

The prepared catalyst was used to degrade MB under a xenon lamp located at a distance of
approximately 20 cm at 300 W, and its photocatalytic performance was studied through comparison
with P25. Photocatalytic samples of 20 mg were added to 100 mL of a 10 mg/L of MB solution,
and magnetic stirred for 0.5 h in the dark to obtain the adsorption–desorption balance, and the xenon
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lamp was then opened. A 5 mL of the solution was taken out every 0.5 h and centrifuged at a high
speed of 10,000 r/min, and the supernatant was tested using a UV1901 UV-vis spectrophotometer
in 665 nm, with distilled water as a contrast. The concentration of MB was calculated according to
Lambert–Beer’s law. The photocatalytic efficiency was

η(100%) = C/C0 × 100% = A/A0 × 100%

where C0 is the concentration before the reaction, and C is the concentration obtained using
centrifugation every 30 min during the reaction. A0 is the absorbance before the reaction, and A
is the absorbance obtained using centrifugation every 30 min during the reaction.

4.5. Radical Scavenging Experiment

Potassium iodide (3 mmol/L), terephthalic acid (3 mmol/L), and quinone (3 mmol/L) were
added to the 10 M degradation system, respectively, to catch OH, h+, and O2

−.

5. Conclusions

In this paper, {001}TiO2 catalysts with different morphologies were treated with different NaOH
concentrations. After different NaOH concentrations were added, the photocatalyst was generally
not improved in terms of optical properties; the 2 M photocatalyst had a high photoelectron hole
recombination rate. The 10 and 15 M catalysts had a larger surface area and a low photoelectron hole
recombination rate. Rutile was produced during the formation of the 10 M crystals. The experimental
results showed that the 10 M catalyst contained anatase and rutile-mixed crystal and had a high
activity {001} surface, resulting in the best degradation effect. This shows that the appropriate NaOH
concentration {001}TiO2 can not only change characterization but can also improve degradation
performance. The amount of catalyst plays an important role in the entire process of methylene blue
degradation. The 10 M catalyst of 20 mg is mainly photocatalytic to methylene blue degradation;
when the amount of catalyst is 30 mg, the concentration of methylene blue is mainly reduced through
adsorption. The free radical scavenging experiment showed that hydroxyl radicals and holes play a
leading role in photocatalysis.
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