Supporting Information

for

A New Tool in the Quest for Biocompatible Phthalocyanines:

Palladium Catalyzed Aminocarbonylation for Amide Substituted

Phthalonitriles and Illustrative Phthalocyanines Thereof

Vanessa A. Tomé, Mário J. F. Calvete*, Carolina S. Vinagreiro, Rafael Aroso, Mariette M. Pereira*

CQC, *Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal. E-mail: <u>mcalvete@qui.uc.pt, mmpereira@qui.uc.pt;</u> Fax: +351 239827703; Tel: +351 239854474.*

Table of Contents

1. Experimental procedures for the synthesis of phthalonitriles **3a-h** and copies of ¹H, ¹³C NMR and Mass Spectra

1.1 Phthalonitrile 3a	Page 2
1.2 Phthalonitrile 3b	Page 5
1.3 Phthalonitrile 3c	Page 8
1.4 Phthalonitrile 3d	Page 11
1.5 Phthalonitrile 3e	Page 14
1.6 Phthalonitrile 3f	Page 17
1.7 Phthalonitrile 3g	Page 20

2. Experimental procedures for the synthesis of phthalocyanines and copies of ¹H NMR and Mass Spectra

2.1 Phthalocyanine 4a	Page 23
2.2 Phthalocyanine 4c	Page 25
2.3 Phthalocyanine 4d	Page 26

1. Experimental procedures for the synthesis of phthalonitriles **3a-g** and copies of ¹H, ¹³C NMR and Mass Spectra

General Procedure for synthesis of carboxamide substituted phthalonitriles 3a-g

In a typical aminocarbonylation reaction, the catalyst precursor $Pd(OAc)_2$, triphenylphosphine (PPh₃) ligand, substrate 4-iodophthalonitrile and the nucleophile were directly introduced in a high pressure reactor having a magnetic stirrer inside. The reactor was sealed and 3 vacuum/CO gas cycles were performed. Under vacuum, the reaction solvent was then added (toluene) via cannula, followed by triethylamine as base. The reactor was then pressurized using 5 bar CO and the reaction mixture maintained at 100°C for the required period of time. After this period, the reactor was cooled to room temperature and depressurized. Palladium particles were filtered, the solvent rotary evaporated and the crude product was then purified according to the corresponding procedure and characterized by means of ¹H-, ¹³C-NMR and mass spectrometry.

1.1. Phthalonitrile 3a

Methyl 2-(3,4-dicyanobenzamido)acetate (glycine substituted phthalonitrile) (3a). Following the above described procedure, 6.75 mg (0.030 mmol) of Pd(OAc)₂, 15.74 mg (0.060 mmol) of PPh₃, 300 mg (1.18 mmol) of 4-iodophthalonitrile, 163.4 mg (1.30 mmol) glycine methyl ester hydrochloride (2a) and 1.1 mL Et₃N were dissolved in 10 mL of toluene. The reaction was pressurized and maintained at 100 °C for 12 hours. The residue was dissolved in dichloromethane (20 mL), washed with brine (3x20 mL) and water (3x20 mL). The organic phase was dried with sodium sulfate and the solvent evaporated. The product was purified by recrystallization with ethyl acetate/*n*-hexane yielding (3a) in 65% yield (158 mg). ¹H RMN (400.13 MHz, CDCl₃) δ 8.26 (s, 1H), 8.15 (d, *J*=8.1Hz, 1H), 7.93 (d, *J*=8.1Hz, 1H), 6.77 (s, 1H), 4.27 (d, *J*=4.9Hz, 2H), 3.84 (s, 9H). ¹³C RMN (100.61 MHz, CDCl₃) δ 170.0, 163.7, 138.4, 134.1, 132.4, 131.6,

118.6, 116.9, 114.8, 114.7, 53.0, 42.1. HRMS (ESI-TOF) *m/z* calcd for [M+Na]⁺: C₁₂H₉N₃NaO₃ 266.0536; found 266.0532.

Fig. 1. ¹H-NMR of Phthalonitrile **3a**, recorded in CDCl₃.

Fig. 2. ¹³C-NMR of Phthalonitrile **3a**, recorded in CDCl₃.

Fig. 3. Mass spectrum of Phthalonitrile 3a.

1.2. Phthalonitrile **3b**

(S)-Methyl 2-(3,4-dicyanobenzamido)-4-methylpentanoate (leucine substituted phthalonitrile) (3b). Following the above described procedure, 6.75 mg (0.030 mmol) of Pd(OAc)₂, 15.74 mg (0.06 mmol) of PPh₃, 300 mg (1.18 mmol) of 4iodophthalonitrile, 236.6 mg (1.30 mmol) leucine methyl ester hydrochloride (2b) and 1.1 mL Et₃N were dissolved in 10 mL toluene. The reaction was pressurized and maintained at 100 °C for 12 hours. The residue was dissolved in dichloromethane (20 mL), washed with brine (3x20 mL) and water (3x20 mL). The organic phase was dried with sodium sulfate and the solvent evaporated. The product (3b) was purified by column chromatography on silica gel (stationary phase) first using chloroform and then a mixture of chloroform/ethyl acetate (20/1) and obtained in 54% yield (120 mg), after being washed with *n*-hexane. ¹H RMN (400.13 MHz, CDCl₃) δ 8.24 (d, J=1.7Hz, 1H), 8.14 (dd, J=8.1, 1.7 Hz, 1H), 7.91 (d, J=8.1Hz, 1H), 6.77 (br s, 1H), 4.86-4.80 (m, 1H), 3.79 (s, 3H), 1.80-1.66 (2 m, 3H), 1.00-0.97 (m, 6H). ¹³C RMN (100.61 MHz, CDCl₃) δ 173.4, 163.5, 138.6, 134.1, 132.4, 131.9, 118.3, 116.6, 114.9, 52.9, 51.8, 41.6, 25.1, 22.9, 22.0. HRMS (ESI-TOF) *m/z* calcd for [M+Na]⁺: C₁₆H₁₇N₃NaO₃ 322.1162; found 322.1153.

Fig. 4. ¹H-NMR of Phthalonitrile **3b**, recorded in CDCl₃.

Fig. 5. ¹³C-NMR of Phthalonitrile **3b**, recorded in CDCl₃.

Fig. 6. Mass spectrum of Phthalonitrile 3b.

1.3. Phthalonitrile 3c

(S)-Methyl 2-(3,4-dicyanobenzamido)-3-phenylpropanoate (phenyl alanine substituted phthalonitrile) (3c). Following the above described procedure, 6.75 mg (0.030 mmol) of Pd(OAc)₂, 15.74 mg (0.06 mmol) of PPh₃, 300 mg (1.18 mmol) of 4iodophthalonitrile, 280.4 mg (1.30 mmol) phenyl alanine methyl ester hydrochloride (2c) and 1.1 mL Et₃N were dissolved in 10 mL toluene. The reaction was pressurized and maintained at 100 °C for 12 hours. The residue was dissolved in dichloromethane (20 mL), washed with brine (3x20 mL) and water (3x20 mL). The organic phase was dried with sodium sulfate and the solvent evaporated. The product (3c) was purified by column chromatography on silica gel (stationary phase) first using chloroform and then a mixture of chloroform/ethyl acetate (10/1) and obtained in 59.0% yield (192 mg), after being washed with *n*-hexane. ¹H RMN (400.13 MHz, CDCl₃) δ 8.12 (d, J=1.7 Hz, 1H), 8.00 (dd, J=8.1,1.7 Hz, 1H), 7.88 (d, J=8.1 Hz, 1H), 7.30-7.29 (m, 3H), 7.10-7.08 (m, 2H), 6.64 (br s, 1H), 5.09-5.04 (m, 1H), 3.82 (s, 3H), 3.34-3.21 (m, 2H). ¹³C RMN $(100.61 \text{ MHz}, \text{CDCl}_3) \delta 171.7, 163.3, 138.6, 135.4, 134.1, 132.4, 131.6, 129.3, 128.9,$ 127.6, 118.4, 116.6, 114.8, 114.8, 54.0, 52.9, 37.7. HRMS (ESI-TOF) m/z calcd for [M+Na]⁺: C₁₉H₁₅N₃NaO₃ 356.1003; found 356.1006.

Fig. 7. ¹H-NMR of Phthalonitrile **3c**, recorded in CDCl₃.

Fig. 8. ¹³C-NMR of Phthalonitrile 3c, recorded in CDCl₃.

Fig. 9. Mass spectrum of Phthalonitrile 3c.

1.4. Phthalonitrile 3d

N-tert-butyl-3,4-dicyanobenzamide (3d). Following the above described procedure, 4.4 mg (0.020 mmol) of Pd(OAc)₂, 10.5 mg (0.040 mmol) of PPh₃, 200 mg (0.79 mmol) of 4-iodophthalonitrile, 0.28 mL (2.6 mmol) of *tert*-butyl amine (2d) and 0.8 mL Et₃N were dissolved in 6 mL of toluene. The reaction was pressurized and maintained at 100 °C for 4 hours. The residue was dissolved in dichloromethane (20 mL), washed with brine (3x20 mL) and water (3x20 mL).The organic phase was dried with sodium sulfate and the solvent evaporated. The product (3d) was purified by column chromatography on silica gel (stationary phase) using a mixture of dichloromethane/ethyl acetate (20/1) and obtained in 74% yield (132.9 mg). ¹H-RMN (400.13 MHz, CDCl₃) δ 8.14 (sl, 1H,), 8.06 (d, *J*=8.1Hz, 1H), 7.88 (d, *J*=8.1Hz, 1H), 5.94 (br s, 1H), 1.49 (s, 9H). ¹³C-RMN (100.61 MHz, CDCl₃) δ 163.1, 140.6, 134.0, 132.1, 131.6, 117.8, 116.4, 115.0, 53.0, 28.8. HRMS (EI) *m/z* calcd for [M]⁺: C₁₃H₁₃N₃O 227.1059; found: 227.1060.

Fig. 10. ¹H-NMR of Phthalonitrile **3d**, recorded in CDCl₃.

Fig. 11. ¹³C-NMR of Phthalonitrile **3d**, recorded in CDCl₃.

Fig. 12. Mass spectrum of Phthalonitrile 3d.

1.5. Phthalonitrile 3e

N-BOC-ethylenediamine-3,4-dicyanobenzamide (3e). Following the above described procedure, 4.4 mg (0.020 mmol) of Pd(OAc)₂, 10.5 mg (0.040 mmol) of PPh₃, 200 mg (0.79 mmol) of 4-iodophthalonitrile, 151 mg (0.94 mmol) of *N*-BOC-ethylenediamine (2e) and 0.8 mL Et₃N were dissolved in 6 mL toluene. The reaction was pressurized and maintained at 100 °C for 3 hours. The product (3e) precipitated in the middle of the reaction and then was washed with *n*-hexane and obtained in 80% yield (198.5 mg). ¹H-RMN (400.13 MHz, CDCl₃) δ 8.31 (sl, 1H), 8.21 (dd, *J* = 8.1, 1.1 Hz, 1H), 8.17 (br s, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 5.18 (br s, 1H), 3.56-3.53 (m, 2H), 3.43-3.41 (m, 2H), 1.43 (s, 9H). ¹³C RMN (100.61 MHz, CDCl₃) δ 163.6, 158.7, 138.9, 133.9, 132.4, 131.7, 117.9, 116.4, 115.0, 114.9, 80.9, 43.6, 39.7, 28.4. HRMS (ESI-TOF) *m/z* calcd for [M+H]⁺: C₁₆H₁₈N₄NaO₃ 337.1271; found 337.1271.

Fig. 13. ¹H-NMR of Phthalonitrile 3e, recorded in CDCl₃.

Fig. 14. ¹³C-NMR of Phthalonitrile **3e**, recorded in CDCl₃.

Fig. 15. Mass spectrum of Phthalonitrile 3e

1.6. Phthalonitrile 3f

(*E*)-3,4-dicyano-*N*-(4-(3-(3,4,5-trimethoxyphenyl)acryloyl)phenyl)benzamide (3f). Following the above described procedure, 4.4 mg (0.020 mmol) of Pd(OAc)₂, 10.5 mg (0.040 mmol) of PPh₃, 200 mg (0.79 mmol) of 4-iodophthalonitrile, 296 mg (0.94 mmol) of (*E*)-1-(4-aminophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (**2f**) and 0.8 mL Et₃N were dissolved in 6 mL toluene. The reaction was pressurized and maintained at 100°C for 25 hours. The product (**3f**) precipitated in the middle of reaction and was washed with methanol and cyclohexane and obtained in 70% yield (256 mg). ¹H NMR (400.13 MHz, acetone-d₆) δ 10.23 (s, 1H), 8.64 (d, *J* = 1.5 Hz, 1H), 8.51 (dd, *J* = 8.2, 1.6 Hz, 1H), 8.26 (d, *J* = 8.2 Hz, 1H), 8.18 (d, *J* = 8.7 Hz, 2H), 8.01 (d, *J* = 8.7 Hz, 2H), 7.84 (d, *J* = 15.5 Hz, 1H), 7.73 (d, *J* = 15.5 Hz, 1H), 7.19 (s, 2H), 3.91 (s, 6H), 3.79 (s, 3H). ¹³C NMR (100.61 MHz, acetone-d₆) δ 188.7, 163.9, 154.9, 145.3, 143.8, 141.8, 140.6, 135.4, 133.9, 133.8, 131.8, 130.7, 122.1, 120.8, 120.7, 118.9, 117.0, 116.3, 107.4, 60.9, 56.8. HRMS (ESI-TOF) *m/z* calcd for [M]⁺: C₂₇H₂₁N₃O₅ 468.1554; found 468.1555.

Fig. 16. ¹H-NMR of Phthalonitrile **3f**, recorded in CD₃COCD₃.

Fig. 17. ¹³C-NMR of Phthalonitrile **3f**, recorded in CD₃COCD₃.

Fig. 18. Mass spectrum of Phthalonitrile 3f.

1.7. Phthalonitrile 3g

N-piperazine--3,4-dicyanobenzamide (3g). Following the above described procedure, 4.4 mg (0.020 mmol) of Pd(OAc)₂, 10.5 mg (0.040 mmol) of PPh₃, 200 mg (0.79 mmol) of 4-iodophthalonitrile, 407 mg (4.72 mmol) piperazine (2g) and 0.8 mL Et₃N were dissolved in 6 mL toluene. The reaction was pressurized and maintained at 100 °C for 7 hours. The product (3g) was purified by column chromatography on silica gel (stationary phase) using ethanol as eluent and obtained in 77% yield (146 mg). ¹H RMN (400.13 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 1.3 Hz, 1H), 7.75 (dd, *J* = 8.0, 1.3 Hz, 1H), 3.75 (s, 2H), 3.32 (s, 2H), 2.90 (d, *J* = 49.8 Hz, 4H). ¹³C RMN (100.61 MHz, CDCl₃) δ 166.1, 141.1, 134.0, 132.2, 131.7, 116.8, 116.7, 114.9, 114.8, 49.0, 46.6, 45.9, 43.6. HRMS (ESI-TOF) *m*/*z* calcd for [M+H]⁺: C₁₃H₁₃N₄O 241.1084; found 241.1081.

Fig. 19. ¹H-NMR of Phthalonitrile 3g, recorded in CDCl₃.

Fig. 20. ¹³C-NMR of Phthalonitrile 3g, recorded in CDCl₃.

Fig. 21. Mass spectrum of Phthalonitrile 3g.

2. Experimental procedures for the synthesis of phthalocyanines and copies of ¹H NMR and Mass Spectra

General procedure for synthesis of carboxamide substituted phthalocyanines. In a typical experiment, the desired phthalonitrile and $Zn(OAc)_2.2H_2O$ were dissolved in high boiling solvent pentan-1-ol and the mixture heated to reflux temperature for the required time for total consumption of the substrate (checked by TLC) under nitrogen atmosphere. After distilling off most of the solvent, the mixture was cooled to room temperature, and *n*-hexane was added to precipitate the crude compound. The solid was filtered, washed with water and purified according to the corresponding procedure and characterized by means of ¹H NMR, UV-vis, fluorescence and mass spectrometry.

2.1. Phthalocyanine 4a

2(3)-Tetra-(keto-N-glycinyl) phthalocyaninato zinc(II) (4a). Following the procedure described above, 100 mg of phthalonitrile **3a** (0.41 mmol) and 29.7 mg Zn(OAc)₂.2H₂O (0.14 mmol) were dissolved in 1 mL of pentan-1-ol. The mixture was heated to 140 °C and stirred for 20 hours. After workup procedure, the zinc(II) phthalocyanine complex 4a was purified by column chromatography on silica gel first using dichloromethane/ethyl acetate (1/1) and then a mixture of dichloromethane /ethanol (20/1) as eluent to obtain 62 mg of 4a (58% yield), as a waxy dark blue solid. UV-vis (THF) λ_{max} (log ε) 350 (4.52), 611 (4.22), 676 (4.87). ¹H-RMN (400.13 MHz, acetone*d*₆, 30°C) δ 8.46 (br s, 4H), 8.34 (d, *J*=7.7 Hz, 4H), 8.29 (s, 4H), 7.94 (d, *J*=7.7Hz, 4H), 4.04-3.94 (m, 8H), 2.76 (s, 12H). MS (MALDI-TOF-INFUSION) m/z calcd for $[M+Li]^+$: C₄₈H₃₆N₁₂O₁₂LiZn 1043.2023; found 1043.2050. EA calcd for C₄₈H₃₆N₁₂O₁₂Zn*2C₅H₁₂O*2H₂O C, 55.70; H, 5.16; N, 13.44; found C, 55.55; H, 5.35; N, 13.50.

Fig. 22. ¹H-NMR of Phthalocyanine 4a, recorded in CD₃COCD₃.

24

Fig. 23. Mass spectrum of Phthalocyanine 4a.

2.2. Phthalocyanine **4c**

(*S*,*S*,*S*)-2(3)-Tetra-(keto-*N*-phenyl alaninyl) phthalocyaninato zinc(II) (4c). Following the procedure described above, 45 mg of phthalonitrile **3c** (0.14 mmol) and 11 mg Zn(OAc)₂.2H₂O (0.05 mmol) were dissolved in 0.5 mL of pentan-1-ol. The mixture was heated to 140 °C and stirred for 20 hours. After workup procedure, the zinc(II) phthalocyanine complex **4c** was purified by column chromatography on silica gel first using dichloromethane/ethyl acetate (5/1) and then a mixture of dichloromethane/ethanol (20/1) as eluent to obtain 32 mg of **4c** (65% yield), as a waxy dark blue solid. UV-Vis (THF) λ max (log ε) 350 (4.14), 610 (3.81), 675 (4.48). 1H RMN (400.13 MHz, acetone-d6) δ 8.34 (br s, 4H), 8.24 (d, *J*=7.8Hz 4H), 8.20 (s, 4H), 7.89 (d, *J*=7.7Hz, 4H), 7.27 (2m, 20H), 4.93 (m, 4H), 3.31 (m, 4H), 3.19 (m, 4H), 2.86 (s, 12H). MS (ESI-TOF-INFUSION) *m*/*z* calcd for [M]+: C76H60N12O12Zn 1396.3745; found 1396.3754. EA calcd for C₇₆H₆₀N₁₂O₁₂Zn*2C₅H₁₂O*H₂O C, 64.84; H, 5.44; N, 10.55; found C, 64.59; H, 5.75; N, 10.83.

Fig. 24. ¹H-NMR of Phthalocyanine 4c, recorded in acetone-d6.

Fig. 25. Mass spectrum of Phthalocyanine 4c.

2.3. Phthalocyanine 4d

2(3)-Tetra-(*tert***-butyl-carboxamidyl) phthalocyaninato zinc(II) (4d).** Following the procedure described above, 100 mg of phthalonitrile **3d** (0.44 mmol) and 32.9 mg Zn(OAc)₂.2H₂O (0.15 mmol) were dissolved in 0.5 mL of pentan-1-ol. The mixture was heated to 140 ° C and stirred for 20 hours. After workup procedure, the zinc(II) phthalocyanine complex (4d) was purified by column chromatography on silica gel using a mixture dichloromethane/methanol (20/1) as eluent to obtain 74 mg of (4d) (68% yield), as a dark blue solid. UV-Vis (THF) λ_{max} (log ε) 351 (4.41), 610 (4.49), 676 (5.10). ¹H RMN (400.13 MHz, acetone-*d*₆) δ 8.26-8.20 (br s, 8H), 7.88-7.86 (br s, 4H), 7.58 (sl, 4H), 1.48 (s, 36H). MS (MALDI-TOF) *m/z* calcd for [M]⁺: C₅₂H₅₂N₁₂O₄Zn 972.3; found 972.3; [M+Na]⁺, m/z: 995.3. EA calcd for C₅₂H₅₂N₁₂O₄Zn*2H₂O C, 61.81; H, 5.59; N, 16.63; found C, 62.06; H, 5.50; N, 16.43.

Fig. 26. ¹H-NMR of Phthalocyanine 4d, recorded in CD₃COCD₃.

Fig. 27. Mass spectrum of Phthalocyanine 4d.