Improving the indigo carmine decolorization ability of a *Bacillus amyloliquefaciens* laccase by site-directed mutagenesis

Jiayi Wang, Lei Lu * and Fujuan Feng

College of Life Sciences, Northeast Forestry University, Harbin 150040, China; JY_Wang93@163.com (J.W.); leilu82@yahoo.com (L.L.); Fujuan_Feng@163.com (F.F.)

* Correspondence: leilu82@yahoo.com; Tel.: +86-451-8219-2073

Figure S1. Homology model of the wild-type laccase from *B. amyloliquefaciens*. Aspartic acid 501 is shown as sticks and the copper atoms are highlighted in orange.

<i>B. amyloliquefaciens</i> LCO2	473	EVIRIAATFAPYSGRYVWHCHILEHEDYDMMRPMDVTDKQ*
B. subtilis	473	EVLRIAATFGPYSGRYVWHCHILEHEDYDMMRPMDITDPHK
B. pumilus	473	EVIRIVARFVPYTGRYVWHCHILEHEDYDMMRPMDIIQ
B. licheniformis	472	SVTRIIATFAPYSGRYVWHCHILEHEDYDMMRPLEVTDVRHQ
B. halodurans	447	GETYEIVFEAKNPGNWMFHCHEFHHASGGMVAEIHYEGFELPFTPDPNIPNMPE
E. coli	481	EVLVKFNHDAPKEHAYMAHCHLLEHEDTGMMLGFTV
S. lavendulae	571	QMLRVMGRFDGAYGRFMYHCHLLEHEDMGMMRPFVVMPAEAMKFDHGAGHGGHGGHGGHG
N. crassa	530	$\label{eq:constraint} KGWLLIAFRTDNPGSWLMHCHIAWHVSGGLSNQFLERAQDLRNSISPADKKAFNDNCDAW$
G.graminis	504	eq:aghlvlafktdnpgawlmhchigwhtaqgfamqfverrsemfskniinnndieglcepwr
T. versicolor	461	GDNVTIRFTTDNPGPWFLHCHIDFHLDAGFAIVFAEDTADTASANPVPTAWSDLCPTYDA
P. brumalis	455	GDNVTIRFQTDNPGPWFLHCHIDFHLDAGFAVVFAEDLPDVVSANPVPQAWSDLCPIYNA
F. mediterranea	454	SDNVTIRFTTDNAGPWIMHCHIDWHLEAGLAVVFAEDTGNIASQNPVNNDWQQLCPDFNA
C. cinerea	477	KENVTIRFVTDNPGPWFFHCHIEFHLSGGLGAVFVEDQKDIKSSDRAPPPSWSELCPTFD
M. albomyces	534	GGWLLLAFRTDNPGAWLFHCHIAWHVSGGLSVDFLERPADLRQRISQEDEDDFNRVCDEW

Figure S2. Protein sequence alignment of fungal and bacterial laccases. The highly conserved regions of copper binding sites are represented with gray background. The conserved glycine residue is framed. Laccase protein sequences: *Bacillus amyloliquefaciens* LC02 (ADZ57285); *B. subtilis* (AID81987); *B. pumilus* (AFV60743); *B. licheniformis* (BAU80729); *B. halodurans* (AAP57087); *Escherichia coli* (BAB96698); *Streptomyces lavendulae* (BAC16804); *Neurospora crassa* (AAA33591); *Gaeumannomyces graminis* (CAD24842); *Trametes versicolor* (BAA23284); *Polyporus brumalis* (ABN13591); *Fomitiporia mediterranea* (EJC99977); *Coprinopsis cinereal* (ABP81837); *Melanocarpus albomyces* (CAE00180).

Figure S3. Partial structure of the wild-type laccase (a) and D501G variant (b). Hydrogen bonds are shown as red dashes.