Supplementary Materials: Effect of an Sb-Doped SnO₂ Support on the CO-Tolerance of Pt₂Ru₃ Nanocatalysts for Residential Fuel Cells

Yoshiyuki Ogihara, Hiroshi Yano, Masahiro Watanabe, Akihiro Iiyama and Hiroyuki Uchida

Figure S1. X-ray diffraction patterns of pristine powders of (**A**) commercial Pt/CB (50 wt %-Pt, TEC10E50E); (**B**) Pt₂Ru₃/CB; (**C**) Pt₂Ru₃/Sb-SnO₂; and (**D**) Sb-SnO₂ support and the assignment of XRD peaks to Pt and SnO₂. Dashed vertical lines indicate the positions of diffraction peaks for pure platinum.

Figure S2. Relationship between lattice constant and Ru content (analyzed atomic percent) of Pt₂Ru₃ alloys for (\blacktriangle) Pt₂Ru₃/CB, (\square) Pt₂Ru₃/Sb-SnO₂, and (\bigtriangledown) commercial Pt₂Ru₃/CB. Symbols (•) and (\blacklozenge) indicate the lattice constant of pure Pt and Ru, and the dotted line indicates the Vegard's law.

Figure S3. Additional TEM images of pristine Pt2Ru3/Sb-SnO2.

Figure S4. Peak top wavenumbers of CO_L, CO-Ru, and CO_B observed at 0.02 V and 60 °C in 1% CO (H₂-balance)-saturated 0.1 M HClO₄.

Table S1. Values of peak wavenumber and the full width at half maximum (FWHM) used for the deconvolution of FTIR spectra on Pt₂Ru₃/CB and Pt₂Ru₃/Sb-SnO₂ shown in Figures 5 and 6. The integrated intensity of each peak after 2 h of CO adsorption is also shown.

Peak Wavenumber (cm ⁻¹)		FWHM (cm ⁻¹)	Assignment	Integrated Intensity after 2 h	
				(Abs. cm ⁻¹)	
Pt2Ru3/CB Pt2Ru3/Sb-SnO2		-	-	Pt ₂ Ru ₃ /CB	Pt2Ru3/Sb-SnO2
2006	2025	33	COL, Pt terrace	0.186	0.265
1985	1983	36	COL, Pt step/edge	0.156	0.134
1955	1953	55	CO _B , Ru-Ru	0.119	0.119
1900	1911	35	COB, Ru-Pt	0.017	0.030
1857	1873	45	CO _B , Pt terrace	0.005	0.029
1813	1806	72	COв, Pt step/edge	0.010	0.023

Appendix S1. Calculation of the number of atoms at terraces and step/edges of a cubo-octohedral Pt₂Ru₃ fcc particle with the particle size *d*, according to the method in [25,26].

First, we calculated the number of total atoms N_{total} included in the particle with the number of atom layers *m*:

$$N_{\text{total}} = (10/3)m^3 - 5m^2 + (11/3)m - 1 \tag{S1}$$

As a measure of the particle size, we calculated d for a sphere having N_{total} atoms:

$$d = a_{PtRu} \left(3N_{\text{total}}/2\pi \right)^{1/3}$$
(S2)

where *aPtRu* is the lattice constant of the Pt₂Ru₃ alloy.

Catalysts 2016, 6, 139; doi:10.3390/catal6090139

Next, the number of surface atoms was calculated by the following equation [25]:

$$N_{\rm surface} = 10m^2 - 20m + 12 \tag{S3}$$

Then, the number of atoms at step/edges *N*_{step/edge} as well as that at terraces were calculated:

$$N_{\text{step/edge}} = 12 \text{ (atoms at vertex)} + 24(m-2)$$
 (S4)

$$N_{\text{terrace}} = N_{\text{surface}} - N_{\text{step/edge}}$$
 (S5)

By using an average particle size d = 2.6 nm based on the TEM observation, we obtained these values shown below:

Table S2. Number of atoms calculated based on a cubo-octohedral shape of Pt₂Ru₃ fcc nanoparticles.

<i>d</i> (nm)	Number of layers, <i>m</i>	Number of Total Surface Atoms, Nsurface	Number of Atoms at Step/Edges, Nstep/edge	Number of Atoms at Terraces, Nterrace
2.6	6	252	108	144