Supplementary Materials: Chitosan Aerogel Catalyzed Asymmetric Aldol Reaction in Water: Highly Enantioselective Construction of 3-Substituted-3-hydroxy-2-oxindoles

Hui Dong, Jie Liu, Lifang Ma and Liang Ouyang

Characterization Data of All Compounds

3-Hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3a

White solid, yield 92%, mp 144–146 °C. ¹H NMR (400 MHz, DMSO) δ 10.22 (s, 1H), 7.39 (d, J = 7.3 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 6.27 (s, 1H), 5.76 (d, J = 4.6 Hz, 1H), 4.24 (d, J = 4.6 Hz, 1H), 2.01 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 208.94, 176.86, 142.45, 129.90, 128.91, 124.70, 121.20, 109.40, 79.81, 76.33, 27.27. HRMS (m/z): calcd. for 244.0580 ([M+Na]⁺), obsd. 244.0587. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: t_{maj} = 25.3 min, t_{min} = 49.3 min, 71% ee; minor diastereoisomer: t_{maj} = 114.8 min, t_{min} = 22.3 min, 82% ee, λ = 254 nm.

4-Bromo-3-hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3b

White solid, yield 94%, mp 140–142 °C. ¹H NMR (400 MHz, DMSO) δ 10.49 (s, 1H), 7.12 (t, *J* = 7.9 Hz, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.75 (d, *J* = 7.5 Hz, 1H), 6.48 (s, 1H), 5.21 (d, *J* = 5.7 Hz, 1H), 4.45 (d, *J* = 5.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 208.04, 177.12, 145.33, 131.10, 127.13, 125.57, 119.12, 108.87, 78.90, 78.37, 29.42. HRMS (*m*/*z*): calcd. for 321.9691 ([M+Na]⁺), obsd. 321.9685. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: *t*_{maj} = 63.8 min, *t*_{min} = 23.1 min, 36% ee; minor diastereoisomer: *t*_{maj} = 35.9 min, *t*_{min} = 75.8 min, 84% ee, λ = 254 nm.

5-Chloro-3-hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3c

White solid, yield 93%, mp 152–154 °C. ¹H NMR (400 MHz, DMSO) δ 10.36 (s, 1H), 7.39 (d, *J* = 2.2 Hz, 1H), 7.25 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.76 (d, *J* = 8.3 Hz, 1H), 6.42 (s, 1H), 5.89 (d, *J* = 5.0 Hz, 1H), 4.28 (d, *J* = 5.0 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 209.20, 176.98, 142.05, 132.70, 129.35, 125.65, 125.35, 111.26, 80.11, 76.95, 27.98. HRMS (*m*/*z*): calcd. for 278.0191 ([M+Na]⁺), obsd. 278.0193. The ee could not be clearly identified by chiral HPLC analysis.

Yellow solid, yield 96%, mp 179–181 °C. ¹H NMR (400 MHz, DMSO) δ 8.21 (d, *J* = 9.1 Hz, 1H), 7.75 (s, 1H), 6.99 (d, *J* = 8.6 Hz, 1H), 6.77 (s, 1H), 5.40 (d, *J* = 6.3 Hz, 1H), 4.47 (d, *J* = 6.3 Hz, 1H), 2.40 (s, 3H).¹³C NMR (101 MHz, DMSO) δ 208.12, 178.12, 149.87, 141.60, 129.41, 126.76, 120.48, 109.71, 77.45, 76.64, 29.75. HRMS (*m*/*z*): calcd. for 289.0431 ([M+Na]⁺), obsd. 289.0439. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: *t*_{maj} = 111.6 min, *t*_{min} = 51.5 min, 92% ee, λ = 254 nm.

6-Bromo-3-hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3e

White solid, yield 93%, mp 164–166 °C. ¹H NMR (400 MHz, DMSO) δ 10.37 (s, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.8 Hz, 1H), 6.84 (d, *J* = 7.7 Hz, 1H), 6.55 (s, 1H), 5.08 (d, *J* = 5.1 Hz, 1H), 4.41 (d, *J* = 5.1 Hz, 1H), 2.05 (s, 3H).¹³C NMR (101 MHz, DMSO) δ 209.42, 208.58, 178.04, 177.14, 145.46, 144.86, 129.98, 128.18, 127.13, 124.34, 124.13, 122.49, 122.25, 112.70, 112.59, 80.13, 78.42, 77.22, 76.53, 29.85, 27.96. HRMS (*m*/*z*): calcd. for 299.9866 ([M+H]⁺), obsd. 299.9850. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: *t*_{maj} = 28.2 min, *t*_{min} = 16.6 min, 66% ee; minor diastereoisomer: *t*_{maj} = 107.5 min, *t*_{min} = 41.2 min, 77% ee, λ = 254 nm.

1-Benzyl-3-hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3f

White solid, yield 95%, mp 119–121 °C. ¹H NMR (400 MHz, DMSO) δ 7.38 (d, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 2H), 7.28–7.23 (m, 1H), 7.20 (t, *J* = 7.4 Hz, 1H), 6.96 (q, *J* = 7.1 Hz, 2H), 6.74 (d, *J* = 7.7 Hz, 1H), 6.69 (s, 1H), 5.18 (d, *J* = 5.2 Hz, 1H), 4.99 (d, *J* = 16.1 Hz, 1H), 4.77 (d, *J* = 16.1 Hz, 1H), 4.55 (d, *J* = 5.0 Hz, 1H), 2.43 (s, 3H). ¹³CNMR (101 MHz, DMSO) δ 208.61, 176.78, 144.19, 136.51, 129.86, 128.91, 128.31, 127.66, 127.55, 125.07, 122.31, 109.43, 78.74, 77.37, 43.00, 29.81. HRMS (*m*/*z*): calcd. for 334.1050 ([M+Na]⁺), obsd. 334.1191. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: *t*_{maj} = 63.6 min, *t*_{min} = 42.2 min, 72% ee; minor diastereoisomer: *t*_{maj} = 71.9 min, *t*_{min} = 78.4 min, 90% ee, λ = 254 nm.

1-Benzyl-4-bromo-3-hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3g

White solid, yield 92%, mp 120–122 °C. ¹H NMR (400 MHz, DMSO) δ 7.37–7.28 (m, 4H), 7.26 (dd, J = 5.9, 2.7 Hz, 1H), 7.20–7.10 (m, 2H), 6.74 (dd, J = 7.4, 1.2 Hz, 1H), 6.70 (s, 1H), 5.22 (d, J = 4.3 Hz, 1H), 4.89–4.82 (m, 2H), 4.81 (s, 1H), 2.43 (s, 3H).¹³CNMR (101 MHz, DMSO) δ 207.89, 174.81, 145.38, 135.50, 130.95, 128.47, 128.32, 127.28, 127.03, 126.33, 118.39, 108.40, 79.12, 76.11, 42.54, 28.50. HRMS (*m*/*z*): calcd. for 412.0155 ([M+Na]⁺), obsd. 412.0178. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: *t*_{maj} = 72.5 min, *t*_{min} = 51.1 min, 74% ee; minor diastereoisomer: *t*_{maj} = 77.9 min, *t*_{min} = 84.0 min, 94% ee, λ = 254 nm.

1-Benzyl-5-chloro-3-hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3h

White solid, yield 91%, mp 100–102 °C.¹H NMR (400 MHz, DMSO) δ 7.36 (d, *J* = 1.6 Hz, 1H), 7.35–7.33 (m, 2H), 7.31 (d, *J* = 1.7 Hz, 1H), 7.30 (d, *J* = 2.1 Hz, 1H), 7.27 (d, *J* = 2.1 Hz, 1H), 6.97 (d, *J* = 2.2 Hz, 1H), 6.82 (s, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 5.40 (d, *J* = 5.8 Hz, 1H), 4.97 (s, 1H), 4.80 (s, 1H), 4.55 (d, *J* = 5.8 Hz, 1H), 2.41 (s, 3H).¹³C NMR (101 MHz, DMSO) δ 208.55, 176.47, 143.06, 136.14, 130.47, 128.96, 128.80, 127.76, 127.50, 126.61, 126.44, 126.07, 125.27, 110.94, 78.33, 77.37, 43.07, 30.10. HRMS (*m*/*z*): calcd. for 368.0660 ([M+Na]⁺), obsd. 368.0668. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: *t*_{maj} = 72.0 min, *t*_{min} = 27.3 min, 73% ee; minor diastereoisomer: *t*_{maj} = 52.5 min, *t*_{min} = 89.3 min, 47% ee, λ = 254 nm.

1-Benzyl-3-hydroxy-3-(1-hydroxy-2-oxopropyl)-5-nitroindolin-2-one 3i

Faint yellow solid, yield 92%, mp 154–156 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, 3H), 7.31 (s, 2H), 6.97 (t, *J* = 8.8 Hz, 1H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.63 (dd, *J* = 8.3, 3.4 Hz, 1H), 5.17 (d, *J* = 15.9 Hz, 1H), 4.75 (d, *J* = 7.2 Hz, 1H), 4.70 (d, *J* = 15.8 Hz, 1H), 4.07 (d, *J* = 39.3 Hz, 1H), 3.65 (d, *J* = 7.1 Hz, 1H), 1.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.16, 176.07, 157.93, 139.69, 134.57, 128.93, 127.90, 127.10, 117.01, 116.78, 112.88, 112.63, 110.62, 110.54, 79.07, 44.20, 29.00, 0.01. HRMS (*m*/*z*): calcd. for 379.0901 ([M+Na]⁺), obsd. 379.0907. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: *t*_{maj} = 95.4 min, *t*_{min} = 114.8 min, 94% ee; minor diastereoisomer: *t*_{maj} = 48.1 min, *t*_{min} = 70.4 min, 25% ee, λ = 254 nm.

1-Benzyl-6-bromo-3-hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3j

White solid, yield 96%, mp 136–138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 6.4 Hz, 2H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.23 (t, 1H), 7.12 (d, *J* = 7.9 Hz, 1H), 6.95 (s, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.75 (s, 1H), 5.30 (d, *J* = 5.6 Hz, 1H), 4.97 (d, *J* = 16.1 Hz, 1H), 4.77 (d, *J* = 16.1 Hz, 1H), 4.51 (d, *J* = 5.6 Hz, 1H), 4.38 (t, *J* = 5.6 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 213.16, 181.55, 150.60, 140.90, 133.72, 132.51, 132.39, 132.25, 131.63, 129.69, 127.46, 117.14, 83.19, 81.88, 77.71, 68.27, 47.68, 34.68.

HRMS (*m*/*z*): calcd. for 412.0155 ([M+Na]⁺), obsd. 412.0163. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: t_{maj} = 65.7 min, t_{min} = 26.5 min, 34% ee; minor diastereoisomer: t_{maj} = 43.0 min, t_{min} = 76.4 min,91% ee, λ = 254 nm.

3-Hydroxy-3-(1-hydroxy-2-oxopropyl)-1-methylindolin-2-one 3k

White solid, yield 93%, mp 140–142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.3 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 4.52 (d, *J* = 3.4 Hz, 1H), 3.98 (s, 1H), 3.91 (d, *J* = 3.3 Hz, 1H), 3.18 (s, 3H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 207.70, 175.21, 143.86, 130.56, 127.29, 124.47, 123.45, 108.78, 79.74, 78.93, 27.35, 26.35. HRMS (*m*/*z*): calcd. for 257.0737 ([M+Na]⁺), obsd. 257.0738. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 85:15): major diastereoisomer: *t*_{maj} = 31.2 min, *t*_{min} = 27.7 min, 77% ee; minor diastereoisomer: *t*_{maj} = 35.2 min, *t*_{min} = 44.3 min, 85% ee, λ = 254 nm.

Tert-butyl 3-hydroxy-3-(1-hydroxy-2-oxopropyl)-2-oxoindoline-1-carboxylate 3l

White solid, yield 92%, mp 128–130 °C. ¹H NMR (400 MHz, DMSO) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.55 (d, *J* = 7.3 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.61 (s, 1H), 6.16 (d, *J* = 4.4 Hz, 1H), 4.38 (d, *J* = 4.0 Hz, 1H), 2.03 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, DMSO) δ 209.84, 174.25, 149.15, 140.18, 129.92, 129.27, 125.35, 124.68, 114.75, 83.95, 80.85, 76.03, 28.14, 27.85. HRMS (*m*/*z*): calcd. for 344.1105 ([M+Na]⁺), obsd. 344.1108. The ee could not be clearly identified by chiral HPLC analysis.

1-Acetyl-3-hydroxy-3-(1-hydroxy-2-oxopropyl)indolin-2-one 3m

White solid, yield 97%, mp 122–124 °C. ¹H NMR (400 MHz, DMSO) δ 8.07 (s, 1H), 7.61 (s, 1H), 7.38 (d, *J* = 6.0 Hz, 1H), 7.24 (d, *J* = 6.3 Hz, 1H), 6.70 (s, 1H), 6.33 (s, 1H), 4.42 (s, 1H), 2.58 (s, 3H), 1.99 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 210.37, 177.14, 170.66, 140.53, 129.97, 129.35, 125.49, 125.39, 115.91, 81.29, 76.33, 27.71, 26.49. HRMS (*m*/*z*): calcd. for 286.0686 ([M+Na]⁺), obsd. 286.0690. The ee could not be clearly identified by chiral HPLC analysis.

3-Hydroxy-3-(1-methoxy-2-oxopropyl)indolin-2-one 3n

White solid, yield 92%, mp 150–152 °C. ¹H NMR (400 MHz, DMSO) δ 10.23 (s, 1H), 7.38 (d, *J* = 7.2 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 6.94 (t, *J* = 7.3 Hz, 1H), 6.75 (d, *J* = 7.6 Hz, 1H), 6.29 (s, 1H), 3.39 (s, 3H), 1.97 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 207.95, 176.70, 142.93, 130.28, 129.85, 125.30, 121.81, 109.90, 90.07, 76.97, 60.65, 27.94. HRMS (*m*/*z*): calcd. for 258. 0737 ([M+Na]⁺), obsd.258.0742.The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 90:10): major diastereoisomer: t_{maj} = 71.3 min, t_{min} = 89.3 min, 87% ee; minor diastereoisomer: t_{maj} = 60.8 min, t_{min} = 54.1 min, 91% ee, λ = 254 nm.

1-Benzyl-3-hydroxy-3-(1-methoxy-2-oxopropyl)indolin-2-one 30

White solid, yield 90%, mp 156–158 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.13 (d, *J* = 7.4 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 5.17 (d, *J* = 15.9 Hz, 1H), 5.17 (d, *J* = 15.9 Hz, 1H), 4.66 (t, *J* = 11.7 Hz, 1H), 4.29 (s, 1H), 4.18 (s, 1H), 3.42 (s, 1H), 2.35 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 212.14, 174.93, 143.68, 135.18, 130.31, 128.77, 127.63, 127.08, 127.02, 124.29, 123.11, 109.71, 99.99, 87.35, 60.29, 43.84, 29.02. HRMS (*m*/*z*): calcd. for 326.1394 ([M+H]⁺), obsd. 326.1387. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 90:10): major diastereoisomer: t_{maj} = 68.4 min, t_{min} = 50.1 min, 94% ee; minor diastereoisomer: t_{maj} = 85.4 min, t_{min} = 93.8 min, 54% ee, λ = 254 nm.

3-Hydroxy-3-(1-methoxy-2-oxopropyl)-1-methylindolin-2-one 3p

White solid, yield 89%, mp 113–115 °C. ¹H NMR (400 MHz, DMSO) δ 7.42 (d, *J* = 7.3 Hz, 1H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 1H), 6.38 (s, 1H), 4.01 (s, 1H), 3.41 (s, 3H), 3.06 (s, 3H), 1.96 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 207.43, 174.52, 143.85, 129.50, 129.06, 124.39, 122.02, 108.28, 89.49, 76.19, 60.28, 27.47, 25.80. HRMS (*m*/*z*): calcd. For 272.0899 ([M+Na]⁺), obsd. 272.0897. The ee was determined by chiral HPLC analysis using a ChiralCel AD-H column (*n*-hexane:*i*-PrOH = 90:10): major diastereoisomer: t_{maj} = 41.1 min, t_{min} = 48.8 min,87% ee; minor diastereoisomer: t_{maj} = 32.4 min, t_{min} = 36.2 min, 91% ee, λ = 254 nm.

Compound 3a

Figure S1. (a) ¹H NMR and (b) ¹³C NMR of compound 3a.

Compound 3b

(b)

Figure S2. (a) ¹H NMR and (b) ¹³C NMR of compound 3b.

Compound 3c

(b)

Figure S3. (a) ¹H NMR and (b) ¹³C NMR of compound **3c**.

S9 of S34

Compound 3d

Figure S4. (a) ¹H NMR and (b) ¹³C NMR of compound 3d.

Compound 3e

(b)

Figure S5. (a) ¹H NMR and (b) ¹³C NMR of compound 3e.

Compound 3f

(b)

Figure S6. (a) ¹H NMR and (b) ¹³C NMR of compound 3f.

Compound 3g

(b)

Figure S7. (a) ¹H NMR and (b) ¹³C NMR of compound 3g.

Compound 3h

Figure S8. (a) ¹H NMR and (b) ¹³C NMR of compound **3h**.

Compound 3i

Figure S9. (a) ¹H NMR and (b) ¹³C NMR of compound 3i.

Compound 3j

Figure S10. (a) ¹H NMR and (b) ¹³C NMR of compound 3j.

Compound 3k

Figure S11. (a) ¹H NMR and (b) ¹³C NMR of compound 3k.

Compound 31

Figure S12. (a) ¹H NMR and (b) ¹³C NMR of compound 31.

Compound 3m

Figure S13. (a) ¹H NMR and (b) ¹³C NMR of compound 3m.

Compound 3n

(b)

Figure S14. (a) ¹H NMR and (b) ¹³C NMR of compound 3n.

Compound 3o

(b)

Figure S15. (a) ¹H NMR and (b) ¹³C NMR of compound 30.

Compound 3p

(**b**)

Figure S16. (a) ¹H NMR and (b) ¹³C NMR of compound 3p.

HPLC Analysis

Compound 3a (racemate)

Figure S17. HPLC analysis of compound 3a.

Compound 3b (racemate)

Figure S18. HPLC analysis of compound 3b.

Compound 3d(racemate)

Compound 3d

Figure S19. HPLC analysis of compound 3d.

Compound 3e (racemate)

Figure S20. HPLC analysis of compound 3e.

Compound 3f (racemate)

Figure S21. HPLC analysis of compound 3f.

Compound 3g (racemate)

Figure S22. HPLC analysis of compound 3g.

Compound 3h (racemate)

Figure S23. HPLC analysis of compound 3h.

Compound 3i (racemate)

Figure S24. HPLC analysis of compound 3i.

Compound 3j (racemate)

Compound 3k (racemate)

Figure S26. HPLC analysis of compound 3k.

Compound 3n (racemate)

Figure S27. HPLC analysis of compound 3n.

Compound 3o (racemate)

Compound 3o

Figure S28. HPLC analysis of compound 30.

Compound 3p (racemate)

Figure S29. HPLC analysis of compound 3p.