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Abstract: The effect of formulations and procedures to deposit thin active layers based on 

low surface area powders on complex geometry substrates (open-cell foams) was 

experimentally assessed. An acid-free liquid medium based on water, glycerol, and polyvinyl 

alcohol was used for powder dispersion, while a dip-coating technique was chosen for 

washcoat deposition on 30 PPI ceramic open-cell foams. The rheological behavior was 

explained on the bases of both porosity and actual powder density. It was proved that the use 

of multiple dippings fulfills flexibility requirements for washcoat load management. Multiple 

depositions with intermediate flash drying steps at 350 °C were carried out. Washcoat loads 

in the 2.5 to 22 wt. % range were obtained. Pore clogging was seldom observed in a limited 

extent in samples with high loading (>20 wt. %). Adhesion, evaluated by means of 

accelerated stress test in ultrasound bath, pointed out good results of all the deposited layers. 

Keywords: ceramic open-cell foams; washcoat; catalyst deposition; rheology;  

structured support 
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1. Introduction 

Structured catalysts and reactors for process intensification are receiving a large interest from the 

modern chemical engineering community [1]. A structured catalyst is intended as a continuum metallic 

or ceramic geometrical matrix (support) where voids (i.e., channels) are present. The catalytically active 

phases are properly dispersed onto the support surface by direct incorporation or coating deposition. The 

latter is the most used technique, due to its simplicity and versatility [2]. Commonly, the deposited 

washcoat consists of a high surface area carrier, generally ceramic, where the metal active phase is 

properly dispersed. A variety of materials have been investigated as high surface area ceramic supports, 

such as alumina, silica, titania, and ceria [3–6]. In some process applications, low surface area catalysts 

have been investigated instead of high surface area ones. As an example, cerium oxide has been proposed 

as an active phase carrier, due to its oxygen storage properties [7]. Unfortunately, cerium oxide 

undergoes a fast surface area decrease when it is treated at high temperature [8]. Moreover, in several 

cases, this transition to lower surface area values occurs at temperatures that are lower than process 

operative conditions. Thus, in many cases, low surface area cerium-based catalysts need to be deposited 

onto structured supports [9]. 

The active phase usually consists of metal ions, and it is the core of the catalysis process. A variety 

of metals have been proposed in view of the different chemical processes. Among others, cobalt [10,11] 

and nickel [12,13] have been chosen because of their catalytic activity in many different reactions. 

Moreover, they have been proposed as a low cost and effective alternative to noble metals. 

A variety of geometrical supports are now commercially available for catalytic purposes. They mainly 

differ for the structural and physical properties, such as chemical nature, surface area per unit volume or 

mechanical properties. Three way catalysts (TWCs) are one of the most diffused and investigated 

applications of structured supports to catalysis [14] because they are extensively used for gas pollution 

control in vehicle exhaust [15]. 

Among the different supports, solid open-cell foams are highly promising. Open-cell foams are 

characterized by a high interface area and high porosity, which could result in lower pressure drops and 

higher energy efficiency [16–18]. Due to their geometrical structure, high performance in terms of 

fluid/solid mass transfer are guaranteed. 

As already reported, structured catalyst preparation is usually based on coating deposition onto the 

geometrical support surface. Depending on the structured substrate geometry, several deposition 

techniques for the catalytic thin layer have been made up [19,20]. Among them, dip-coating technique 

is the simplest, most versatile and cheapest one to be used in industrial practice. Moreover, dip-coating 

deposition can be easily applied to both metallic and ceramic supports of a variety of shapes [21]. 

The first step in dip-coating technique consists of the preparation of a slurry that is composed of a 

liquid phase in which the final powder to be deposited has to be suspended or better, dispersed. Then, 

the structured support is dipped in the liquid medium in order to fill the voids with a catalytic slurry 

precursor. Finally, the geometrical support is withdrawn from the slurry at a controlled rate. Depending 

on viscosity and support geometry, excess liquid removal is guaranteed by the opposite forces acting on 

the liquid during the withdrawal step. As a result, coating thickness depends on the balance between 

gravitational force, which promotes the removal of the liquid phase, and the viscous forces acting in the 

slurry, which involve the sliding resistance [22,23]. Therefore, the control of the coated layer properties, 
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i.e., thickness and adhesion, are mainly ruled by the slurry rheological behavior and the withdrawal 

velocity. As far as rheological behavior is concerned, the suspension formulation (e.g., water/powder 

ratio, acid/powder ration, and surfactant content) can be easily tuned in order to achieve the desired 

viscosity at the typically applied dip coating shear rates [21]. Indeed, at low viscosity values, which 

promote good adhesion, lower coating loads are obtained. On the other hand, when a higher viscosity is 

applied, the higher coating load obtained is counterbalanced by poor adhesion, and sometimes a few 

difficulties are faced in applying the method [24]. 

Different methods are available for both powder suspension (or dispersion) and slurry stabilization. 

A well-known method is based on the generation of electrostatic repulsions among the powder particles, 

promoted by the surface charging of the material to be dispersed in an acidic environment [24–26]. This 

procedure has been applied with success to high surface area powders, as their surface can be easily 

charged simply by managing the pH of the suspension. Unfortunately, this route is not easily applicable 

in the case of powders with low surface area, those characterized by chemical un-reactivity, or in the 

case of a possible dissolution of components. In all of these cases, an acid-free dispersion method needs 

to be used, and the selection of an alternative dispersant agent is required. Generally speaking, in the 

acid-free method organic molecules, more typically macromolecules, are used as dispersants. They are 

dissolved into the liquid phase so they can closely interact with the powder surface, allowing particle 

dispersion and slurry stabilization [27–29]. Many papers are reported in the literature regarding 

formulation and its effect on resulting slurries [30–32]. However, to our knowledge, fewer works have 

been reported on the production of slurries for coating deposition, via dipping, of low surface area 

powders onto open cell foams. In particular, scarce information is reported on the effect of the different 

dispersants and the composition of the final slurry properties. This study is of fundamental importance 

to correlate easily tunable experimental parameters, such as ratios between the components, with the 

rheological behavior of the slurry. Indeed, rheology is the main operative parameter to drive  

the final coating load, thickness, and adhesion, i.e., which are the parameters of interest for industrial  

application [33]. 

Accordingly, the aim of this work is to clarify these aspects by studying the formulations and the 

procedures to deposit thin active layers of low surface area model catalyst powder, such as Ni- or  

Co-supported, onto low surface area ZrO2. The catalytically active powders were produced by means of 

the incipient wetness impregnation technique using a commercial support. Different acid-free 

formulations based on water (H), glycerol (G), and polyvinyl alcohol (PVA) were studied, and the effect 

of the components that determine the slurry rheology was assessed. The different slurries were tested to 

coat 30 PPI (Pores Per Inch) ceramic open-cell foams via the dip-coating technique. A correlation among 

the final coating load, thickness, and adhesion after thermal treatments with the slurry composition and 

rheology was proposed. An attempt to rationalize the rheological behavior at the light of composition 

was also made. 
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2. Results and Discussion 

2.1. Catalyst Characterization 

Catalytic powders characterization is reported in Figure 1 and Table 1. For the sake of comparison, 

the characterization of the pristine morphological carrier (ZrO2) is also reported. 

XRD patterns (Figure 1) clearly showed the reflections of the monoclinic ZrO2 support. Additional 

reflections at 37.2°, 43.2° and 63° 2θ can be clearly seen in case of the  

Ni-containing sample; the latter were attributed to NiO, while the one that was detected at 36.9° in the 

Co-based sample was attributed to Co3O4. 

 

Figure 1. XRD spectra of the impregnated powders. 

Table 1. Morphological characterization of the powders. 

Sample 
Active Phase Crystal 
Size (nm) (by XRD) 

Surface Area (m2·g−1) Pore Volume (cm3·g−1) 

ZrLS - 27 0.2 
NiZrLS 28 14 0.1 
CoZrLS 25 19 0.1 

The crystallite dimensions of the carrier and the active phase, which were calculated according to 

Scherrer equation, were in the range of 25–28 nm, thus, almost comparable. 

Regarding morphology, very close surface areas and pores volumes were measured for the active 

materials: a decrease of the surface area was observed upon impregnation that was accompanied by a 

decrease of the pore volumes. This effect is clearly explained by the partial occupation of pores due to 

the presence of the active phase. 

According to the procedure reported in the experimental section, all the powders, carrier and active 

materials were dispersed in the HGP liquid medium, and their rheological behaviors were compared. 

Results are reported in Figure 2. 
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Figure 2. Rheological behavior of zirconia-based slurries. 

Apparently, active phase presence did not affect rheological properties. Indeed, shear thinning 

behaviors were found for all the samples. In order to get information on the non-Newtonianity degree of 

the slurries, the flow curves slope was determined in the 10–100 s−1 shear rate range. Generally speaking, 

higher slope values (in modulus) correspond to a more marked shear thinning behavior. For all samples, 

slopes in the range of 0.6–0.4 were calculated; this highlighted a very close rheological behavior for the 

three slurries. The powder composition exerted a different effect, since the presence of the active phase 

induced lower viscosity values in all the shear rate range (Figure 2). Such differences cannot be directly 

related neither to the surface area nor to the porosity due to the close values of these parameters detected 

for the three samples; similar considerations can be done for the active phase content, too. On the 

contrary, the absolute viscosity appeared to be much more specific for the metal cations present at the 

carrier surface. The effect of the presence of an active phase onto the carrier surface was already reported 

in the literature [34]. Accordingly, the modification of the surface nature was reported as responsible for 

a different powder-dispersant interaction, which influenced the rheological behavior. However, in this 

case, this effect should be quite peculiar considering the strong chemical similarity between Ni and Co 

both in terms of atomic weight and atomic number. 

Accordingly, an attempt to rationalize the viscosity behavior was done, considering properties other 

than those mentioned above or a combination of properties reported so far. 

A possible explanation for the rheological behavior could be found by considering the actual volume 

fraction of the powders. To evaluate this aspect, a representative model to describe the powders has to 

be built. In the model, three components were considered: (1) powder nature (mainly related to the molar 

weight); (2) powder density (mainly related to porosity); and (3) powder size and size distribution. 

The first consideration regarded the composition of the different powders, since slurries formulation 

was obtained by considering the powders content on mass base. The presence of the active phase in its 

oxidized form should be taken into account, since it affects the powder molar weight and consequently, 

the powder concentration in the slurry. In order to quantify this effect, the actual amount of the active 

phase (in the oxidized form (mOx.Act.Ph)) was determined according to Equation (1) 
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where mMet.Act.Ph (g) is the mass of the active phase (metallic form), MMetalIon is the atomic mass of the 

metal ion and MOx the molecular weight of the active phase (oxidized form). Starting from Equation (1), 

support weight fraction was recalculated according to Equation (2). 

Ox.Act.Phport

port

mm

m
K




sup

sup  (2)

K equals to one for the bare support, while it is lower than one for the active powders (Table 2). 

However, K cannot completely describe the powders because no powder density was taken into account 

in Equation (1). Powder density is directly correlated to the morphological properties and particularly to 

porosity that can be evaluated by means of BET analysis. Therefore, in order to properly evaluate the 

actual density of the powders, crystallographic density and sample porosity were introduced in the 

calculation. In the case of active powders, crystallographic density was assumed as the average of the 

densities of all the phases, weighted by composition as reported in Equation (3): 
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where “i” is the any phase present in the powder in the oxidized form. The “real” density was thus 

calculated by taking into account the evaluated material porosity. Porosity values were used to determine 

the powder void fraction (φ) and, thus, the real powder density (ρreal) calculated according to Equation (4): 
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Moreover, to give a complete description of the powders and to evaluate their actual concentration in 

the slurry, the particle size and size distribution, evaluated by granulometric analysis, were introduced 

in the model. Accordingly, the weighted volumetric fraction was calculated by Equation (5): 

1
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where Vfract is the volume of the particle (Vi) and Percentagei is the relative amount of particles with the 

i-th diameter. For volume calculation, a spherical shape was assumed for particles while the specific 

volume was assumed as equal to the reciprocal of density. Finally, the number of particles per unit 

volume was obtained by using Equation (6) 

Particles  concentration powder

real Fract liq

m

ρ V V


 
 (6)

where ρreal is the real density of powder and Vliq is the volume of dispersing HGP liquid medium. Results 

are reported in Table 2. 
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Table 2. Powder physical properties and slurry viscosity values. 

Powder K 
Bulk Density 

(g·cm−3) 
Real Density 

(g·cm−3) 

Particles 
Concentration 
(Particles cm−3)

Viscosity (Pa·s) at Shear Rate:

1 s−1 10 s−1 100 s−1 

ZrLS 1 5.68 1.13 1.50 × 108 0.743 0.185 0.067 
NiZrLS 0.91 5.77 2.43 4.24 × 107 0.309 0.1 0.04 
CoZrLS 0.76 5.78 2.16 4.10 × 107 0.532 0.14 0.059 

On these bases, viscosity at three selected shear rates was plotted as a function of powder density 

(Figure 3). 

Viscosity was found to decrease linearly as powder density increased. Once the mass of powder to be 

dispersed is fixed, a larger material density results in a lower number of particles per volume unit. The 

number of particles per volume unit directly influences the rheological behavior: a higher number of 

particles leads to higher viscosity values [35,36]. Thus, the rheological slurry behavior can be explained 

on these bases. Pure ZrO2 (the carrier), which is a less dense material than the impregnated one, showed 

the highest viscosity because the same powder amount (weight base) had a larger number of particles 

present. When powder density increases, such as in the case of the active powders, the number of 

particles decreases; therefore, powder concentration and slurry viscosity also decreases. 

 

Figure 3. Viscosity at three selected shear rates as the function of the powder density 

(triangles: SR 100 s−1; circles: SR 10 s−1; squares: SR 1 s−1). 

This picture was confirmed by plotting the viscosity as a function of the particle concentration, which 

was calculated as reported above (Figure 4). At any shear rate, the viscosity increases with the particles 

concentration. Results of Figure 4 are in line with the conventional behavior of slurry viscosity. It is well 

known that the viscosity of concentrated dispersions is higher than that of diluted ones. This effect may 

be related with an increase of particle-particle interaction. Moreover, the fact that parallel lines were 

found suggested the presence of the same interaction mechanism at any shear rates. 
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Figure 4. Viscosity as a function of particles concentration (triangles: SR 100 s−1; circles: 

SR 10 s−1; squares: SR 1 s−1). 

2.2. Washcoat Deposition 

HGP-based slurries were deposited onto the 30 PPI ceramic foams via dip-coating process and then, 

thermally treated. Up to three multiple depositions were performed. It is well known that washcoat load, 

the parameter of interest, is correlated with viscosity, i.e., the main operative variable of the process [37]. 

Accordingly, the coating load after calcination was plotted as a function of the viscosity values at shear 

rate 10·s−1, the one of interest for dip-coating application (Figure 5). Regardless slurry formulation, a 

quite linear load-viscosity correlation was found. 

 

Figure 5. Coating Load as a function of viscosity and of the number of subsequent depositions. 

As expected, the washcoat load increased with viscosity and was observed at any dipping number. 

Due to the highest viscosity values, the higher loads were obtained with the pristine ZrO2 slurries which 

were found to reach approximately 22 wt. % after three dippings. 
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When more than one dipping was applied, the deposition seemed not to be affected by the presence 

of the previous washcoat layer. This effect is better evidenced when the washcoat load after calcination 

is plotted as a function of the dipping number (Figure 6). 

 

Figure 6. Coating load as a function of the dipping numbers. 

A linear trend between load and dipping number was found, suggesting dipping number as a useful 

tool to manage washcoat load.  

Results on adhesion tests—by means of an ultrasound stress test in petroleum ether—are shown  

in Figure 7. 

 

Figure 7. Weight loss after adhesion test for Zr-based samples as a function of load  

after calcination. 

From the analysis of points of Figure 7, adhesion seemed strongly related to the coating composition; 

in the case of pure ZrO2, negligible or no weight losses were present while the presence of active phase 

led to higher weight losses, with a relative maximum in correspondence of the intermediate washcoat 

load values. Generally speaking, higher washcoat load should determine higher losses after adhesion 

test, due to layer thickness. On the contrary, in these samples an overall increase of adhesion was found 
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with load increase. For the considered samples, the effect of the different surface composition should 

also be taken into account even though this effect cannot be easily evaluated. Anyway, due to the large 

complexity of the involved phenomena and to the brittleness of the support foam, this point deserves 

more study to be clarified. 

A qualitative washcoat analysis as a function of dipping number was performed on the active powders 

by using an optical microscope (Figure 8). 

Figure 8 shows the images after flash drying. As described in the experimental section, this step is 

performed at 350 °C for 6 min: these operative parameters are suitable for solvent removal, but they are 

not enough for the total decomposition of the organic components which is still incomplete [38]. To 

analyze the washcoat at this step can be highly useful: the partial decomposition of the organic compound 

will result in a darkening of the surface that should allow for a better vision of coating coverage and 

homogeneity. Both samples clearly showed a surface darkening that was qualitatively interpreted as a 

homogeneous distribution of the washcoat load. As a matter of fact, white areas, which correspond to 

the bare substrate, were still evident only after one dipping; then, they gradually decreased and tended 

to disappear upon multiple depositions. After three dippings, a good coverage was reached. Almost no 

pore clogging occurred: only limited pore clogging was found for the CoZrLS (left side in the picture). 

 

Figure 8. Optical images of NiZrLS (1D to3D) and CoZrLS (1D to3D) deposited on 30 PPI 

foams: effect of multiple dippings after flash drying. For the sake of comparison, an image 

of the bare foam has been added at the bottom of the image. 
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Figure 8 shows the images after flash drying. As described in the experimental section, this step is 

performed at 350 °C for 6 min: these operative parameters are suitable for solvent removal, but they are 

not enough for the total decomposition of the organic components which is still incomplete [38]. To 

analyze the washcoat at this step can be highly useful: the partial decomposition of the organic compound 

will result in a darkening of the surface that should allow for a better vision of coating coverage and 

homogeneity. Both samples clearly showed a surface darkening that was qualitatively interpreted as a 

homogeneous distribution of the washcoat load. As a matter of fact, white areas, which correspond to 

the bare substrate, were still evident only after one dipping; then, they gradually decreased and tended 

to disappear upon multiple depositions. After three dippings, a good coverage was reached. Almost no 

pore clogging occurred: only limited pore clogging was found for the CoZrLS (left side in the picture). 

In order to evaluate the deposited layers at higher magnification, washcoat after calcination was 

analyzed by SEM measurements (Figure 9). The results after three dippings are reported for the  

active powders. 

Acquisitions were performed in back scattering, and they once more demonstrated the good coverage 

homogeneity of the surface (Figure 9). Few defects were present, but they were of limited extent and 

localized. Coating surface, analyzed at higher magnification (Figure 9e,f), showed evidence of the 

presence of cracks of limited depth; another coating layer (not the bare support) was seen underneath. 

 

Figure 9. Back scattering SEM analysis of ZrLS, (a,d), NiZrLS (b,e) and CoZrLS (c,f) 

coated samples after three dippings at different magnifications (100X and 1000X).  

3. Experimental Section 

3.1. Catalytic Powders Preparation and Characterization 

A commercially available low surface area carrier was used for catalyst production, namely zirconium 

oxide supplied by Melcat (in the following, ZrLS). 

Catalysts were produced by using the incipient wetness impregnation method [19]. Nickel nitrate 

hexahydrate (98.5%, Sigma-Aldrich, St. Louis, MO, USA) and cobalt nitrate hexahydrate (98%,  
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Sigma-Aldrich, St. Louis, MO, USA) were used as nickel and cobalt active phases precursors, 

respectively. These metal salts were used to obtain a final load equal to 7 wt. %, on a metal base. 

The precursors solution was wisely dropped onto the carrier. Impregnated powders were dried 

overnight at 120 °C, and then, they were calcinated in order to decompose the nitrate precursors and to 

obtain the final oxide. In particular, Co-based samples were calcinated at 400 °C while Ni-based samples 

were treated at 800 °C; in both cases, dwell was set at 10 h, with heating and cooling rate of 2 °C·min−1. 

The two different calcination temperatures were chosen in accordance with possible catalytic 

applications (i.e., Oxy-Steam Reforming for Ni-based catalysts [39] and Fisher Tropsch synthesis for 

Co-bases samples [11]. A final metal load about 10 wt. % was measured for all powders. 

Impregnated powders were characterized by means of X-ray diffraction. A D8 Advance 

diffractometer (Bruker, Billerica, MA, USA) and a Cu-Kα radiation were used (10–80° 2θ range, 40 kV 

and 40 mA, step scan 0.02° 2θ, time 1 s·step−1). Crystallite dimensions were evaluated from the reflection 

line broadening (FWHM, calculated by Topas) using the Scherrer equation [40]. 

The powders particle size was evaluated by using a CILAS 1180 laser granulometer (Compagnie 

Industrielle des Lasers, Orleans, France). 

BET surface area and pore volume were determined by N2 adsorption and Hg intrusion; in the first 

case, a Tristar 3000 device was used (Micromeritics, Norcross, GA, USA). N2 physisorprion 

measurements were carried out after heating at 150 °C overnight, under vacuum. An Autopore IV 

instrument (Micromeritics, Norcross, GA, USA) was used for Hg intrusion. 

3.2. Washcoating 

The powders dispersion formulation is based on a dispersant, glycerol (G) (87% w/w water solution, 

Sigma-Aldrich, St. Louis, MO, USA), a solvent/diluent, distilled water (H), and a rheology modifier, 

polyvinyl alcohol (PVA) (Mowiol, Sigma-Aldrich, St. Louis, MO, USA). Weight ratios among the three 

components were calculated with respect to the powders (PW), and they were respectively set at:  

G/PW = 1.9, H/PW = 1.8 and PVA/PW = 0.07. In the following, the liquid medium based on this 

formulation will be labeled as HGP. 

The slurry was obtained by means of a procedure reported elsewhere [24]. Briefly, in a typical 

experiment, PVA was dissolved in distilled water at 85 °C; then glycerol was added, always under 

magnetic stirring. The obtained HGP liquid medium was used to disperse catalyst powders. The powder 

was added to the HGP solution, and the resulting slurry was ball-milled for 24 h (50 rpm of rotation rate) 

in a polyethylene jar using ZrO2 spheres as grinding bodies. After the milling process, a sonication  

pre-treatment was performed for 30 min on the slurries in order to reduce foaming. 

The slurries rheological behavior was evaluated in the 1–103 s−1 shear rate range by means of a DSR 

200 instrument (Rheometrics, New Castle, DE, USA) by using the parallel plates geometry and plates 

of 40 mm of diameter. 

Before coating deposition, supports were cleaned with acetone for 30 min in an ultrasound bath. 

Slurries were deposited on Yttria-stabilized Zirconia Alumina (YZA) open-cell foams (Selee 

Company, Hendersonville, NC, USA), with a nominal pore density of 30 PPI (pore per inch). Structured 

supports were cut in parallelepiped shape with squared section; dimensions were set at 1.5 cm and 1 cm 

for length and section, respectively. 
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Dip-coating was used as the deposition technique. Both the dipping and withdrawal rate were set at  

13 (cm·min−1). After the dipping step, coated samples were flash dried [38] for 6 min at 350 °C in a 

sealed oven. Then, a final calcination thermal treatment was performed for 10 h at 400 °C and 800 °C 

for Co- and Ni-based materials respectively; in both cases, dwell was set at 10 h with a heating and 

cooling rate of 2 °C·min−1. When necessary, multiple depositions were performed; the dipping procedure 

was repeated, and flash drying was performed between two subsequent dippings.  

Washcoat load was evaluated by the weight difference of bare and coated foam. 

Coated layers homogeneity and morphology were evaluated by means of optical (SZ-CTV 

microscope, Olympus, Tokio, Japan) and scanning electronic microscopy (Stereoscan 360, Cambridge 

Instruments microscope, Somerville, MA, USA). 

Coating adhesion was determined by coated samples sonication for 30 min in a petroleum ether bath, 

according to literature [34]. In Figure 10, a schematic representation of a typical procedure for structured 

catalyst production is reported. 

 

Figure 10. Scheme for catalyst production and washcoat deposition (slurry composition and 

details of the procedures as reported above). 

4. Conclusions 

(1) The use of an acid-free water-based formulation proved to be effective for the dispersion of model 

catalytic powders characterized by low surface areas. The obtained slurries are suitable for deposition 

on ceramic open cell foams via dip-coating. 

(2) A dependence between the powder properties and the final rheology was evidenced. In particular, 

the rheological behavior, being directly related to both powder particles porosity and density, could be 

managed by taking into account these properties during formulation. Active phase presence influences 

particles properties, although present in a limited amount. 

(3) From a practical point of view, chemical composition (i.e., molar weight) and porosity were  

found to be simple and detectable parameters to be used in slurry formulation to control the  

rheological behavior. 

(4) The use of multiple dippings proved to fulfill the flexibility requirements for washcoat load 

management. All the formulations obtained good results in terms of washcoat load and adhesion.  

Local and limited pore clogging occurred only in the washcoat at very high load degree (higher  

than 20 wt. %). 
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(5) Depending on the powder to be deposited and on the operative condition, promising results have 

been obtained in terms of adhesion. Most samples displayed losses lower than 10 wt. %, which was 

reported in literature as satisfactory for washcoat adhesion on open-cell foams [38]. 

(6) Although, up to now an “a priori” formulation of the slurry is hardly to be obtained without  

any experimental base, the results here reported can help to reduce experimental tests in a  

trial-and-error approach. 
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