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Abstract: This focused review article underscores how metal reduction promoters can 

impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. 

Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a 

result of the promoting effect, are in close proximity at the nanoscale to other cobalt 

particles on the surface. Recent efforts have shown that when promoters are used to 

facilitate the reduction of small crystallites with the aim of increasing surface Co0 site 

densities (e.g., in research catalysts), ultra-small crystallites (e.g., <2–4.4 nm) formed are 

more susceptible to oxidation at high conversion relative to larger ones. The choice of 

promoter is important, as certain metals (e.g., Au) that promote cobalt oxide reduction can 

separate from cobalt during oxidation-reduction (regeneration) cycles. Finally, some 

elements have been identified to promote reduction but either poison the surface of Co0 

(e.g., Cu), or produce excessive light gas selectivity (e.g., Cu and Pd, or Au at high 

loading). Computational studies indicate that certain promoters may inhibit polymeric C 

formation by hindering C-C coupling. 
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1. Introduction 

Fischer-Tropsch synthesis (FTS) making use of cobalt catalysts is the core of the gas-to-liquids 

(GTL) process [1,2]. Due to the high H2/CO syngas ratio derived from reforming of natural gas, 
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additional water gas shift is not required to adjust the ratio upward, and internal water-gas shift (WGS) 

activity is undesirable. This is one benefit of cobalt catalysts relative to iron catalysts for GTL, as the 

former typically possess low intrinsic WGS activity. Because cobalt is much more expensive than its 

iron counterpart, and because the reaction occurs on the surface, it is important to disperse the cobalt 

metal particles in order to improve usage efficiency. 

A typical cost effective way to do so is to impregnate the pre-calcined support with a cobalt nitrate 

solution by wet or dry (incipient wetness) impregnation followed by drying, air calcination to decompose 

the cobalt nitrate precursor to cobalt oxide, and reduction (e.g., 10 h in hydrogen gas at 350 °C) to Co0 

crystallites (typically in the range of 5 to 20 nm). The surface of Co particles provides the catalytically 

active sites for Fischer-Tropsch synthesis.  

However, with typical reduction of supported cobalt at low temperatures (e.g., 350–400 °C) 

appropriate for obtaining active small crystallites of 6–15 nm, a sizeable fraction (typically in the range 

of 15–70%) of the cobalt remains in the oxide form, mainly as CoO. The fraction of unreduced cobalt 

is larger for supports such as alumina which interact strongly with cobalt oxide and for low cobalt 

loadings, e.g., less than 10–15% on such supports. The extent of the interaction increases with 

decreasing loading of cobalt. At low loadings (e.g., < 5%), 60 to 80% of the cobalt is present as CoO 

strongly bound to the support surface, i.e., a surface cobalt aluminate, CoO*Al2O3, which requires very 

high temperatures to reduce [3]. At high loadings (e.g., 15%–30%Co), cobalt will be present primarily 

as Co3O4, which reduces in two steps: Co3O4 + H2 = 3CoO + H2O and 3CoO + 3CoO = Co + 3H2O, 

for which maximum rates of reduction occur at about 300–350 and 500–650 °C, respectively [4]. Thus, 

following reduction of an unpromoted 15–30% Co/alumina at 350–400 °C for 5–15 h, a significant 

fraction (30–60%) of CoO typically remains [5–8]. Since higher extents of reduction (80–90%) of 

cobalt are highly desirable, i.e., correlated with higher activity on a per g catalyst basis, as well as 

improved C5+ selectivity, there is considerable interest and widespread application of noble metal 

promoters, which facilitate the reduction of cobalt oxides and increase the surface density of cobalt 

active sites. 

This article reviews a number of stability issues associated with the application of promoters for 

cobalt FTS catalysts. Examples are provided to demonstrate a number of considerations for selecting a 

noble metal for Co catalysts. The main point of the article is that each promoter has its own advantages 

and set of issues that must be addressed and, in some cases, still defined.  

2. Results and Discussion 

Figure 1 compares temperature programmed reduction (TPR) TPR profiles of a number of noble 

metal and Group IB-promoted 15%Co/γ-Al2O3 catalysts pertinent to this review. The commonly used 

promoters are Pt, Re, and Ru and the solid line profiles are at close to atomically equivalent loadings. Pt 

and Ru facilitate the reduction of both steps of cobalt oxide reduction, while Re catalyzes the reduction 

of primarily the second step. This has been explained by Re oxide reducing at a higher temperature than 

Pt and Ru and that a reduced form of the promoter is required to obtain the promoting effect [7]; 

however, further confirmation of this is needed as the oxidation state remains in question [9]. Both Pt 

and Re appear to be more effective at facilitating reduction relative to Ru, but higher loadings of Ru 

can be used to further facilitate reduction, as indicated by the dashed profile at 0.5%Ru loading. 
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Similar trends were reported in the TPR peak locations in a recent investigation of promoter 

characteristics by Cook et al. [9], as shown in Figure 2. 

Figure 1. TPR profiles demonstrate the effectiveness of Cu for facilitating reduction of 

cobalt oxides. Curve labels: unpromoted 15%Co/Al2O3 (thick solid) and Cu-promoted with 

0.033%Cu (thick dashed), 0.49%Cu (thin solid), and 1.63%Cu (thin dash-dotted) by 

weight. (Reproduced with permission from [7] and [10] Copyright 2002, 2009, Elsevier). 
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Figure 2. TPR profiles by Cook et al. [9] show that Pt and Re are more efficient than Ru in 

facilitating reduction of cobalt oxides over 25%Co/γ-Al2O3 catalysts with equivalent 

atomic loading (i.e., noble metal / Co ratio was 0.007). 

 

Cu, Ag, and Au (Group IB) promoters are also effective at promoting the reduction of cobalt 

oxides, as described in Figure 1 (top) [10]. However, note that the loadings indicated by the solid lines 

are approximately three times higher on an atomic basis than those of the commonly used promoters 

(Pt, Re, Ru) shown in the lower part of the figure. The costs of Ag and Cu are, whether on a weight or 

atomic basis, much lower than any of the other promoters shown. Therefore, it was of interest to 

explore their ability to facilitate reduction at even higher loadings. Increasing the loading by a factor of 

3.3 resulted in further and important shifts of both TPR peaks of cobalt oxide reduction to lower 

temperatures (Figure 1, top). 

The choice of promoter metal and its loading may influence the stability of cobalt catalysts in a 

number of ways. The first section examines how reduction promoter type and loading influence the 

activity and selectivity of cobalt catalysts, while the second section discusses how promoters may 

exacerbate deactivation rates through oxidation and a possible complex sintering mechanism, the two 

of which are not mutually exclusive. A brief summary of the application of computational methods is 

also provided, which discusses the location of promoter relative to cobalt, the resistance or sensitivity 

of cobalt to oxidation depending on size, and how promoters may hinder carbon formation pathways. 

Finally, in adding a second catalytic metal to the catalyst, the ability to regenerate the catalyst in a 

simple and effective manner becomes an important concern. 

2.1. Influence of Promoter Choice and Loading on Catalyst Activity and Selectivity 

2.1.1. Example #1—Copper 

The first example demonstrates a relatively inexpensive metal that is highly effective for promoting 

the reduction of cobalt oxides: Cu, which is a common promoter in iron carbide FTS catalysts [11,12]. 
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As of this writing, Cu is approximately 0.015% of the cost of Pt on a mass basis and would seem to be 

an ideal candidate as a promoter. 

With increases in extent of reduction of cobalt (from 49.8% for 15%Co/Al2O3 to 53.2, 69.4, and 

93.3% for 0.033%, 0.49%, and 1.63% Cu-promoted 15%Co/Al2O3 catalysts, respectively) the active 

metal site densities with Cu addition increased also, and hydrogen chemisorption uptakes measured by 

TPD increased from 72 μmol H2/gcat for the unpromoted 15%Co/Al2O3 catalyst to 82, 140, and  

172 μm H2/gcat for the 0.033%, 0.49%, and 1.63% Cu-promoted 15%Co/Al2O3 catalysts [10]. 

However, the metal dispersions do not account for the partitioning of metal type on the surface of Co 

particles, or the influence of the presence of Cu on the ensembles of Co required for conducting the 

synthesis. Surface enrichment by Cu has been detected in bimetallic Cu-Co catalysts before [13]. 

Table 1 shows a comparison of XCO at the same weight hourly space velocity of two Cu-promoted 

15%Co/Al2O3 catalysts relative to the unpromoted 15%Co/Al2O3 catalyst. Despite increases in metal 

site densities as measured by hydrogen TPD, a decrease in XCO is observed, which is exacerbated at 

higher Cu loading [10]. These results suggest a poisoning of surface Co sites, likely due to enrichment 

of Cu at the surface. This finding is further supported by the changes in selectivity that occur when 

comparing the catalysts to the unpromoted catalyst at a similar conversion level. Table 2 shows that at 

the lower Cu promoter loading, the methane is slightly increased, C5+ is slightly decreased [10]. 

However, increasing the Cu promoter loading further leads to a prohibitive increase in methane 

selectivity (21.6% versus 9.2%) and a precipitous drop in C5+ selectivity (47.7% versus 81.6%) [10]. 

Table 1. XCO for two Cu promoted 15%Co/Al2O3 catalysts at a SV of 4.2 NL/gcat/h relative 

to the unpromoted catalyst. Conditions: 220 °C, 1.6 MPa, H2/CO = 2.0 (adapted with 

permission from [10] Copyright 2009, Elsevier). 

Catalyst TOS (h) XCO (%) 
SV 

(NL/gcat/h) 

15%Co/Al2O3 26–98 28.7 4.2 
0.49%Cu-15%Co/Al2O3 30–99 27.9 4.2 
1.63%Cu-15%Co/Al2O3 25–104 14.2 4.2 

Table 2. Two comparisons of product selectivity at similar XCO levels for two Cu 

promoted 15%Co/Al2O3 catalysts relative to the unpromoted catalyst. Conditions: 220 °C, 

1.6 MPa, H2/CO = 2.0 (adapted with permission from [10] Copyright 2009, Elsevier). 

Catalyst XCO (%) 
SV 

(NL/gcat/h) 
S(CH4) S(C5+) S(CO2) 

15%Co/Al2O3 47.8 2.0 8.9 80.6 0.82 
0.49%Cu-15%Co/Al2O3 50.6 1.7 9.9 76.6 0.83 

15%Co/Al2O3 28.7 4.2 9.2 81.6 0.67 
1.63%Cu-15%Co/Al2O3 

* 29.9 1.0 21.6 47.7 1.51 

* Due to the low activity of the 1.63%Cu promoted catalyst, a separate comparison was made at lower XCO, 

as it was not possible to decrease SV further. 
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2.1.2. Example #2—Silver and Gold 

A comparison between Ag and Au shows that, in the case of Ag promoted 15%Co/Al2O3, the 

catalyst achieves higher activity (Table 3) and C5+ selectivity (Table 4) than the unpromoted catalyst 

at both high and low loadings of promoter. A 15% Co/Al2O3 catalyst promoted with 1.51% Au also 

performs better than the unpromoted catalyst with both an increase in productivity and a slight 

improvement in selectivities [10]. However, at a higher Au loading (5.05%) the catalyst performed 

poorly with a steep drop in productivity (from XCO of 51.7 at 1.51%Au to an XCO of 14.1 at 5.05%Au 

at SV = 4.2, Table 3) and adverse impacts on selectivity (C5+ is 60.1% compared to 81.6% for the 

unpromoted catalyst at XCO of ~28%, Table 4) [10]. Thus, noble metal loading of promoter is 

important, not only from the standpoint of cost. 

In a recent detailed kinetic investigation [14], which was a collaboration between CAER and Texas 

A&M University in Qatar, modeling results point to the presence of two kinds of sites on the Co FTS 

catalyst for the production of methane—FTS sites from standard Anderson-Schulz-Flory kinetics and 

additional sites for methanation. The results of the Au promoted catalyst at the lower loading, and the 

Ag promoted catalysts at both low and high loadings, suggest that these Group IB promoters assist in 

either blocking methanation sites or controlling the relative surface fugacity of hydrogen relative to 

adsorbed CO and intermediates on the surface of the cobalt catalyst. 

Table 3. XCO for two Ag and Au-promoted 15%Co/Al2O3 catalysts at a SV of 4.2 NL/gcat/h 

relative to to the unpromoted catalyst. Conditions: 220 °C, 1.6 MPa, H2/CO = 2.0 (adapted 

with permission from [10] Copyright 2009, Elsevier). 

Catalyst TOS (h) XCO (%) 
SV 

(NL/gcat/h) 

15%Co/Al2O3 26–98 28.7 4.2 
1.51%Au-15%Co/Al2O3 26–57 51.7 4.2 
5.05%Au-15%Co/Al2O3 30–84 14.1 4.2 
0.83%Ag-15%Co/Al2O3 20–47 50.4 4.2 
2.76%Ag-15%Co/Al2O3 22–92 46.9 4.2 

Table 4. Product selectivities for Ag and Au-promoted 15%Co/Al2O3 catalysts at XCO 

values comparable to the unpromoted catalyst. Conditions: 220 °C, 1.6 MPa, H2/CO = 2.0 

(adapted with permission from [10] Copyright 2009, Elsevier). 

Catalyst XCO (%) 
SV 

(NL/gcat/h) 
S(CH4) S(C5+) S(CO2) 

15%Co/Al2O3 47.8 2.0 8.9 80.6 0.82 
1.51%Au-15%Co/Al2O3 50.0 4.2 8.0 83.7 0.83 
0.83%Ag-15%Co/Al2O3 50.4 4.2 7.7 83.6 0.94 
2.76%Ag-15%Co/Al2O3 46.9 4.2 7.6 85.0 0.87 

15%Co/Al2O3 28.7 4.2 9.2 81.6 0.67 
5.05%Au-

15%Co/Al2O3
* 27.1 1.0 18.0 60.1 1.68 

* Due to the low activity of the 5.05%Au promoted catalyst, a separate comparison was made at lower XCO, 

as it was not possible to decrease SV further. 
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2.1.3. Example #3—Common Promoters (Pt, Re, Ru) 

Slight differences in selectivity can also be achieved with the commonly used reduction promoters, 

which are Pt, Re, and Ru [15], as compiled in Table 5. Ruthenium itself is catalytically active for the 

FTS reaction, and higher alpha values have been measured in the hydrocarbon distribution [16]. 

Therefore, it is not surprising that lower methane and higher C5+ were achieved with a  

0.26%Ru-25%Co/Al2O3 catalyst relative to an unpromoted one. Re promoter was also found to give 

slightly better selectivities, in agreement with the work of Borg et al. [17] (Table 6). However, an 

atomically equivalent amount of Pt slightly (though not prohibitively) worsened the selectivities, and 

an attempt to use Pd to replace Pt resulted in a significantly poorer product distribution. 

Table 5. Product selectivities* for 25%Co/Al2O3 catalysts containing commonly used 

promoters (Pt, Re, Ru) or Pd at XCO values comparable an unpromoted reference catalyst. 

Conditions: 220 °C, 2.2 MPa, H2/CO = 2.1 (adapted with permission from [15] Copyright 

2012, Elsevier). 

Catalyst XCO (%) 
SV 

(NL/gcat/h) 
S(CH4) S(C5+) 

25%Co/Al2O3 49.4 4.3 7.9 83.4 
0.26%Ru-25%Co/Al2O3 51.3 7.6 7.0 86.8 
0.48%Re-25%Co/Al2O3 49.6 8.0 7.2 86.0 
0.50%Pt-25%Co/Al2O3 48.0 5.6 8.3 83.0 
0.27%Pd-25%Co/Al2O3 50.3 4.9 11.5 75.9 

* S(CO2) ranged from 0.35–0.75% in all catalysts. All data taken within first 81 h on-stream. 

Table 6. Product selectivities from data taken at 210 °C, 2.0 MPa, H2/CO = 2, and XCO of  

43–44% (adapted with permission from [17] Copyright 2009, Elsevier) over 20%Co/γ-Al2O3 

catalysts without or with 0.5%Re using narrow pore (7.4 nm), medium pore (12.3 nm), and 

wide pore (16.7 nm) supports. 

Catalyst Hydrocarbon selectivity (%) 

C1 C2-C4 C5+ 

Co/NPA 9.0 9.9 81.1 

CoRe/NPA 8.8 9.5 81.7 

Co/MPA 8.6 8.7 82.8 

CoRe/MPA 8.4 8.3 83.4 

Co/WPA 8.0 7.5 84.5 

CoRe/WPA 8.0 7.2 84.9 

In terms of differences in catalyst structure, the three commonly used promoters have, in a number 

of cases, been observed to be in atomic contact with Co (e.g., as an alloy), with no presence of 

promoter-promoter coordination at relatively low loadings (Re [18–20], Ru [21], Pt [22–24]). This is 

not always the case (e.g., Ru [9,16]), indicating that loading and preparation method are also factors 

that influence coordination environment. Pretreatment is also a factor. For example, Iglesia et al. [25] 

noted with Ru-Co/TiO2 catalysts that, with increasing calcination temperature, total coordination of Ru 
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with neighbors increases to suggest sintering, but that most of the increase in coordination is due to Ru 

taking on coordination with Co; thus, calcination promoted mixing of the two metals. 

Moreover, Chonco et al. [26] have recently demonstrated with physical mixtures of Pt/Al2O3 and 

Co/Al2O3 that atomic coordination of the promoter to cobalt is not always required to obtain a 

reduction promoting effect. In our work, unlike the Re, Ru, and Pt promoted Co/alumina catalysts at 

low promoter loadings, Pd promoter exhibited some promoter-promoter (i.e., Pd-Pd) coordination, 

suggesting the presence of well dispersed islands of Pd that likely gave rise to excessive hydrogenation 

activity [15] and rapid deactivation relative to the other three promoted catalysts [15]. 

Considering commercial research, a patent by Sasol researchers [1] examined Ru and Re promoters 

(of a catalyst containing 30 g Co and 100 g Al2O3) at 0.41 g and 3.0 g levels, respectively, versus a 

catalyst containing just 0.05 g of Pt and reported slightly higher productivity with the Pt promoted 

catalyst (0.349 kg HC/kg cat/h at XCO = 87 vol.% with Pt versus 0.307 and 0.281 kg HC/kg cat/h for 

Ru and Re at XCO = 77 and 70%, respectively). The conditions were 220 °C, 2.0 MPa, H2/CO = 2/1; 

space velocity of 2.0 mn
3/h/kg catalyst. Under the same conditions, similar productivity (~0.29 kg HC/kg 

cat/h at XCO = 73 vol.%) was observed with a 0.28 g Ru as with 0.05 g Pt with catalysts of lower 

loading (20 g Co and 100 g Al2O3). The results appear to indicate that Pt is a very efficient promoter. 

In a patent by Conoco researchers [27], the benefit of adding Re on selectivity was highlighted. 

Examples 27 through 31 in that patent compare 1%Re promoted 20%Co/Al2O3 catalysts with an 

unpromoted catalyst. Higher conversions (77–100%) and C5+ productivities (240–270 g/h/kgcat) for the 

Re promoted catalysts relative to the unpromoted catalyst (XCO of 65% and C5+ productivity of  

170 g/h/kgcat) were reported. In addition, improvements in selectivities were observed as well, 

including improvements in alpha (0.89–0.90 with Re promotion versus 0.88 for the unpromoted 

catalyst) and decreases in methane (9–15 wt.% for Re promoted versus 18 wt.% for the unpromoted 

catalyst). Many other examples of Re promotion only or in combination with other elements are also 

highlighted in the patent report. 

2.1.4. Example #4—Impact of Loading for Pt and Ag Promoted Catalysts 

The final example is provided to show that, just because the promoter forms promoter-promoter 

bonds (i.e., as in the case of Pd described in the previous subsection), it should not immediately be 

ruled out. Ag, by itself, is a catalyst that is only weakly active for hydrogenation, and its addition as a 

promoter does result in significant Ag-Ag coordination, but the resulting activity and selectivity of the 

Co catalyst is improved. Figure 3 (left) compares the Ag K-edge EXAFS Fourier transform magnitude 

spectra of Ag-promoted 25%Co/Al2O3 catalysts as a function of Ag loading. While a lower distance 

peak for Ag-Co coordination is suggested (and confirmed by EXAFS fittings), with increasing loading 

of Ag, the general trend in EXAFS fittings for Ag-promoted 25%Co/Al2O3 catalysts was increasing 

Ag-Ag coordination (higher distance peak), such that the NAg-Co/NAg-Ag ratio decreased from 0.59 at 

0.276%Ag loading to 0.16 at 2.76%Ag loading [28]. 

Figure 3 (right) compares the Pt LIII-edge EXAFS Fourier transform magnitude spectra of  

Pt-promoted 25%Co/Al2O3 catalysts. A single low distance peak indicates primarily Pt-Co 

coordination, with no visible Pt-Pt coordination being evident. As shown in Table 7, as loading was 

increased for the Pt promoted catalyst, a slight negative impact on selectivity occurred, with a slight 
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decrease in C5+ and a slight increase in the WGS rate [28]. For all Pt-promoted catalysts, slightly 

lower C5+ selectivities were observed compared to the unpromoted catalyst. With the Ag-promoted 

catalysts, C1 and C5+ selectivities were slightly improved at all loadings [28]. Thus, the presence of a 

weakly hydrogenating metal [29], Ag, did not adversely affect selectivity to a significant degree, even 

when excessive amounts of promoter were added [28]. 

In summary, the above examples show that (1) metals that facilitate reduction of cobalt oxides do 

not automatically increase XCO on a per gram of catalyst basis; (2) type and loading of promoter 

influence activity and selectivity such that a metal that may promote XCO (on a per g basis) at lower 

loading may or may not poison or adversely impact surface fugacities (and selectivity) at higher 

loadings; and (3) the intrinsic hydrogenation rate of the promoter is an important factor to consider, as 

it may adversely or beneficially influence selectivity. 

2.2. Influence of Promoter Addition on Oxidation and Complex Sintering of Cobalt 

2.2.1. Reoxidation of Small Cobalt Crystallites at the Onset of FTS at Realistic Conversions 

The primary aims of adding a metal promoters are to (1) lower reduction temperature thereby 

increasing extent of reduction to Co metal and (2) boost active site densities by facilitating the 

reduction of cobalt oxide crystallites in strong interaction with the alumina support, such that clusters 

of cobalt metal crystallites can be formed to provide the active surface for carrying out the FTS 

reaction. Thus, when a promoter is added, the additional gain in active site density will be due in large 

part to the reduction of smaller cobalt oxide species having stronger interactions with the support. 

Depending on the loading of cobalt and method of preparation, if smaller cobalt metal crystallites (e.g., 

<2–4.4 nm [30,31]) within cobalt clusters are formed, they may be susceptible to reoxidation [30,32]. 

Some researchers have recently indicated that Co clusters less than 6–8 nm have lower intrinsic 

activity [33,34]. Additional investigations are needed in this area. At commercially relevant FTS 

conditions, a problem was identified by us in defining intrinsic activity; as chemisorption is conducted 

on freshly activated catalysts, any oxidation of such small Co clusters that occurs at commercially 

relevant conditions can mask a measurement of intrinsic activity at the level of the active site [35]. 

Therefore, it is important to take into account the oxidation state of Co in the working FTS catalyst. 

To probe the role of oxidation, a recent XANES study was made whereby freshly reduced 

unpromoted and Pt-promoted cobalt/alumina catalysts were subjected to H2:CO:H2O mixtures typical 

of the 50% conversion condition of a slurry phase reactor [36] for one hour. A lower-than-commercial 

loading of 10% cobalt was utilized in order to favor the formation of small cobalt crystallites after 

activation that fall in the range of being susceptible to reoxidation. The average cobalt cluster size (i.e., 

cluster of crystallites) was ~5 nm [36]. Even though the 10%Co/Al2O3 catalyst was reduced at 550 °C 

as opposed to 400 °C for the 0.5%Pt-10%Co/Al2O3 catalyst, the extent of reduction from XANES 

indicated that the Pt-promoted catalyst had a higher extent of reduction, as defined by the intensity of 

the white line. When switching to conditions to mimic 50% conversion, the white line intensity in the 

XANES spectra of both catalysts increased significantly (Figure 4), but the change was more severe 

for the Pt-promoted catalyst [36]. This reoxidation occurred rapidly, is confined to a fraction of cobalt, 

and is not associated with the initial decay period commonly observed in FTS reaction tests, which 
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may take on the order of days to establish. Reoxidation of the small cobalt crystallites (<2–4.4 nm) has 

been recently verified by in-situ XRD and magnetometer investigations [37]. 

Figure 3. (left) Ag promoted 25%Co/Al2O3 catalysts displayed EXAFS peaks that could 

only be fitted well by including both Ag-Co and Ag-Ag coordination; (right) Pt promoted 

25%Co/Al2O3 catalysts displayed a single peak in the first coordination shell that could be 

fitted well by only including Pt-Co coordination (adapted with permission from [28] 

Copyright 2013, Elsevier). 

  

Table 7. Product selectivity * of 25%Co/Al2O3 catalysts having different loadings of Ag 

and Pt (adapted with permission from [28] Copyright 2013, Elsevier). 

Catalyst XCO (%) 
SV 

(NL/gcat/h) 
S(CH4) S(C5+) S(CO2) 

25%Co/Al2O3 51.0 3.4–4.2 8.3 82.5 0.8 
0.5%Pt-25%Co/Al2O3 52.0 1.7–12 9.1 81.2 1.1 
2.0%Pt-25%Co/Al2O3 45.0 9.0–12 9.1 81.9 1.1 
5.0%Pt-25%Co/Al2O3 52.5 10–16 9.5 80.7 3.2 

0.276%Ag-25%Co/Al2O3 46.4 8.8–12 7.4 84.1 0.4 
1.11 %Ag-25%Co/Al2O3 48.1 9.3–12 7.3 83.7 0.4 
2.76%Ag-25%Co/Al2O3 44.5 7.0–12 7.6 84.1 0.6 

* All data taken within first 58 h on-stream. T = 220 °C; P = 2.2 MPa; H2/CO = 2.1. 
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Figure 4. (left) Pt promoted and (right) unpromoted 10%Co/Al2O3 catalyst after (solid) 

hydrogen activation (550 °C for unpromoted and 400 °C for Pt-promoted) and (dashed) 

after exposure to H2, CO, and H2O partial pressure ratios mimicking XCO = 50% at 20.7 bar 

(adapted with permission from [36] Copyright 2014, Springer). 

 

An extreme case in terms of small Co cluster size was also recently examined where Co particles 

were infused in the pores of KL-zeolite support by a CVD method [35] to produce a 0.5%Pt-5%Co/KL 

catalyst with 1 nm cobalt particles. The catalyst, following activation in hydrogen, exhibited an extent 

of reduction of 75%. However, after exposure to FTS conditions (220 °C, 1.8 MPa, H2/CO 1.95, SV of 

3.0 NL/gcath), the extent of reduction fell to 33%, as measured by XANES spectroscopy. A loss in  

Co-Co coordination and growth of Co-O coordination was quantified by EXAFS. XCO fell to 3.0%, 

and the resulting product selectivities were very poor (CH4 selectivity of 29.6%, C5+ selectivity of 

49.8%, and CO2 selectivity of 3.4%). 

2.2.2. Sintering and Co Support Compound Formation during Initial Deactivation Period Prior to 

Leveling-off Period 

The mechanisms of sintering during FTS on Co catalysts during typical commercial operation are 

not well understood and hence will not be discussed in detail in this review. There is evidence to 

indicate that H2O accelerates sintering of metallic particles [38–41]; on this aspect, a mechanism 

involving surface oxidation, coalescence, and formation of larger clusters has been postulated by 

Sadeqzadeh et al. [39]. Further research is needed in this area. 

Unreduced cobalt oxide in the working FT catalyst could be problematic since it may coalesce, 

reduce, and provide a driving force for the sintering of cobalt metal particles; this leads to net 

reduction with time onstream in the initial catalyst decay period (i.e., which follows the onset period of 

~1 h as described in the previous section) [32,42]. Moreover, small cobalt oxide species can react with 

the support and contribute to the formation of cobalt aluminates [42,43]. Since a promoter can 
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facilitate the reduction of smaller species that may, depending on size, be susceptible to reoxidation at 

high conversion (as previously described), any cobalt oxide formed at the onset can contribute to either 

net reduction/sintering with time on-stream or cobalt aluminate formation. Net reduction and changes 

in Co-Co coordination consistent with sintering were observed for a 0.2%Re-15%Co/Al2O3 research 

catalyst at CAER during 2000 h of operation (Figure 5) [44,45]. Sintering, i.e., growth of Co metal 

crystallites, and carbon formation were observed by Saib et al. [31] during a 56-day commercial test of 

a 0.05%Pt/20%Co catalyst. Sintering was determined to be rapid, reaching completion within the 

initial 15–16 days based on analysis by synchrotron-XRD of samples withdrawn from the reactor 

during this period; an increase in average crystallite diameter from 9 to 14 nm was observed. 

Formation in the catalyst of unreactive surface carbons, which restructured or poisoned the catalysts, 

occurred relatively more slowly over the 56-day period. Carbon deposits were analyzed by TPR during the 

latter part of this run [46]. During a second 140-day run [32], extent of reduction (EOR) was determined by 

periodically removing catalyst samples and analyzing them by XANES (Figure 6). EOR was determined to 

increase from 53 to 89% over the 140-day run. A small amount of cobalt aluminate formation was also 

observed, as it was detected in a used commercial 20%Co/0.05%Pt/Al2O3 catalyst [31]. Cobalt aluminate 

was also observed in used 0.2%Re-15%Co/Al2O3 research catalyst samples [44,47] (Figure 7). 

Figure 5. (left) XANES and (right) EXAFS spectra as a function of time for a 0.2%Re-

15%Co/Al2O3 catalyst. T = 220 °C, 2.0 MPa, SV = 5 SL/h/gcat, H2/CO = 2:1. Adapted with 

permission from [44] (Copyright 2003, Elsevier) and [45] (2006). 

 

The impact of the promoter on cobalt aluminate formation from initially reduced small Co 

crystallites is difficult to assess, because unpromoted cobalt/alumina catalysts contain more residual 

unreduced CoO after activation, and this residual oxide, which is inactive for FTS, can also react with 

the support to form cobalt aluminate. Thus, there is a question as to how much cobalt aluminate is 

formed from the oxidation of very small (e.g., <2 – 4.4 nm) crystallites of cobalt metal at the onset of 
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CoO formation (e.g., within the first hour, as shown in Figure 7 [44,45]) and its subsequent reaction 

with alumina, and how much is formed from the reaction of residual CoO (i.e., leftover due to 

incomplete reduction) with the support, as described by Sasol researchers [43]. The cobalt aluminate 

was detected by them in XANES derivative spectra, as shown in Figure 8. The results from the 

previous section suggest that the former is dependent on Co crystallite size and P(H2O)/P(syngas) 

ratio, which is in turn influenced by conversion level. In a recent kinetic investigation, excursions of a 

Ru-promoted 25%Co/Al2O3 catalyst (average cluster size of 5.0 nm) to high CO conversion levels 

(e.g., XCO > 75%) resulted in the oxidation of a fraction of cobalt clusters [21] (as demonstrated by 

changes in the lineshape of the XANES derivative spectra) and increases in CO2 and CH4 selectivities 

(Figure 9). The oxidized cobalt is active for WGS, and the additional H2 produced therefrom tends to 

increase the C1 product. Thus, there appears to be an unfavorable synergism in the selectivities of CO2 

and C1 when this threshold is surpassed (Figure 9) [21]. 

Crystallite size sensitivity for cobalt aluminate formation was also suggested in water co-feeding 

studies. Although H2O co-feeding can lead to improvements in activity and selectivity for certain cobalt 

catalysts [48], when a Pt promoter was utilized to facilitate the reduction of Co oxides in a 15%Co/Al2O3 

catalyst (average cluster diameter = 5.6 nm), at 28 vol.% added H2O the catalyst underwent significant 

cobalt aluminate formation, as demonstrated in Figure 10 (left) and (right) [49,50] along with 

catastrophic deactivation (75% drop in XCO). An unpromoted 25%Co/Al2O3 catalyst with larger cluster 

size (11.8 nm average diameter) [40] was more resistant to this phenomenon. Thus, on the one hand, a 

promoter is very useful for boosting Co° site densities during activation when the support interaction 

with Co oxides is high. On the other hand, if the strongly interacting Co oxides are reduced and form 

tiny Co0 crystallites on the surface, they are more sensitive to H2O. Higher loadings can help to make 

the catalyst more robust by increasing cobalt size, a technique that has been implemented 

commercially, and thereby reoxidation and subsequent Co aluminate formation may be largely 

avoided. With a commercial catalyst stabilized against these processes, only up to ~3% cobalt 

aluminate was formed during realistic FTS conditions [31]. However, it should be noted that when 

exposed to 1.0 MPa H2O an increase was observed to 10% cobalt aluminate [43]; thus, water co-

feeding or operating at high conversions may have drawbacks, depending on catalyst type and 

conditions utilized. A schematic of the structural changes discussed for research catalysts, including 

reoxidation of tiny (<2–4.4 nm) cobalt crystallites at the startup of Fischer-Tropsch synthesis at 

industrially relevant conversions, is shown in Figure 11 [42].  
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Figure 6. XANES analysis of a series of used Co/Pt/Al2O3 catalyst samples retrieved from 

a 100 barrel/day slurry bubble column reactor operated at 220 °C, 2.0 MPa, (H2 + CO) and 

conversions between 50% and 70%, feed gas composition = 50 vol.% H2 and 25 vol.% CO, 

P(H2O)/P(H2) = 1–1.5, P(H2O) = 0.4–0.6 MPa. Reproduced with permission from [32]. 

Copyright (2006) Elsevier. 

 

Figure 7. From the run shown in Figure 5, XANES derivative spectra of (left) freshly 

reduced/passivated catalysts, which could be fit with Co0 and CoO, and (right) used catalyst 

samples, which could only be fitted with Co0, CoO, and CoAl2O4. Adapted with permission 

from [44] (Copyright 2003, Elsevier) and [45] (2006). 
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Figure 8. Formation of a minor cobalt aluminate component at 1.0 MPa H2O by increasing 

conversion in a continuously stirred tank reactor (CSTR) reactor run at 230 °C, 2.0 MPa, 

50 vol.% H2, 25 vol.% CO and 25 vol.% inerts. Reproduced with permission from [43]. 

Copyright (2011) Elsevier. 

 

Figure 9. Changes in CO2 and CH4 selectivities as a function of conversion over 0.27%Ru-

25%Co/Al2O3 catalyst (Co cluster size of ∼5 nm by hydrogen chemisorption/pulse 

reoxidation) at 220 °C, 1.5 MPa, H2/CO = 2.1 and SV = 0.3–15 NL/gcath (reproduced with 

permission from [21] Copyright 2011, Springer). 
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Figure 10. (left) Co-feeding of H2O over 0.5%Pt-15%Co/Al2O3 at T = 210 °C, P = 2.0 

MPa, H2:CO = 2:1, SV = 8 SL/gcath reveals that irreversible deactivation (and a minor 

reversible effect) is observed at 28% H2O addition; (right) XANES analysis of the used 

catalyst reveals formation of cobalt aluminate through reaction of the CoO formed with the 

support. Reprinted with permission from [40,49,50]. Copyright (2002, 2003, 2004) 

Elsevier. 

  

Figure 11. Proposed explanation for the deactivation of alumina-supported cobalt 

nanoparticles in research catalysts as a function of time on-stream. Adapted with 

permission from [42]. Copyright (2013) Elsevier [42]. The figure emphasizes why 

commercial catalysts adopt larger crystallite diameters for the purpose of stability. 
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2.3. Regeneration 

In recent years, there has been interest in carrying out oxidation-reduction cycles in order to explore 

the potential for regenerating metal promoted cobalt catalysts. In an earlier work [16], we simulated 

regeneration with 2%Ru-15%Co/alumina catalysts having relatively high Ru loadings. Part of the aim 

was to see if any promoter mixing or separation occurred at the atomic level, and the resulting 

influence on selectivity. To do so, TPR, EXAFS/XANES, and transmission electron microscopy with 

elemental mapping were applied. It was difficult to detect atomic mixing at the promoter loadings 

utilized, though elemental mapping showed that the metals were in close proximity to one another at 

the scale of nanometers. With reduction-oxidation cycles, TPR profiles revealed that while the first 

step of the TPR shifted to slightly higher temperatures, the second peak (i.e., CoO to Co0) shifted to 

slightly lower temperatures [16] for these heavily Ru-loaded catalysts. 

Westrate et al. [51] compared Pt and Ru promoted Co/alumina catalysts subjected to oxidation-reduction 

treatments. Following oxidation treatment both the cobalt and promoter phases are well mixed and in 

an oxidized state. This finding is in agreement with our EXAFS results for a Ag-promoted Co/alumina 

catalyst [10]. Upon reduction, noble metals form bonds with cobalt metal, again in agreement with our 

earlier findings for Pt, Re, and Ru promoted catalysts at low promoter loadings [42]. During simulated 

regeneration by oxidation, the promoter separates from the cobalt phase and is found inside a ring of 

Co3O4, in “Kirkendall voids” as shown in Figure 12. Re-reduction of this state leads to a decrease in 

the promoter concentration at the surface of Co particles, as observed by XPS. 

Figure 12. Pt promoter (oxide form) is separated from Co3O4 and found within  

Kirkendall voids within the Co3O4 particle. Reproduced with permission from [51]. 

Copyright (2013) Elsevier. 

 

A key point regarding regeneration is whether or not the promoter continues to facilitate cobalt 

oxide reduction once an oxidation (e.g., carbon burn-off) step has been conducted. The proximity of 

the promoter to cobalt is important; although this will likely vary with promoter chemistry (see earlier 

comment regarding van Steen’s group’s use of physical mixtures to demonstrate that atomic contact 

may not be necessary in all cases [26]). To probe this attribute further, a TPR and XANES investigation 

was carried out to screen a number of promoter metals [52]. An example comparing two promoters—Pt 

and Au—is provided in Figure 13 to demonstrate the methodology. The oxidation-reduction cycle 

involved a 4 h calcination in flowing air at 350 °C followed by reduction for 10 h in hydrogen at  
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350 °C. It is evident (Figure 13) that Pt improves its effectiveness after three oxidation-reduction 

cycles, while Au is no longer effective after the first cycle. In the case of Au, the TPR profiles move to 

higher temperatures with increasing reduction-oxidation cycle number, suggesting that Au is 

separating from the Co (e.g., by sintering). At the same time, XANES shows that the oxidation state of 

Co following oxidation reduction moves toward higher oxidation state in the activated Au-promoted 

catalyst. The TPR profiles for Pt-promoted Co/alumina shift slightly to lower temperature. 

Corresponding XANES spectra demonstrate that the cobalt is largely reduced after activation 

following several simulated regeneration cycles. Thus, Pt is a more effective promoter for long-term 

use, although a different regeneration method at different conditions might be more effective in the 

case of Au. Both XANES and TPR data revealed that Re retains its ability to facilitate reduction even 

after 3 oxidation-reduction cycles. With Ru, the XANES results indicated that Ru was also effective 

after 3 ORcycles, although a slight shift to higher temperature was observed for the CoO to Co0 TPR 

peak position in the preliminary study [52]. 

Figure 13. (Top) TPR profiles after RO cycles and (Bottom) XANES profiles after RO 

cycling demonstrate that Pt is more effective at continuing to facilitate reduction after 

simulate regeneration. Reproduced with permission from [52]. Copyright (2014) Elsevier. 
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Figure 13. Cont. 

 

2.4. Modeling 

2.4.1. Modeling of Site Suppression and Deactivation 

Although this manuscript is focused on catalyst structure and its influence on FTS stability, a brief 

word should also be made regarding modeling. One puzzling aspect about the water effect during  

co-feeding and kinetic investigations is that it can be either positive or negative depending on the 

nature of the cobalt catalyst. Figure 10 displays results for a 0.5%Pt promoted 15%Co/Al2O3 catalyst 

having an average cobalt cluster size of 5.6 nm (i.e., crystallites must be equal to below this value), and 

the water effect is negative but exhibits a significant degree of reversibility at levels below 28 vol.% 

added H2O. The reversibility was, based on EXAFS/XANES investigations, suggested to be due to 

oxidation and re-reduction of small cobalt crystallites. Because oxygen was bound to the cobalt sites, the 

behavior could be modeled in terms of a kinetic parameter based on adsorption inhibition of reactants. 

On the other hand, Co/silica catalysts having larger cobalt clusters exhibited a positive effect [53], and 

positive effects on cobalt catalysts have been suggested to be due to water increasing the concentration 

of surface active carbon species (e.g., unsupported Co and Co/titania [38]) or removing heavy wax from 

catalyst pores leading to a higher available site density (e.g., Co/silica with varying pore size [54]). 

Returning to cobalt/alumina catalysts, interestingly, by aging the catalyst sufficiently (i.e., the catalyst 

is significantly deactivated from its initial condition) [55] or utilizing catalysts with 10+ nm size [56], 

the deactivation rate becomes low, and the positive kinetic effect occurring on metallic cobalt particles 

can be observed. The main point is that the water effect can be modeled using a simple power law 

expression with a water effect parameter, m, and the magnitude and sign (i.e., positive [57] or  

negative [55,57]) of m provides valuable information about the structure of the catalyst. 
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r(FT) = kP(CO)aP(H2)
b/[1 + m P(H2O)/P(H2)] (1)

A number of the phenomena associated with the stability and deactivation of cobalt catalysts have 

been discussed herein, and these and other aspects of stability (e.g., carbon deposition and carbide 

formation) are discussed in the Editor’s book on Catalyst Deactivation [58] and a review article [59]. 

At this point in time, a number of important aspects and trends regarding the structure sensitivity of 

cobalt catalysts, and especially experimental research catalysts, are known. However, moving forward, 

there is a great deal of focus on developing catalysts that make the most efficient use of cobalt. Co 

crystallites should be small enough to maximize active site density, but also large enough that 

crystallites will be stabilized against reoxidation and sintering. Researchers are also exploring 

preparation methods to disperse and adequately position metal clusters in spatially favorable ways (i.e., 

as far apart as possible). Some methods include freeze-drying [60], vapor phase impregnation [61], 

coating the support with carbon [62], using solvents such as ethylene glycol [63], optimizing drying 

temperature or calcination chemistry with dilute NO/N2 [64], bypassing calcination altogether [53], or 

locking metal particles onto the support so that they cannot find one another and undergo 

agglomeration [65]. Thus, using advanced preparation methods to obtain spatially uniform distribution 

of cobalt crystallites is critical, since in conventional cobalt/alumina catalysts prepared by 

impregnation, cobalt clusters can be within close vicinity to one another, or in grapelike clusters, 

which have been described as “graveyards” for cobalt active sites during reaction testing [66]. Thus, 

thinking toward the future, it will be of increasing importance to model deactivation mechanisms and 

quantify how much each mechanism contributes to overall deactivation of the catalyst. Robust models 

which address the chemistry of promoters could enable the performance of new research catalysts to be 

compared to current commercial catalyst formulations. For example, a recently published forward 

thinking article by Argyle et al. [67] addresses modeling of the contributions of several deactivation 

mechanisms to overall deactivation rate in Co catalyzed FTS. 

2.4.2. Computational Methods Based on First Principles 

Related to promoters of FTS catalysts, computational methods based on first principles have been 

useful in describing the location of promoter with respect to cobalt, for providing insight into the 

requirements for cobalt oxidation by H2O, and for determining how the promoter may influence  

carbon deposition. 

Computational methods are being utilized to elucidate the preferential location for the occupancy of 

the promoter with respect to the cobalt atoms that make up the cluster. For example, a combined study 

making using of Low Energy Ion Scattering (i.e., on a 1%Re-12%Co/Al2O3 catalyst) and computational 

DFT modeling (i.e., on a Co13Re cluster) determined that there is a preference of Re promoter to occupy 

subsurface sites, where it coordinates with a maximum number of cobalt atoms [68]. This is in 

agreement with the results of some EXAFS investigations, where direct Re-Co atomic contact has been 

observed [19,20].  

Molecular modeling has also been conducted to examine surface oxidation of larger cobalt particles 

(e.g., as utilized in commercial catalysts) by H2O, and the pathway was ruled out as a significant 

chemical transformation mechanism for deactivating sites under commercial FTS conditions [31]. 
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Computational methods have also been used extensively to gain insight into the role of carbon 

deposits in catalyst deactivation. For example [69], HR-TEM and computational DFT modeling were 

applied to elucidate the preferred occupancies of carbon over different cobalt surfaces. The stability of 

various carbon species under reaction conditions was evaluated. Extended graphene islands and a 

surface carbide were found to be 99 and 79 kJ/mol more stable than surface CH2 groups. Both carbon 

phases were suggested to initiate and grow from step sites. Saib et al. [31] have recently reviewed 

carbon formation in detail on cobalt FTS catalysts, including the application of computational 

methods. They also analyzed used catalysts from a commercial slurry bubble column reactor and, 

following wax extraction by THF, carried out temperature programmed hydrogenation and oxidation 

measurements to characterize the carbons. The least reactive species toward hydrogenation, which 

reacted at 430 °C, was assigned to polymeric carbons. A model [70] showing the location of small 

carbon oligomers of the fcc Co(111) surface, the precursors of polymeric carbon, was described. Note 

that polymeric carbon was found on both cobalt and the support. The authors [31] also reviewed the 

role of subsurface carbon [69,71], where theoretical modeling has indicated that subsurface carbon 

hinders CO adsorption and dissociation processes on associated Co atoms, and the requirements under 

which carbon induces clock surface reconstruction [72]. This, in turn, may cause deactivation of sites 

via shape changes or, on the other hand, induce the formation of active sites (e.g., B5 sites [31]: 3-fold 

sites that more easily dissociate CO; or triangular nanoscale islands having step edges similar to C7 

sites [73], as observed by scanning tunneling microscopy). The restructuring of cobalt by strong CO 

chemisorption (i.e., roughening—leading to more active sites) was described by Schulz et al. [74] as to 

be in competition with sintering. 

Some computational studies have focused on defining how promoters of cobalt catalysts may 

impact carbon formation. Recently, the mechanisms for carbon compound formation on unpromoted 

and Pt or Ru promoted Co surfaces were investigated [75]. The activation energies for carbon-carbon 

and carbon-carbon-carbon coupling reactions were found to be larger on Pt or Ru promoted Co 

surfaces relative to unpromoted Co surface. The results suggest that carbon formation and thus, carbon 

compound (e.g., polymeric carbon formation, may be inhibited by the presence of the promoters. The 

authors also found that the promoters did not change the activation energy of C diffusion to the subsurface. 

3. Experimental Section  

Typical catalyst preparation method: the support used was Sasol Catalox-150 γ-Al2O3. It was first 

calcined at 400 °C in a muffle furnace for 4 h. A slurry impregnation method was performed, whereby 

the ratio of the volume of loading solution used to the weight of alumina was 1:1, such that 

approximately 2.5 times the pore volume of solution was used to prepare the catalyst in two steps [7]. 

Due to the solubility limit of cobalt nitrate, multiple impregnation steps were used. After each 

impregnation step, the catalyst was dried under vacuum in a rotary evaporator from 80 to 100 °C. 

Promoter precursors used were tetraammine palladium (II) nitrate, tetraammine platinum (II) nitrate, 

rhenium oxide (Re2O7), ruthenium nitrosyl nitrate, silver nitrate, HAuCl4, and copper nitrate. The 

promoters were added dropwise to achieve incipient wetness impregnation. After final drying at  

80–100 °C, the final catalysts were calcined at 350 °C under flowing air for 4 h. 
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Typical CSTR reaction test: the catalyst (15 g) was ground and sieved to 170–325 mesh before 

loading into a fixed-bed reactor for 10–15 h of ex situ reduction at 350 °C and atmospheric pressure 

using a gas mixture of H2/He with a molar ratio of 1:3. The reduced catalyst was then transferred to a 

1-L continuously stirred tank reactor (CSTR) which was previously charged with 315 g of melted 

Polywax 3000, under the protection of a N2 inert gas. The transferred catalyst was further reduced  

in situ at 230 °C at atmospheric pressure using pure hydrogen for another 10 h before starting the FT 

reaction. In this study, the FT conditions were 220 °C, 1.5–2.2 MPa, H2/CO = 2.0–2.1. The space 

velocity varied between 1.0 and 16 NL/g-cat/h. in order to give about 50% CO conversion in different 

tests. This allowed us to fairly compare the differences in hydrocarbon selectivity data resulting from 

the promoter effect. 

4. Conclusions  

There are a number of stability issues that must be considered when selecting metal reduction 

promoters for use in Fischer-Tropsch synthesis catalysts. If tiny cobalt crystallites (<2–4.4 nm) are 

formed by facilitating the reduction of cobalt oxides that are strongly interacting with the support, they 

may undergo reoxidation at the onset of FTS at high conversion. Any cobalt oxide either left 

unreduced or formed from reoxidation of tiny cobalt crystallites can participate in a complex sintering 

mechanism that involves agglomeration of cobalt oxides, re-reduction, and sintering of the metal. 

Promoters can also exacerbate sintering if the cobalt metal clusters formed as a result of the promoting 

effect are in close proximity to other cobalt particles on the surface. Not all metals that facilitate cobalt 

reduction promote activity on a per gram catalyst basis; some will poison the surface (e.g., Cu). A poor 

choice of promoter (or poor choice in loading) can also lead to excessive hydrogenation activity and raise 

the light gas selectivity (e.g., Pd or Cu; Au at high loading). Furthermore, certain metals (e.g., Au) that 

promote cobalt oxide reduction can separate from cobalt during oxidation-reduction (regeneration) cycles. 

Therefore, they may not be effective for long-term use, or they may require non-standard regeneration 

treatments. Computational studies suggest that certain promoters (e.g., Pt or Ru) may hinder 

deactivation by carbon by increasing the energy barrier for carbon-carbon coupling reactions, while 

subsurface C formation was not found to be affected. 

Acknowledgments 

The authors would like to acknowledge the support of the Commonwealth of Kentucky. We would 

also like to thank the Editor for helpful comments. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Espinoza, R.L.; Visagie, J.L.; van Berge, P.J.; Bolder, F.H. Fischer-Tropsch catalysts containing 

iron and cobalt. US Patent No. 5,733,839, March 1998.  



Catalysts 2014, 4                            

 

 

71

2. Van Berge, P.J.; Barradas, S.; van de Loosdrecht, J.; Visagie, J.L. Advances in the cobalt 

catalyzed Fischer-Tropsch synthesis. Erdöl Erdgas Kohle 2001, 117, 138–142. 

3. Wang, W.-J.; Chen, Y.-W. Influence of metal loading on the reducibility and hydrogenation 

activity of cobalt/alumina catalysts. Appl. Catal. 1991, 77, 223–233. 

4. Jacobs, G.; Ji, Y.; Davis, B.H.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L. Fischer-Tropsch 

synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support 

type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide 

particles. Appl. Catal. A 2007, 333, 177–191. 

5. Reuel, R.C.; Bartholomew, C.H. The stoichiometries of H2 and CO adsorptions on cobalt: Effects 

of support and preparation. J. Catal. 1984, 85, 63–77. 

6. Vada, S.; Hoff, A.; Adnanes, E.; Schanke, D.; Holmen, A. Fischer-Tropsch synthesis on 

supported cobalt catalysts promoted by platinum and rhenium. Top. Catal. 1995, 2, 155–162.  

7. Jacobs, G.; Das, T.K.; Zhang, Y.-Q.; Li, J.; Racoillet, G.; Davis, B.H. Fischer-Tropsch synthesis: 

support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl. Catal. A 2002, 

233, 263–281. 

8. Farrauto, R.J.; Bartholomew, C.H. Fundamentals of Industrial Catalytic Processes; John Wiley & 

Sons: Chichester, UK, 2003; p. 700. 

9. Cook, K.M.; Poudyal, S.; Miller, J.T.; Bartholomew, C.H.; Hecker, W.C. Reducibility of alumina-

supported cobalt Fischer-Tropsch catalysts: Effects of noble metal type, distribution, retention, 

chemical state, bonding, and influence on cobalt crystallite size. Appl. Catal. A 2012, 449, 69–80. 

10. Jacobs, G.; Ribeiro, M.C.; Ma, W.; Ji, Y.; Khalid, S.; Sumodjo, P.T.A.; Davis, B.H. Group 11 

(Cu, Ag, Au) promotion of 15%Co/Al2O3 Fischer-Tropsch synthesis catalysts. Appl. Catal. A 

2009, 361, 137–151. 

11. Aldossary, M.A.; Sharma, P.; Ojeda, M.; Gupta, M.; Fierro, J.L.; Spivey, J.J. Effect of different 

Cu loading on Fe-Mg catalyst for Fischer-Tropsch synthesis. In Proceedings of ACS National 

Meeting & Exposition, Philadelphia, PA, USA, August 19–23, 2012. Curran Associates, Inc.: Red 

Hook, NY, USA, 2012; Volume 57, p. 944. 

12. Li, S.; Li, A.; Krishnamoorthy, S.; Iglesia, E. Effects of Zn, Cu, and K promoters on the structure 

and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch 

synthesis catalysts. Catal. Lett. 2001, 77, 197–205.  

13. Cesar, D.V.; Perez, C.A. Quantitative XPS analysis of bimetallic Cu-Co catalysts. Phys. Status 

Solidi A 2001, 187, 321–326. 

14. Todic, B.; Bhatelia, T.; Froment, G.F.; Ma, W.; Jacobs, G.; Davis, B.H.; Bukur, D.B. Kinetic 

model of Fischer-Tropsch synthesis in a slurry reactor on Co/Re/Al2O3 catalyst. Ind. Eng. Chem. 

Res. 2013, 52, 669–679. 

15. Jacobs, G.; Ma, W.; Gao, P.; Todic, B.; Bhatelia, T.; Bukur, D.B.; Khalid, S.; Davis, B.H. 

Fischer-Tropsch synthesis: differences observed in local atomic structure and selectivity with Pd 

compared to typical promoters (Pt, Re, Ru) of Co/Al2O3 catalysts. (Special Issue in honor of the 

late Prof. Laszlo Guczi 1932–2012). Top. Catal. 2012, 55, 811–817. 
  



Catalysts 2014, 4                            

 

 

72

16. Jacobs, G.; Sarkar, A.; Ji, Y.; Luo, M.-S.; Dozier, A.; Davis, B.H. Fischer-Tropsch synthesis: 

assessment of the ripening of cobalt clusters and mixing between Co and Ru promoter via 

oxidation-reduction cycles over lower Co-loaded Ru-Co/Al2O3 catalysts. Ind. Eng. Chem. Res. 

2008, 47, 672–680. 

17. Borg, O.; Hammer, N.; Eri, S.; Lindvag, O.A.; Myrstad, R.; Blekkan, E.A.; Ronning, M.; Rytter, 

E.; Holmen, A. Fischer-Tropsch synthesis over un-promoted and Re-promoted gamma-Al2O3 

supported cobalt catalysts with different pore sizes. Catal. Today 2009, 142, 70–77. 

18. Bazin, D.; Borko, L.; Koppany, Zs.; Kovacs, I.; Stefler, G.; Sajo, L.I.; Schay, Z.; Guczi, L.  

Re-Co/NaY and Re-Co/Al2O3 bimetallic catalysts: In situ EXAFS and catalytic activity. Catal. 

Lett. 2002, 84, 169–182. 

19. Jacobs, G.; Chaney, J.A.; Patterson, P.M.; Das, T.K.; Davis, B.H. Fischer-Tropsch synthesis: 

Study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ 

EXAFS/XANES of Co K and Re LIII edges and XPS. Appl. Catal. A 2004, 264,  

203–212. 

20. Ronning, M.; Nicholson, D.G.; Holmen, A. In situ EXAFS study of the bimetallic interaction in a 

rhenium-promoted alumina-supported cobalt Fischer-Tropsch catalyst. Catal. Lett. 2001, 72,  

141–146. 

21. Ma, W.; Jacobs, G.; Ji, Y.; Bhatelia, T.; Bukur, D.B.; Khalid, S.; Davis, B.H. Fischer-Tropsch 

synthesis: Influence of CO conversion on selectivities, H2/CO usage ratios, and catalyst stability 

for a Ru promoted Co/Al2O3 catalyst using a slurry phase reactor. Top. Catal. 2011, 54, 757–767. 

22. Guczi, L.; Bazin, D.; Kovacs, I.; Borko, L.; Schay, Z.; Lynch, J.; Parent, P.; Lafon, C.; Stefler, G.; 

Koppany, Z.; Sajo, I. Structure of Pt-Co/Al2O3 and Pt-Co/NaY bimetallic catalysts: 

Characterization by in situ EXAFS, TPR, XPS and by activity in CO (Carbon Monoxide) 

Hydrogenation. Top. Catal. 2002, 20, 129–139. 

23. Jacobs, G.; Chaney, J.A.; Patterson, P.M.; Das, T.K.; Maillot, J.C.; Davis, B.H. Fischer-Tropsch 

synthesis: Study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ 

EXAFS of Co K and Pt LIII edges and XPS. J. Synch. Rad. 2004, 11, 414–422. 

24. Sadeqzadeh, M.; Karaca, H.; Safonova, O.V.; Fongarland, P.; Chambrey, S.; Roussel, P.; Griboval-

Constant, A.; Lacroix, M.; Curulla-Ferré, D.; Luck, F.; et al. Identification of the active species in 

the working alumina-supported cobalt catalyst under various conditions of Fischer–Tropsch 

synthesis. Catal. Today 2011, 164, 62–67. 

25. Iglesia, E.; Soled, S.L.; Fiato, R.A.; Via, G.H. Bimetallic synergy in cobalt-ruthenium  

Fischer-Tropsch synthesis catalysts. J. Catal. 1993, 143, 345–368. 

26. Chonco, Z.H.; Nabaho, D.; Claeys, M.; van Steen, E. The role of reduction promoters in  

Fischer-Tropsch catalysts for the production of liquid fuels. In Proceedings of 23rd Meeting of the 

North American Catalysis Society, 2–7 June 2013, Louisville, KY, USA. 

27. Ionkina, O.; Subramanian, M.A.; Chao, W.; Makar, K.M.; Manzer, L.E. Fischer-Tropsch 

processes and catalysts with promoters. US Patent 20020010221A1, January 2002. 
  



Catalysts 2014, 4                            

 

 

73

28. Jermwongratanachai, T.; Jacobs, G.; Ma, W.; Shafer, W.D.; Gnanamani, M.K.; Gao, P.; 

Kitiyanan, B.; Davis, B.H.; Klettlinger, J.L.S.; Yen, C.H.; et al. Fischer-Tropsch synthesis: 

Comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic 

structure, catalytic activity, and oxidation-reduction (OR) cycles. Appl. Catal. 2013, 464–465, 

165–180. 

29. Redjala, T.; Remita, H.; Apostolescu, G.; Mostafavi, M.; Thomazeau, C.; Uzio, D. Bimetallic  

Au-Pd and Ag-Pd clusters synthesized by gamma or electron beam radiolysis and study of the 

reactivity/structure relationships in the selective hydrogenation of but-1,3-diene. Oil Gas Sci. 

Technol. 2006, 61, 789–797. 

30. Van Steen, E.; Claeys, M.; Dry, M.E.; van de Loosdrecht, J.; Viljoen, E.L.; Visagie, J.L. Stability 

of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in 

water/hydrogen mixtures. J. Phys. Chem. B 2005, 109, 3575–3577. 

31. Saib, A.M.; Moodley, D.J.; Ciobica, I.M.; Hauman, M.M.; Sigwebela, B.H.; Weststrate, C.J.; 

Niemantsverdriet, J.W.; van de Loosdrecht, J. Fundamental understanding of deactivation and 

regeneration of cobalt Fischer-Tropsch synthesis catalysts. Catal. Today 2010, 154, 271–282. 

32. Saib, A.M.; Borgna, A.; van de Loosdrecht, J.; van Berge, P.J.; Niemantsverdriet, J.W. XANES 

study of the susceptibility of nano-sized cobalt crystallites to oxidation during realistic Fischer-

Tropsch synthesis. Appl. Catal. 2006, 312, 12–19. 

33. Bezemer G.L, Bitter J.H.; Kuipers H.P.C.E.; Oosterbeek H.; Holewijn J.E.; Xu X.D.; Kapteijn, F.; 

van Dillen, A.J.; de Jong, K.P. Cobalt particle size effects in the Fischer-Tropsch reaction studied 

with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 2006, 128, 3956–3964. 

34. Borg, Ø.; Dietzel, P.D.C.; Spjelkavik, A.I.; Tveten, E.Z.; Walmsley, J.C.; Diplas, S.; Eri, S.; 

Holmen, A.; Rytter, E. Fischer-Tropsch synthesis: cobalt particle size and support effects on 

intrinsic activity and product distribution. J. Catal. 2008, 259, 161–164. 

35. Azzam, K.; Jacobs, G.; Ma, W.; Davis, B.H. Effect of cobalt particle size on the catalyst intrinsic 

activity for Fischer-Tropsch synthesis. Catal. Lett. 2014, 144, 389–394. 

36. Jermwongratanachai, T.; Jacobs, G.; Shafer, W.D.; Ma, W.; Pendyala, V.R.R.; Davis, B.H.; 

Kitiyanan, B.; Khalid, S.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L. Fischer-Tropsch synthesis: 

Oxidation of a fraction of cobalt crystallites in research catalysts at the onset of FT at partial 

pressures mimicking 50% CO conversion. Top. Catal. in press. 

37. Fischer, N.; Clapham, B.; Feltes, T.E.; van Steen, E.; Claeys, M. The reoxidation of cobalt 

Fischer-Tropsch catalysts. In Proceedings of Syngas 2012 Convention, Cape Town, South Africa, 

1–4 April 2012. 

38. Bertole, C.J.; Mims, C.A.; Kiss, G. The effect of water on the cobalt-catalyzed Fischer-Tropsch 

synthesis. J. Catal. 2002, 210, 84–96. 

39. Sadeqzadeh, M.; Hong, J.; Fongarland, P.; Curulla-Ferre, D.; Luck, F.; Bousquet, J.; Schweich, D.; 

Khodakov, A.Y. Mechanistic modeling of cobalt based catalyst sintering in a fixed bed reactor 

under different conditions of Fischer-Tropsch synthesis. Ind. Eng. Chem. Res. 2012, 51,  

11955–11964. 

40. Jacobs, G.; Das, T.K.; Patterson, P.M.; Luo, M.; Conner, W.A.; Davis, B.H. Fischer-Tropsch 

synthesis: Effect of water on Co/Al2O3 catalysts and XAFS characterization of reoxidation 

phenomena. Appl. Catal. A 2004, 270, 65–76. 



Catalysts 2014, 4                            

 

 

74

41. Soled, S.; Kliewer, C.; Kiss, G.; Baumgartner, J. Reversible and irreversible changes in Co 

Fischer-Tropsch catalysts during synthesis. In Proceedings of 21st Meeting of the North American 

Catalysis Society, San Francisco, CA, USA, 7–12 June 2009. 

42. Jacobs, G.; Ma, W.; Gao, P.; Todic, B.; Bhatelia, T.; Bukur, D.B.; Davis, B.H. The application of 

synchrotron methods in characterizing iron and cobalt Fischer-Tropsch synthesis catalysts. Catal. 

Today 2013, 214, 100–139. 

43. Moodley, D.J.; Saib, A.M.; van de Loosdrecht, J.; Welker-Nieuwoudt, C.A.; Sigwebela, B.H.; 

Niemantsverdriet, J.W. The impact of cobalt aluminate formation on the deactivation of  

cobalt-based Fischer-Tropsch synthesis catalysts. Catal. Today 2011, 171, 192–200. 

44. Das, T.K.; Jacobs, G.; Patterson, P.M.; Conner, W.A.; Davis, B.H. Fischer-Tropsch synthesis: 

Characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel 

2003, 82, 805–815. 

45. Jacobs, G.; Sarkar, A.; Ji, Y.; Patterson, P.M.; Das, T.K.; Luo, M.; Davis, B.H. Fischer-Tropsch 

synthesis: characterization of interactions between reduction promoters and Co for Co/Al2O3–

based GTL catalysts. In Proceedings of AIChE Annual Meeting, San Francisco, CA, USA, 12–17 

November 2006. 

46. Karaca, H.; Hong, J.; Fongarland, P.; Roussel, P.; Griboval-Constant, A.; Lacroix, M.; Hortmann, K.; 

Safonova, O.V.; Khodakov, A.Y. In situ XRD investigation of the evolution of alumina-supported 

cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis. Chem. Commun. 2010, 

46, 788–790. 

47. Jacobs, G.; Patterson, P.M.; Zhang, Y.-Q.; Das, T.K.; Li, J.; Davis, B.H. Fischer-Tropsch 

synthesis: Deactivation of noble metal-promoted Co/Al2O3 catalysts. Appl. Catal. A 2002, 233, 

215–226. 

48. Kim, C.J. Water addition for increased CO/H2 hydrocarbon activity over catalysts comprising * e 

There is virtually no difference. carried out for thousands of hours, the time ranges specified are 

very close to each othecobalt, ruthenium, and mixtures thereof which may include a promoter 

metal. U.S. Patent 5,227,407, July 1993. 

49. Li, J.; Zhan, X.; Zhang, Y.-Q.; Jacobs, G.; Das, T.K.; Davis, B.H. Fischer-Tropsch synthesis: 

Effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts. Appl. Catal. A 2002, 228, 

203–212. 

50. Jacobs, G.; Das, T.K.; Patterson, P.M.; Li, J.; Sanchez, L.; Davis, B.H. Fischer-Tropsch synthesis: 

XAFS studies of the effect of water on a Pt-promoted Co/Al2O3 catalyst. Appl. Catal. A 2003, 

247, 335–343. 

51. Weststrate, C.J.; Saib, A.M.; Niemantsverdriet, J.W. Promoter segregation in Pt and Ru promoted 

cobalt model catalysts during oxidation-reduction treatments. Catal. Today 2013, 215, 2–7. 

52. Jermwongratanachai, T.; Jacobs, G.; Shafer, W.D.; Pendyala, V.R.R.; Ma, W.; Gnanamani, M.K.; 

Hopps, S.; Thomas, G.A.; Kitiyanan, B.; Khalid, S.; et al. Fischer-Tropsch synthesis: TPR and 

XANES analysis of the impact of oxidation-reduction (OR) cycles on the reducibility of 

Co/alumina catalysts with different promoters (Pt, Ru, Re, Ag, Au, Rh, Ir). Catal. Today 2014,  

in press. 
  



Catalysts 2014, 4                            

 

 

75

53. Li, J.; Jacobs, G.; Das, T.K.; Zhang, Y.-Q.; Davis, B.H. Fischer-Tropsch synthesis: Effect of 

water on the catalytic properties of a Co/SiO2 catalyst. Appl. Catal. A 2002, 236, 67–76. 

54. Dalai, A.K.; Das, T.K.; Chaudhari, K.V.; Jacobs, G.; and Davis, B.H. Fischer-Tropsch synthesis: 

Water effects on Co supported on wide and narrow-pore silica. Appl. Catal. A 2005, 289,  

135–142. 

55. Ma, W.; Jacobs, G.; Sparks, D.E.; Spicer, R.L.; Davis, B.H.; Klettlinger, J.L.S.; Yen, C.H. 

Fischer-Tropsch synthesis: Kinetics and water effect study over 25%Co/Al2O3 catalysts. Catal. 

Today 2014, in press. 

56. Logdberg, S.; Boutonnet, M.; Walmsley, J.C.; Jaras, S.; Holmen, A.; Blekkan, E.A. Effect of 

water on the space-time yield of different supported cobalt catalysts during Fischer-Tropsch 

synthesis. Appl. Catal. A 2011, 393, 109–121. 

57. Ma, W.; Jacobs, G.; Sparks, D.E.; Gnanamani, M.K.; Pendyala, V.R.R.; Yen, C.H.; Klettlinger, J.L.S.; 

Tomsik, T.M.; Davis, B.H. Fischer-Tropsch synthesis: support and cobalt cluster size effects on 

kinetics over Co/Al2O3 and Co/SiO2 catalysts. Fuel 2011, 90, 756–765. 

58. Studies in Surface Science and Catalysis. Catalyst Deactivation 1991: Proceedings of the 5th 

International Symposium; Bartholomew, C.H., Butt, J.B., Eds.; Elsevier: Amsterdam, The 

Netherlands, 1991; Volume 68. 

59. Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A 2001, 212,  

17–60. 

60. Eggenhuisen, T.M.; Munnik, P.; Talsma, H.; de Jongh, P.E.; de Jong, K.P. Freeze-drying for 

controlled nanoparticle distribution in Co/SiO2 Fischer-Tropsch catalyst. J. Catal. 2013, 297, 

306–313. 

61. Graham, U.M.; Jacobs, G.; Gnanamani, M.; Lipka, S.; Shafer, W.D.; Swartz, C.; 

Jermwongratanachai, T.; Chen, R.; Rogers, F.; Davis, B.H. Fischer Tropsch Synthesis: High 

Oxygenate-Selectivity of Cobalt Catalysts supported on Hydrothermal Carbons. ACS Catal. 

submitted for publication, 2014. 

62. van de Loosdrecht, J.; Datt, M.; Visagie, J.L. Carbon coated supports for cobalt based Fischer-

Tropsch catalysts. Top. Catal. 2014, in press. 

63. Rane, S.; Borg, O.; Yang, J.; Rytter, E.; Holmen, A. Effect of alumina phases on hydrocarbon 

selectivity in Fischer-Tropsch synthesis. Appl. Catal. A 2010, 388, 160–167. 

64. Sietsma, J.R.A.; den Breejen, J.P.; de Jongh, P.E.; van Dillen, J.; Bitter, J.H.; de Jong, K.P. 

Highly active cobalt-on-silica catalysts for the Fischer-Tropsch synthesis obtained via a novel 

calcination. Stud. Surf. Sci. Catal. 2007, 167, 85–90. 

65. Lu, J.; Elam, J.W.; Stair, P.C. Synthesis and stabilization of supported metal catalysts by atomic 

layer deposition. Accts. Chem. Res. 2013, 46, 1806–1815. 

66. Soled, S.L.; Kiss, G.; Kliewer, C.; Baumgartner, J.; El-Malki, E.-M. Learnings from Co Fischer-

Tropsch catalyst studies. Abstracts of Papers, ENFL-412, 245th ACS National Meeting & 

Exposition, New Orleans, LA, USA, 7–11 April 2013. 

67. Argyle, M.D.; Frost, T.S.; Bartholomew, C.H. Cobalt Fischer Tropsch catalyst deactivation 

modeled using generalized power law expressions. Top. Catal. 2014, in press. 

68. Bakken, V.; Bergene, E.; Rytter, E.; Swang, O. Bimetallic cobalt/rhenium systems: Preferred 

position of rhenium through an interdisciplinary approach. Catal. Lett. 2010, 135, 21–25. 



Catalysts 2014, 4                            

 

 

76

69. Tan, K.F.; Xu, J.; Chang, J.; Borgna, A.; Saeys, M. Carbon deposition on Co catalysts during 

Fischer-Tropsch synthesis: A computational and experimental study. J. Catal. 2010, 274, 121–129. 

70. Swart, J.C.W.; Ciobica, I.M.; van Santen, R.A.; van Steen, E. Intermediates in the formation of 

graphitic carbon on a flat FCC-Co(111) surface. J. Phys. Chem. C 2008, 112, 12899–12904. 

71. Burghgraef, H. A quantum chemical study of CH and CC bond activation on transition metals. 

PhD Thesis, Eindhoven University of Technology: Eindhoven, The Netherlands, June 1995. 

72. Ciobica, I.M.; van Santen, R.A.; van Berge, P.J.;. van de Loosdrecht, J. Adsorbate induced 

reconstruction of cobalt surfaces. Surf. Sci. 2008, 602, 17–27. 

73. Wilson, J.; de Groot, C. Atomic-scale restructuring in high-pressure catalysis. J. Phys. Chem. 

1995, 99, 7860–7866. 

74. Schulz, H.; Nie, Z.; Ousmanov, F. Construction of the Fischer–Tropsch regime with cobalt 

catalysts. Catal. Today 2001, 71, 351–360. 

75. Balakrishnan, N.; Joseph, B.; Bhethanabotla, V.R. Effect of Pt and Ru promoters on deactivation 

of Co catalysts by C deposition during Fischer-Tropsch synthesis: A DFT study. Appl. Catal. A 

2013, 462–463, 107–115. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


