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This Editorial refers to the Special Issue entitled “Photocatalysis and Sonocatalysis
for Environmental Applications: Synergy or Competition?”, which aimed to highlight the
common aspects and challenges of photocatalysis and sonocatalysis for the degradation of
organic pollutants in aqueous solutions. Both techniques have been extensively studied
in previous decades with regard to potential environmental remediation, and they are
sometimes seen as competitors. However, the fundamental mechanisms of these processes
leading to the degradation of pollutants are very different. Heterogeneous photocatalysis
is based on the photoexcitation of semiconducting particles, typically TiO2, ZnO, CdS and
ZnS [1,2]. The semiconductor absorbs photons equal to or higher than that of the band
gap to promote an electron from the valence band to the conduction band, leading to
electron/hole pair formation. The electron hole enables the oxidization of water molecules,
producing strongly oxidizing •OH radicals, or the oxidization of the adsorbed organic
molecule itself. In addition, the electrons promoted to the CB are able to reduce the oxygen
to superoxide radical O2

−•. Therefore, the presence of oxygen is essential in photocatalytic
oxidation processes. In this view, charge separation is vital for the efficiency of semiconduct-
ing photocatalysts. For this reason, a huge number of papers have reported on the synthesis
of semiconducting photocatalysts doped with metallic and non-metallic nanoparticles with
enhanced electron/hole charge separation [3]. On the other hand, sonocatalysis involves
the simultaneous action of heterogeneous catalysts and sonochemistry [4]. Sonochemistry
originates from the acoustic cavitation phenomenon: the nucleation, growth, and transient
collapse of gas/vapor microbubbles in liquids submitted to power ultrasound. In general,
three sites of sonochemical activity can be distinguished: the gas phase inside the collapsing
bubble, the overheated liquid reaction zone extending several hundred nm from the bubble
surface, and the bulk solution, where secondary chemical processes may occur [5]. In
aqueous solutions, drastic conditions inside the cavitation bubble generate nonequilibrium
plasma, leading to sonochemical water molecule splitting [6]. Hydrogen atoms mostly
recombine inside the bubble, forming hydrogen gas. In contrast, •OH radicals can reach a
liquid reaction zone where they oxidize organic molecules or recombine, yielding H2O2,
which could react in the bulk solution. According to this mechanism, there are multiple
impacts of ultrasound on heterogeneous catalysts: (i) the mechanical effects of cavitation
may disperse catalyst aggregates, remove the passivating layer from the catalyst surface,
and accelerate the mass transfer in the vicinity of the catalyst; (ii) local heating produced by
a collapsing bubble could accelerate the catalytic process; and (iii) chemically active species
that emerge from a cavitation bubble may promote the catalytic cycle. The effects of ultra-
sound are strongly influenced by ultrasonic frequency: a low frequency (ca. 20–100 kHz)
promotes mechanical effects; however, chemical effects prevail at high frequencies (ca.
100 kHz–1 MHz) [7]. Therefore, choosing an appropriate ultrasonic frequency is a critical
point for efficient sonocatalytic processing.

The papers presented in this Special Issue are listed in the List of Contributions.
It is worth mentioning that these contributions highlight the major trends in hetero-

geneous photocatalysis and sonocatalysis for environmental applications. Contribution
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1 focused on the development of photocatalyst morphology to improve the photodegra-
dation of pollutants in aqueous solutions and to enhance the reusability of photocatalysts.
The authors reported the synthesis of CuO/ZnO/CQD/PAN nanocomposites with ternary
heterostructures (CZC@PAN), where CQD and PAN are the carbon quantum dots and the
polyacrylonitrile nanofibers, respectively. It was shown that the photocatalytic degrada-
tion rate of methylene blue over CZC@PAN was 99.04% under a mercury lamp for 3 h
and 99.56% in natural sunlight for 4 h, respectively. The high photocatalytic activity of
CZC@PAN was attributed to the creation of p-n CuO/ZnO heterojunctions and to the
loading of carbon dots, which promoted the photo response ability of CZC@PAN and
efficient charge separation. It is also important for catalyst morphologies to allow easy
recovery and reuse. Contributions 2 and 3 explored the thermal effects in photocatalytic
processes with heterogeneous catalysts. Introducing heat into photocatalytic processes has
attracted a great deal of attention in the last decade, because it may significantly improve
the photoconversion efficiency [8,9]. In addition, self-heating photocatalytic systems can
consume lower amounts of energy in the conversion of substrates into desired products [10].
A study of photothermal H2 production from butanol isomers (1-BuOH, 2-BuOH, and
t-BuOH) over Ti@TiO2 core–shell nanoparticles (Contribution 2) showed that the photother-
mal effect shown with 1-BuOH/2-BuOH isomers can be attributed to the thermally induced
transfer of photogenerated, shallowly trapped electron holes to highly reactive free holes at
the surface of TiO2 and further hole-mediated cleavage of the O-H bond. This conclusion
correlates with the photothermal mechanisms of TiO2-based photocatalysts found using
photoelectrochemical [11] and isotopic H/D studies [12]. Contribution 3 considered the
utilization of a solar light concentrator with a constant radiation intensity of 1000 W/m2

for the photodegradation of Magenta effluent originating from the graphic industry over
a TiO2/Fe3O4 nanocomposite. It was shown that at the elevated temperature of about
50–80 ◦C and pH = 6.5, discoloration efficiency of about 95.6% could be reached. These
results indicate that parabolic solar light concentrators represent a promising option for
thermally assisted photocatalytic dye degradation at the large scale.

Regarding sonocatalytic processes of organic pollutants’ degradation, the major trend
considered in this Special Issue is focused on the combination of sonochemistry with other
methods, such as high-voltage plasma discharge coupled with ultrasonic treatment and
Fenton reagent (Contribution 4), and the coupling of power ultrasound with photocatalysis,
called sonophotocatalysis (Contribution 5). In Contribution 4, it was shown that the addi-
tion of FeCl2 greatly enhanced the efficiency of the acoustic cavitation-assisted (20 kHz)
plasma decomposition of Rhodamine B. Under the studied experimental conditions, the
decomposition efficiency reached almost 80%, which was 20% greater than that in the case
without Fenton reactions. In addition, argon injection into the reactor greatly improved
Rhodamine B degradation. While argon is not involved in the chemical reaction, it as-
sists plasma generation by lowering the underwater dielectric breakdown voltage. As
a result, more chemically active hydrogen and oxygen-containing ions and radicals are
generated when argon is introduced into the reactor, providing further promotion of Rho-
damine B decomposition. Finally, Contribution 5 discussed the opportunities represented
by sonophotocatalysis, as well as its limitations, for environmental remediation. In fact,
several studies have reported that low-frequency ultrasound (20–40 kHz) can enhance the
photocatalytic degradation of pollutants [13,14]. The thorough study in Contribution 5
revealed a 200–300% synergetic effect between the 20 kHz ultrasound and TiO2 photocat-
alytic degradation of Bisphenol A in aqueous solutions under UV LED light irradiation
(λ = 300 nm). However, it was found that the sonophotocatalytic degradation could not be
steadily maximized by ultrasonic energy input. Instead, there is a limiting value providing
optimal conditions depending on the TiO2 concentration. Sonophotocatalysis may con-
tribute to the effectiveness of photocatalytic degradation reactions by resolving problems
related to the opacity and aggregation of the catalyst. The composition and morphology of
TiO2-based photocatalysts are not adversely affected during sonophotocatalytic treatment.
In fact, particle disaggregation induced by power ultrasound may actually enhance the
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surface area of a photocatalyst, making photochemically generated oxidizing species more
assessable for organic substrates. In principle, sonophotocatalysis could be considered
as a candidate for futuristic environmental applications, but serious technical problems
related to the scaling up of such a hybrid process and catalyst-related recycling issues
will hinder the development of large-scale applications of sonocatalysis in general and
sonophotocatalysis in particular.
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