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Abstract: Zeolites are porous materials with plentiful and adjustable pore structures, which are widely
applied in various fields such as fossil fuel energy conversion, preparation of clean energy, chemical
product conversion, CO2 capture, VOC treatment, and so on. Zeolites exhibited advantageous
adsorption compared with traditional adsorbents such as activated carbon; in addition, they can also
provide abundant reaction sites for various molecules. The chemical composition, structural acidity,
and distribution of pore size can distinctly affect the efficiency of the reaction. The modification
of zeolite structure, the development of novel and efficient preparation methods, as well as the
improvement of reaction efficiency, have always been the focus of research for zeolites.
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1. Introduction

Adsorption and catalytic oxidation technology have extensive uses in energy, chemical
engineering, and environmental industries, such as the cracking of fossil fuels, conversion
of biomass, synthesis of non-petroleum products, low-cost production of hydrogen, cat-
alytic treatment of industrial exhaust gas, etc. [1,2]. The efficiency of catalytic reactions is
strongly influenced by adsorbents and catalysts. Under normal conditions, adsorbents are
porous materials with huge specific surface areas that can provide enough space for redox
reactions. Activated carbons (ACs), porous alumina, metal-organic frameworks (MOFs),
and molecular sieves are constantly used as adsorbents because of their pore structure.
More specifically, considering the thermal stability and the modification of pore structure,
molecular sieves exhibited better performance than activated carbons.

Zeolite has generally been utilized in various synthetic processes in industrial products
since its development (as shown in Figure 1). For zeolites, the basic structural unit (TO4) is
connected by bridging oxygen atoms to form a secondary building structure (SBU), which
can be further combined to form composite building structures (CBUs), and multiple rings
(n) are simultaneously formed [3]. Zeolites can be classified as different types according to
the pore size and the number of rings: (1) small pore zeolites with n = 8, (2) medium pore
zeolites with n = 10, (3) large pore zeolites with n = 12, (4) extra-large pore zeolites with
n > 12.
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Due to the different combinations of basic units, there are significant differences in the
pore structure and size of different types of zeolite molecular sieves. So far, A type, X type,
Y type, β-zeolite, and ZSM-5 zeolite have been the most widely used zeolites.

A type (Linde type A, LTA) zeolites have a cubic crystal system. It has 3-dimensional
channels ranging from 3 Å to 5 Å and an 8-membered topological structure. β zeolite is
composed of 12-membered rings with an average channel size of 6 Å − 8 Å. X type and Y
type zeolites are classified as FAU zeolites. Both of them belong to cubic crystals and are
composed of hexagonal column cages and β cages formed from 6-membered rings. The
Si/Al ratio of the X type varies from 2.2 to 3, and the Y type is higher than 3. Due to the
special channels, X type and Y type zeolites have a large adsorption capacity for organic
pollutant molecules. However, the adsorption capacity of organic molecules is reduced
in moist gases. ZSM-5 is a typical MFI zeolite with a “zigzag” shaped 10-membered ring
channel and vertically oriented 10-membered ring channels. The medium pore size (~5 Å)
and excellent hydrothermal stability facilitated its application in the petrochemical industry.

Additionally, catalysts are pretty active components in the reaction process, includ-
ing three types of catalysts: noble metals, non-noble metal oxides, and composite metal
oxides. In order to increase the efficiency of the catalytic oxidation process, the selection of
adsorbents and catalysts and the regulation of their modification should be prioritized.

This article illustrates the main applications of zeolite catalysts in summary and
analyzes new advances in zeolite catalytic redox chemistry. The effects of porous structure,
acidity, and other parameters, including zeolite type, catalyst, and reaction temperature, on
the activity, selectivity, stability, and deactivation of zeolites are also summarized. Finally,
the challenges and strategies of zeolite catalytic technology are discussed further.

2. The Application of Zeolite Catalysts
2.1. Catalytic Cracking of Petroleum Resources

Fluid catalytic cracking (FCC) technology is an effective alkyl removal technology
that is increasingly widely utilized in the biomass oil and petrochemical industry. FCC
catalysts consist of various zeolites with multi-component active ingredients that can
greatly improve the efficiency of catalytic cracking [4,5].

For crude oil, it is extremely important to ameliorate the selectivity of catalysts towards
products and increase the yield of specific products. In addition, Y-type zeolite has gained
widespread use as a molecular sieve. Introducing and increasing mesoporous surface area
can effectively reduce heavy oil production. Liu et al. prepared ordered silica aluminate
on an industrial scale using a pre-crystallization unit of Y zeolite precursor. However,
when a single layer of zeolite was dispersed on the catalyst surface, the composite catalyst
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exhibited the best activity for heavy oil cracking [6]. Pre-cracking is the first process to be
carried out in the base pores, followed by further cracking and selective generation of its
different products. Although Y zeolite is commonly used in heavy oil catalytic cracking
and hydrocracking, the mass transfer efficiency between active sites is lower than expected.
Cui et al. obtained mesoporous materials with octahedra by synthesizing ultra-stable
mesoporous high-silicon molecular sieves directly. Compared to industrial FCC catalysts,
the conversion rate was increased by 7.64%, and the gasoline yield was increased by 16.37%,
even after these catalysts were aged at 800 ◦C [7].

Due to the requirements of the sixth national standard for the olefin content of au-
tomotive fuels, it is of great necessity to reduce the olefin content in gasoline. Through
hydrothermal treatment, the acidity of ZSM-5 loaded metal catalysts (La-Ni-Zn) was re-
duced, and the B/L ratio (B = Brønsted acid, L = Lewis acid) was increased, which finally
increased the aromatic production by 5% and the isoalkane production by 16%, making it
an industrial catalyst for the catalytic cracking of gasoline [8]. To enhance the steam stability
of Y zeolite, Yu et al. prepared rare earth (RE)-exchanged Y zeolite. The substitution of
Y3+ ions for counter-ions Na+ resulted in a noticeable shrinkage of the unit cell owing to
the relatively small ionic radius and high charge density of Y3+ ions. Therefore, this kind
of zeolite exhibited better performance in steam stability and was more favorable for the
generation of liquefied petroleum gas and C5+ gasoline products in n-dodecane cracking [9].
Except for Y3+, Al-exchanged Y zeolite was also proved to be able to promote liquefied
petroleum gas production as a result of its strong acidity [10].

Except for routine chemical products, Li et al. have conducted extensive research on
the production of high value-added products through dealkylation of light fraction light
circulating oil and found that mesoporous BEA zeolite catalysts with appropriate acidity
and mass transfer ability can greatly raise the yield of value-added products [11]. It can be
seen that, although FCC was regarded as an efficient technology of dealkylation, the modi-
fying of micropores and B acidic sites of zeolite need more research to elevate mass transfer
ability. Thus, the optimization of catalysts in FCC, such as product selectivity, thermal
stability, and cycle life, should receive focused attention so as to increase production.

2.2. Conversion of Biomass

Biomass is a promising green and renewable organic carbon source, but its calorific
value is sharply lower than that of fossil fuels due to its abundant aerobic molecules, making
it difficult to utilize directly [12,13]. It is necessary to transform biomass into valuable
bioproducts. Two critical processes are involved in this strategy. One is the conversion of
biomass into platform molecules, and the other is the upgrading of platform molecules into
valuable fuels. Usually, the biomass comprised 40–50% cellulose, 25–35% hemicellulose,
15–20% lignin, and others [14]. Levulinic acid (LeA) and 5-hydroxymethylfurfural (HMF)
are two common biomass platform molecules due to the highly reactive functional groups
such as carboxyls, aldehydes, hydroxymethyls, and furan rings. LeA can be obtained from
cellulose via the C5 route or hemicellulose via the C6 route, and HMF is usually produced
from cellulose via the C6 route.

(1) LeA via C5 and C6 route

In the C6 route, cellulose was hydrolyzed to form C6 sugar, which was dehydrated
to form HMF. LA was obtained after the hydrolysis of HMF. Due to the high separation
cost of LA and formic acid, synthesizing LA from C6 sugar was mainly adopted in the
laboratory. For the C5 route, intermediates such as furfuryl and furfuryl alcohol (FAL)
were successively converted to LeA, which made the carbon utilization more efficient
than that of the C6 route [15]. HY zeolite mixed with ionic liquid (ionic liquid: HY = 0.5)
has more Lewis acid sites than Bronsted acid sites and exhibits a LeA yield of 62.2% [16].
ZSM-5 zeolite with mesopores was treated by tandem alkaline and acid washing, and
ZSM-5-OH0.2-H zeolite was therefore obtained; the modification of pore structure and Al
distribution promoted the hydrolytic efficiency of FAL to LeA, the LeA yield reached 64.5%
after three cycles [17].
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(2) HMF via the C6 route

HMF from biomass can be utilized to synthesize various biochemicals. The conversion
of HMF from biomass can be divided into three processes: glucose hydrolyzed from
cellulose, the isomerization of glucose to fructose, and the dehydration of fructose [15].
Therefore, fructose was usually used as a model molecule in HMF preparation, and many
zeolites such as ZSM, HY, H-USY, and MAPO were adopted. Scholars prepared Cu-
Cr/ZSM-5 zeolite using the ion-exchange method; when the zeolite was 20 wt.% of glucose,
50.4% HMF was achieved from glucose at 140 ◦C for 4 h [18]. To efficiently convert
carbohydrates into HMF, β zeolite doping with 0.4 wt.% Cr was prepared and exhibited
a superior 72% HMF yield and 83% selectivity due to the moderate L/B (Lewis acid
sites/Brønsted acid sites) [19]. Low L/B hindered the isomerization of glucose to fructose;
high L/B excessively accelerated the dehydration of fructose and led to the degradation of
fructose to humin.

As the most abundant part of biomass, cellulose can be hydrolyzed and further
converted into various chemical substances, one of which is lactic acid. Lactic acid (LA) from
biomass was also among the top 30 candidates for synthetic fossil product substitutes [20].
Many important industrial chemicals can be derived from LA molecules, such as polylactic
acid (PLA) [21], acrylic acid (AA), and propanoic acid (PA) (as shown in Figure 2). While
cellulose was hydrolyzed to produce lactic acid (LA), various products such as levulinic
acid and 5-hydroxymethylfurfural (HMF) were also produced, which resulted in a lower LA
yield (around 30%). Therefore, it is necessary to improve the LA selectivity. In recent years,
catalysts with acidic sites, especially solid Lewis acid catalysts, have received extensive
research [22,23]. It was found that yttrium-modified siliceous material β zeolite catalysts
can effectively regulate the surface acidity of zeolite and inhibit the yield of dehydration
products such as HMF and other derivatives. The results indicated that when Lewis acidity
was increased, the yield of LA from cellulose reached 49.2% within 30 min, more efficient
than previous research studies [24].
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It was noteworthy that the composition of some organic compounds may have side
effects on the catalytic performance of the catalyst. For example, phenolic substances
derived from lignin not only contain O molecules but also have adverse impacts on catalysts.
For this reason, the key to the catalytic cracking of bio-oil conversion is the optimization of
efficient catalysts. Different catalysts have been adopted for different biomass and products.
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In addition, NiMo/ASA Al2O3, Co Mo, HY zeolite, and ASA Al2O3 were simulated and
found to be suitable for producing high distillate diesel [25]. The theoretical calculation
results also indicated that larger mesoporous volume and surface area accelerated the
diffusion rate of biomass inside the zeolite. However, this effect was continually weakened
with increasing reaction time [26]. Because of the damage of by-products to catalysts and
zeolites, the mass transfer efficiency was consequently decreased. To restrict the destruction
of zeolites and catalysts and decrease the coke formation, an SFCC catalyst was employed
in the cracking of high acid-value waste edible oil to produce biofuels. Moreover, the
catalytic efficiency was attributed to doping with rare earth metals. Nguyen-Phuc et al.
found that propylene and liquefied petroleum gas production were obviously improved
by increasing the content of rare earth elements in ZSM-5 zeolite. Specifically, the yields
of diesel, gasoline, and liquefied petroleum gas reached 29 wt.%, 42 wt.%, and 18 wt.%,
respectively [27]. Additionally, to promote the conversion of biomass to valuable energy,
a novel catalytic system similar to the Dylison Cycle Riser (DCR) should be designed
and developed, which can produce hydrocarbon fuel intermediates from biomass-derived
pyrolysis steam, such as pine and oak [28].

2.3. Preparation of Propylene

Propylene has been widely applied in diverse chemical products that are badly needed.
Developing alternative methods to produce propylene using economical raw materials has
attracted considerable interest, such as the hydrogenation of methanol to propylene and
the dehydrogenation of propane to propylene [29–31].

2.3.1. Methanol to Propylene (MTP)

Methanol to propylene (MTP) was considered a substitutable approach to propylene
production because of the extensive sources of methanol available. Due to its selectivity
for propylene and the high resistance of the zeolite, ZSM-5 was preferred in the process
(Table 1).

Si/Al makes a great difference to the morphology and aluminum distribution of
molecular sieves. By increasing the Si/Al ratio in HZSM-5 zeolite, the selectivity of zeolite
for propylene can be improved [32]. In the ZSM-5 catalyst, when the channel intersection
is rich in Al pairs, the selectivity for ethylene and aromatics is higher. While the channel
intersection has multiple single Al sites and lower Al pairs, it exhibits higher propylene
selectivity and lower aromatic hydrocarbon selectivity [33].

Ion doping can also scale up the selectivity of zeolites towards specific products. When
boron was introduced into the ZSM-5 structure through impregnation and hydrothermal
synthesis, the orthogonal crystal structure of the zeolite was characterized, which retained
the preferred growth orientation and high crystallinity hierarchical structure and changed
the surface acidity. The selectivity of propylene was increased to 67%, and the propy-
lene/ethylene ratio reached 8 [34]. When Mn enters the framework structure of ZSM-5,
weak Brønsted acid sites increase the Al in the channel of the framework. Consequently, the
carbon deposition rate was lowered, and the selectivity for propylene was improved [35].

Preventing catalyst deactivation and coke deposition from clogging pores and im-
proving the lifespan of catalysts are still facing great challenges. Usually, modification
of structural properties and catalyst acidity can efficiently solve these problems. To re-
duce acidity and consequently inhibit the aromatic hydrocarbon cycle, fluoride-assisted
low-temperature crystallization can be applied to prepare plate-like MFI molecular sieves
with similar crystal morphology and controllable acidity, which made propylene selectiv-
ity reach 52%, and catalyst lifespan 252 h [36]. In the initial process of MTP, long chain
alkenes not being cracked diffused out from MFI zeolite and were found in the products (as
shown in Figure 3, blue frame). Simultaneously, the long-chain alkenes propagated from
olefins or alkenes were converted to polymethyl-benzenes and dienylic carbenium ions.
Subsequently, lower olefins were produced in the aromatic cycle (as shown in Figure 3,
red frame). Moreover, lower-density plate-like MFI can effectively inhibit the circulation
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of aromatic hydrocarbon groups, promote the hydrocarbon cycle, and exhibit excellent
stability [37].
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Table 1. Effects of Si/Al and specific surface area on the selectivity of propylene in MTP.
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ZSM-5 quasi-solid-phase 50 353 41.4% - [35]

* Si/Ga determined by ICP.

2.3.2. Propane to Propylene (PDH)

The dehydrogenation of propane (PDH) was a conventional way to produce propylene.
Driven by the huge demand for propylene, Pt- or Cr- containing catalysts have drawn
great attention and been applied to industrial manufacture. Although ZSM-5 is frequently
used for PDH reactions due to its unique pore structure and good thermal stability, the
high acidity of ZSM-5 can lead to a decrease in propylene selectivity. Through catalyst
dealumination and additive regulation, the surface acidity of ZSM-5 can be reduced, and
its propylene selectivity and catalytic stability in PDH can be improved. Some scholars
have adopted the sequential impregnation method to introduce Ga and Mg to improve the
Si/Al in HZSM-5, which can produce an effect on its stability and propylene selectivity
(90.8%) [38].

Additionally, the separation of propylene and propane is another indispensable pro-
cess in PDH, and it can be promoted by enhancing the propylene affinity of the adsorption
site. What provided new ideas for the effective separation of propylene and propane is
that scholars have prepared Ag exchanged Y zeolite (Ag-Y); this modified zeolite exhibited
rapid adsorption kinetics and reversible propylene adsorption [39]. The results of molecular
dynamics simulation research indicated that raising the temperature was beneficial for an
increase in propane adsorption capacity, as the critical temperature of propane is higher
than that of propylene. The smaller radius of non-skeletal cations in zeolite contributed
to the higher efficiency of propylene adsorption [40]. After dealumination, vacant T-atom
sites appeared in Si-BEA and silanol group forms. The introduced Co2+ can interact with
silanol groups and form four coordinated structures in the zeolite (as shown in Figure 4),
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which consequently selectively activates the C–H bonds in propane, thereby improving the
desorption efficiency after propylene generation and improving the long-term stability of
the catalyst [41].
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2.4. Selective Catalytic Reduction (SCR) of NOx

Nitrogen oxides (NOx) were one of the most destructive polluting gases that were
mainly produced in the combustion of fossil fuels, such as car exhaust and coal combustion.
In China, more than 90% of NOx comes from vehicle exhaust emissions. Selective catalytic
technology (SCR) is one efficient method to solve the problem of nitrogen oxide emissions.
The catalytic reduction reactions between NOx and NH3 were conducted on the surface of
the catalyst, and NOx was therefore transformed into N2. Currently, the adopted catalysts
are mainly divided into metal matrix catalysts and zeolite-based catalysts. V2O5-WO3/TiO2
was once supposed to be the most effective catalyst for NOx treatment. However, the
biological toxicity, poor thermostability, and narrow working temperature range extremely
restrained its application. In the 1980s, a ZSM-5 catalyst load with Cu2+ was discovered
and exhibited excellent activity to NOx and anti-toxicity.

Adsorption is the key process in catalytic oxidation and reduction. Zeolite cata-
lysts exhibit good adsorption performance on NOx owing to the large specific surface
area, good thermal stability, adjustable acidity, excellent absorption, and ion exchange
capabilities [42,43]. The overall efficiency of NOx reduction can be greatly improved by
metal doping and modification of zeolite catalysts. Cu-doped and Fe-doped zeolite catalysts
have received more attention, such as Cu/ZSM-5, Cu/BEA, Cu/SAPO-34, and Cu/SSZ-13,
which have been reported for the NH3-SCR reaction of NOx. The Cu-based catalyst exhibits
excellent anti-propylene poisoning ability in the NH3-SCR reaction. Researchers have
found that moderately copper-doped zeolite, such as the Cu7.55-ZK-5 catalyst, can isolate a
large amount of Cu2+, which is beneficial for the adsorption and activation of NOx [44].

Based on Cu/MOR, the addition of promoting the separation of Cu2+ can create
more Brønsted acid sites and inhibit the high-temperature ammonia oxygen reactions.
This catalyst exhibited a NOx conversion of about 88% and N2 selectivity above 99% at
350–560 ◦C [45].

Hydrothermal stability is another factor influencing the application of zeolite catalysts.
Yttrium-doped Cu-based zeolite catalysts can significantly reduce the fracture of Si-O-
Al, improve the dispersion of Cu2+ active components and promote the adsorption and
conversion efficiency of NOx [46].

NOx can be adsorbed with five reactions on Cu-ZSM-5 zeolites (as shown in Figure 5).
The adsorption can be enhanced by the coordination interaction between Cu and N. Cu
can be precisely dopped into H-ZSM-5 using an improved method called initial wetting
impregnation microwave drying (IM). Compared with H-ZSM-5 and Na-ZSM-5, the des-
orption energy was reduced and the NOx adsorption was significantly increased [47]. By
designing novel pore structures, such as three dimensionally-ordered (3DOM) microporous
zeolites, the contact area can be obviously extended. Some scholars have developed the
steam seed-assisted colloid crystal template (SSAC) method to prepare 3DOM zeolites.
After sonication, drying, and calcination, the PrxMn1−xOδ/3DOM ZSM-5 catalyst with
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different Pr/Mn ratios was obtained (as shown in Figure 6) and showed an NO conversion
rate of 90% [48].
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Except for these zeolite catalysts, scholars tried to combine metal-based catalysts
(V2O5-WO3/TiO2) with zeolite catalysts (H-ZSM-5) to prepare the composite catalyst
PM. The PM catalyst exhibited higher catalytic activity than the V2O5 WO3/TiO2 catalyst
because the PM catalyst adsorbed more NO2 and N2O4 [49]. Given the complexity of the
exhaust purification system in SCR, some researchers adopted an H2 selective catalytic
reduction method using Pt/KFI molecular sieve catalysts from 150 ◦C to 250 ◦C, and the
conversion rate of NOx reached 80% [50].
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2.5. Hydrogen Preparation

Hydrogen energy has been viewed as a potential alternative energy in the future.
However, producing hydrogen economically and environmentally is extremely challenging.
Hydrogen can be prepared from natural gas (reforming of methane steam to produce
hydrogen, SMR), coal gasification, electrolysis of water, and transformation of biomass. Var-
ious hydrogen production processes depend on catalysts. Due to the wide and renewable
sources, the utilization of organic matter to produce hydrogen energy is gradually receiving
attention. Relevant technical methods mainly include two methods. One is thermochem-
istry hydrogen production, which consists of high-temperature pyrolysis, liquefaction, and
gasification, and the other is biomass hydrogen production which refers to the preparation
of hydrogen from biomass after anaerobic fermentation, biological metabolism, and re-
forming. The catalysts used in hydrogen are mainly precious metals and transition metals,
such as Rh, Ru, Pd, Pt, Cu, Co, Ni, etc. Molecular sieves are often used as carriers for
these catalysts.

At present, ethanol steam reforming (ESR) is the most suitable industrial method
for ethanol to produce hydrogen, but there are some vital problems with this technol-
ogy: (1) high energy consumption; (2) expensive separation of CO2 and H2. Choosing
appropriate catalyst carriers and catalysts can help improve catalytic activity and reduce
costs. Furthermore, the Ni catalyst was relatively inexpensive and had good hydrogen
generation activity. Zeolites have a large content of micropores, and the structure can be
modified. However, carbon deposition during the catalytic process of Ni-loaded zeolite
can easily lead to decreasing catalytic activity. A new type of quaternary ammonium
cation cationic surfactant was introduced to synthesize the supported calcium-modified
nickel-step classification β zeolite catalysts. The BET and pore volume of this modified
zeolite were larger than that without modification. The introduction of Ca2+ changed the
internal structure of the catalyst to some extent, which promoted the interaction between
the carrier and Ni. Consequently, the yield of H2 was increased [51,52]. When Mg was
introduced into Rh/β zeolite, Rh clusters from the atomic level to the sub-nanometer scale
were formed in microporous channels. It was found that the C=O formed in the reaction
was the key to increasing selectivity, which can be promoted by Mg addition [53]. The
DFT calculation results indicated that the stability was obviously affected by the zeolite
structure. Specifically, after dealumination, the binding energy of Rh to the vacancy defect
was reduced by 0.2 eV. If the Mg was added to the zeolite structure, the binding energy
was additionally reduced to −1.927 eV (as shown in Figure 7a). Due to the proximity of
Rh and Mg in zeolite with Mg, the energy barrier of O-H was significantly reduced, which
was beneficial to the dissociation of phenol to phenoxy (as shown in Figure 7b). ITQ-6
zeolite loaded with Ni and Co can also be used in ESR. Among them, the ITQ–6 zeolite
loaded with Co exhibited higher hydrogen production on account of the smaller size of
Co particles. Moreover, the carbon deposition effect of Co/ITQ-6 was weaker, and the
deactivation was lower [54].

In order to reduce catalyst deactivation, some scholars have tried to design catalysts
with small metal nanoparticles. An encapsulated ultra-small Ni catalyst with mesoporous
and hollow structure was prepared using separated metal dispersions Si-1 zeolite with
high Ni dispersion (Ni@Si-1), which facilitated local mass transfer and reduced carbon
deposition [55]. The research on supercritical water dynamics indicated that the gasification
of catalysts such as Ni can be promoted by improving hydrogen selectivity. The pore
distribution of Ni particles can be divided into micropores (1–10 nm) and mesopores
(20–60 nm). When the size of the mesopores was distributed reasonably in zeolite, the
active sites increased, and the catalytic activity was higher [56].
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In addition to ethanol, methanol can also be used as the raw material for hydrogen
production, that is, methanol steam reforming (MSR). A catalyst suitable for the catalytic
reaction of MSR was prepared using an attapulgite molecular sieve as a carrier and Cu-Zr
active components. The addition of Zr significantly increased the distribution of active
metal particles and reaction sites, as well as the H2 yield. At the same time, the sintering of
active metals and coke were inhibited [57].

Photocatalysis is another important method for producing hydrogen gas, and zeo-
lite loaded with TiO2 photocatalyst was supposed to be one of the potentially efficient
catalysts [58,59]. To improve the transmission efficiency of photoelectrons, some scholars
have designed Cu2O@TiO2@ZIF-8, where an internal electric field was formed due to
the p-n junction, which promoted the transfer of electrons to the conduction band. The
photoelectrons generated from TiO2 were transferred to the conduction band and further
transferred through ZIF-8. The water can be therefore reduced by these photoelectrons (as
shown in Figure 8) [52]. To provide more proton sources and active sites, Na+/K+/Ca2+

can be added into zeolite, which consequently promotes the hydrogen evolution rate [60].
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2.6. VOCs Abatement

Volatile organic compounds (VOCs) refer to organic compounds with a boiling temper-
ature in the range of 50–260 ◦C. They were usually emitted in the petrochemical industry
and the rubber industry and had serious effects on human health and the natural envi-
ronment. With the rapid development of industry and increasing consumption of fossil
fuel energy in vehicles, the emission of VOCs has dramatically increased in recent years.
According to their boiling points, molecular structures, and molecular polarities, VOCs can
be classified into different types [61]. They were hard to eliminate using direct combustion
due to the low concentration of VOCs. To reduce the pollution and damage of VOCs, mul-
tiple technologies have been developed and applied, such as adsorption, a photocatalytic
degradation method, plasma degradation, catalytic combustion, etc. Whether adopting
an adsorption method or catalytic oxidation method, it is no wonder that developing effi-
cient adsorbent and porous materials are principal considerations. An excellent adsorbent
should have massive adsorption sites, good hydrothermal stability, and weak resistance
to molecular diffusion. Worldwide, research studies show that activated carbons [62],
metal-organic frameworks, and zeolites are all potential adsorption materials that have
exhibited excellent adsorption performance in many experiments. However, the combus-
tion of activated carbons and the high cost of metal-organic frameworks restrained their
application in VOC treatment.

The zeolite of the 255 framework type, approved by the International Zeolite Associa-
tion (IZA), was considered a promising absorbent due to its abundant micropores, adjustive
chemical stability, etc. The adsorption efficiency of different zeolite structures on different
VOCs molecules and the competitive adsorption mechanism of various VOCs have been
a puzzle to reveal. The absorption of VOCs can be influenced by the specific surface
area, pore structure, and surface functional groups. Additionally, the kinetic diameter and
polarity of the VOC molecule may also affect the absorption process.

The absorption efficiency was also proved to be related to humidity. Therefore, de-
veloping novel zeolites and improving the hydrophobicity of zeolites contributed to the
adsorption efficiency of zeolites under humid conditions. The hydrophobicity of zeolites
can be improved through ion doping and coating. A Mo-doped MEL zeolite was devel-
oped using a self-developed recrystallization method for the adsorption and reduction of
non-methane hydrocarbons (NMHC) in cooking oil fumes. The affinity for VOC molecules
is significantly enhanced due to its high atomic coordination level and lack of silanol, espe-
cially under humid conditions. This Mo MEL zeolite exhibited longer adsorption saturation
time, larger adsorption capacity, and better hydrophobicity, which led to the more excellent
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adsorption efficiency of Mo MEL than that of Si MEL and Al MEL [63]. In addition to Mo,
introducing Mn (Cu or Fe) to replace Al can also improve the hydrophobicity of zeolites [64].
The addition of Mn affected the crystallization behavior of zeolites, which in turn, changed
the distribution of Mn in zeolites and the properties of zeolites. Y-type zeolite, with a high
specific surface area and unique microporous structure, can have its hydrophobicity and
diffusion efficiency improved by being coated with mesoporous SiO2 [65]. In general, after
being coated with mesoporous hydrophobic materials, the diffusion activation energy of
VOCs was decreased, and the diffusion coefficient was increased. The π-n electron pair
interaction was weakened, while the dipole interaction was enhanced. The dispersion
interaction plays a positive role in the adsorption of VOCs and gradually enhances with
increasing relative humidity. However, the repeatability of core-shell composite materials
needs to be verified. The evaporation-induced self-assembly (EISA) method was adopted
to prepare NaY zeolite loaded with metal oxide nanoparticles. It strongly improved the
adsorption capacity of VOCs. Li SHI et al. successfully prepared uniformly dispersed
Y@MxOy nanoparticles, which significantly improved the adsorption effect of Y-zeolite
on isopropanol and acetone in humid environments under RH = 50%. The metal oxides
enhanced the adsorption capacity of VOCs, and greatly reduced the competitive adsorp-
tion between water molecules and VOCs molecules [66]. Multilevel mesoporous USY
molecular sieves can be prepared using etching and surfactant template processes, during
which the non-skeletal aluminum was effectively removed inside the zeolite, leading to
a mesoporous size of approximately 4 nm [67]. Some scholars have also proposed a new
strategy called citric acid sacrifice that can synthesize non adhesive monolithic zeolites. The
mechanical strength and the water resistance were obviously improved. After the in situ
dealuminization, the specific surface area and mesoporous volume were greatly improved,
the adsorption capacities of toluene and acetone were also increased. When the relative
humidity was 90%, the adsorption efficiency of acetone and toluene reached 90% of that
attained in dry conditions [68].

Adjusting the pore structure of molecular sieves is also vital for improving the adsorp-
tion and reaction rates of VOCs. The hierarchical design and synthesis of zeolite structures
are gradually receiving attention [69,70]. For example, the microporous size of ZSM-5
zeolite is generally less than 2 nm, and larger VOC molecules have a slower diffusion rate
during the adsorption process, making it difficult to quickly enter the reaction active center
and the generation rate of specific products is pretty low. When ZSM-5 is modified with
organic functionalized silica and organic additives, the size and surface morphology of
ZSM-5 nanocrystals can be greatly improved, forming a hierarchical mesoporous structure,
and the adsorption capacity for toluene is greatly increased [71]. According to the hier-
archical crystallization mechanism revealed in the corresponding research (as shown in
Figure 9), organic silica fragments modified by organosilane PHAPTMS were combined
and then gathered around MFI. After hydrolysis of -SiO3, PHAPTMS participated in the
formation of nanocrystalline frameworks in a hydrothermal process. The inter-crystalline
and intra-crystalline mesopores were finally formed after calcination.

The adsorption and catalytic efficiency of zeolite can be effectively improved by
regulating the active sites. Effective regulation of active sites can reduce carbon deposition
in pore structures and improve the durability of catalysts. Nano Pt is usually adopted
as an active ingredient, and its high dispersibility facilitates the catalytic oxidation of
aromatic hydrocarbons and alkanes. Synergistically, it can interact with surface acid sites
that contribute to the removal of VOCs at low temperatures [72]. Generally, adjusting
the Si/Al ratio in zeolites can help regulate the acidic sites. A controllable framework
modulation strategy can be adopted to prepare high-silica zeolites. In this strategy, it was
very important to control the matching degree of dealumination and Si-insertion. For Pt/β
zeolite, Pt0 has a stronger activation ability for O2 and shows higher efficiency than Ptδ+.
That makes it much easier to supply oxygen, which is more conducive to the ring opening
reaction of the benzene ring, thus reducing the production of gaseous benzene on the high
silicon catalyst. Furthermore, both high-silicon and low-silicon Pt/Beta catalysts show
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excellent durability and follow a similar toluene oxidation path to form intermediates,
including alcohol oxide, carboxylate, and anhydride [73]. For Pt/ZSM-5, the main active
oxidation site is Pt0. For the deep catalytic oxidation of oxygen/nitrogen-containing VOCs,
Pt/ZSM-5 had abundant acidic sites on its surface. Different SiO2/Al2O3, Pt0 ratio, and Pt
dispersion equilibrium in the catalyst may be changed, and the synergistic effect of acidic
sites and oxidation sites were promoted, which led to higher reaction activity of Pt/ZSM-5
(25), with a T90% value of only 207 ◦C for acetonitrile and 175 ◦C for ethyl acetate. It is
beneficial for low-temperature catalytic degradation of specific VOCs [74].

Catalysts 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 9. The crystallization mechanism diagram for the ZSM-5 zeolites [71]. 

The adsorption and catalytic efficiency of zeolite can be effectively improved by 
regulating the active sites. Effective regulation of active sites can reduce carbon deposition 
in pore structures and improve the durability of catalysts. Nano Pt is usually adopted as 
an active ingredient, and its high dispersibility facilitates the catalytic oxidation of 
aromatic hydrocarbons and alkanes. Synergistically, it can interact with surface acid sites 
that contribute to the removal of VOCs at low temperatures [72]. Generally, adjusting the 
Si/Al ratio in zeolites can help regulate the acidic sites. A controllable framework 
modulation strategy can be adopted to prepare high-silica zeolites. In this strategy, it was 
very important to control the matching degree of dealumination and Si-insertion. For Pt/β 
zeolite, Pt0 has a stronger activation ability for O2 and shows higher efficiency than Ptδ+. 
That makes it much easier to supply oxygen, which is more conducive to the ring opening 
reaction of the benzene ring, thus reducing the production of gaseous benzene on the high 
silicon catalyst. Furthermore, both high-silicon and low-silicon Pt/Beta catalysts show 
excellent durability and follow a similar toluene oxidation path to form intermediates, 
including alcohol oxide, carboxylate, and anhydride [73]. For Pt/ZSM-5, the main active 
oxidation site is Pt0. For the deep catalytic oxidation of oxygen/nitrogen-containing VOCs, 
Pt/ZSM-5 had abundant acidic sites on its surface. Different SiO2/Al2O3, Pt0 ratio, and Pt 
dispersion equilibrium in the catalyst may be changed, and the synergistic effect of acidic 
sites and oxidation sites were promoted, which led to higher reaction activity of Pt/ZSM-
5 (25), with a T90% value of only 207 °C for acetonitrile and 175 °C for ethyl acetate. It is 
beneficial for low-temperature catalytic degradation of specific VOCs [74]. 

Figure 9. The crystallization mechanism diagram for the ZSM-5 zeolites [71].

In industrial activities, multiple types of VOCs are often generated simultaneously.
Ideally, a single adsorbent and catalyst can simultaneously handle multiple VOCs. How-
ever, due to the various molecular structure of VOCs, the different pore structures, and the
complexity of the catalyst’s electronic structure, ensuring the treatment effect of VOCs is
difficult. Therefore, it is particularly important to explore and understand the adsorption
and oxidation mechanism of catalysts, which contributes to the development of novel
catalysts and adsorbents aimed at VOC mixtures. The molecular polarity and volatility of
VOCs play a crucial role in the adsorption process. For these VOC mixtures, the priority
order of adsorption varies. For example, under static equilibrium conditions, the absorption
order was determined as acetone > ethyl acetate > toluene. However, under dynamical
conditions, molecular polarity and volatility played key roles. The absorption order was
found to be ethyl acetate > toluene > acetone [75]. Complex interference effects were
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identified when this VOC mixture was adsorbed onto different zeolites. The adsorption
effect of toluene on USY is significantly better than that on 13X. However, for acetone, the
adsorption of 13X and ZSM-5 is better. ZSM-5 and β Zeolites can selectively adsorb ethyl
acetate, as evidenced by DFT calculations. This competitive adsorption widely exists in the
treatment of various VOCs, and the differential adsorption effect is one of the problems to
be solved in the future [75]. To develop efficient catalysts, some scholars have attempted
to explore the possibility of synergistic treatment of acetone and benzene by changing
the amount of Mn added [76]. When Mn was introduced, the activity of the catalyst for
acetone was significantly increased, while the activity for benzene was decreased. Because
the introduction of Mn regulated the electronic structure of Pt, leading to the transfer of
electrons to Pt, which enhanced the adsorption of acetone and gaseous oxygen and im-
proved the performance of the acetone oxidation catalyst, and promoted the degradation of
acetone. However, the high electron density of Pt inhibited the adsorption and degradation
of benzene, reducing the production of formic acid products.

In addition, the treatment of VOCs in open spaces has gradually attracted the attention
of researchers. For example, asphalt materials are often used in the process of road paving
and continually release VOCs into the open air. Due to the limitations of open spaces,
it is very difficult to collect and dispose of these VOCs. Steel slag and red mud were
usually used as road materials, zeolites synthesized from these materials can reduce the
volatility of asphalt and absorb VOCs in road structures [77]. Therefore, preparing efficient
zeolites using in-road materials (such as steel slag) was the key approach to deal with VOC
emissions in open spaces.

2.7. CO2 Capture

CO2 has been regarded as the main greenhouse gas resulting in global warming,
which is one of the most challenging environmental issues. To prevent the damage caused
by global warming, various technologies are being developed [78]. Among them, one
technology called carbon capture, utilization, and storage (CCUS) has received great
attention. In the CCUS system, CO2 capture is the key stage that matures this technology.
According to the manufacturing methods of CO2, pre-combustion capture, post-combustion
capture, and oxyfuel combustion were the main approaches. Regardless of different
approaches, the CO2 separation process was the critical part of CO2 capture, such as
absorption, membranes, adsorption, chemical looping combustion, and calcium looping,
and adsorption has been considered one of the most promising ways to capture CO2.

Compared with other CO2 adsorbents, zeolite exhibited a stable cycle, huge surface
area, and fast kinetics of CO2 adsorption. X-type zeolite, Y-type zeolite, and A-type zeolite
were usually studied as CO2 capture adsorbents. Therefore, zeolite has received increasing
attention in CO2 capture over the past decades. It has been found that there are several
factors influencing the capture efficiency of CO2, such as Si/Al, distribution of pore sizes,
exchangeable ions, and moisture effects.

As a kind of aluminosilicate, Al ions can replace Si ions in the TO4 structure, which
breaks the charge balance of the original structure and leads to increasing basicity. It was
reported that higher basicity contributes to higher CO2 adsorption [78]. Zeolites with
a lower Si/Al ratio were more stable at high temperatures and less likely to exchange
with other ions. To achieve higher CO2 capacity, the chemical composition of zeolites
can be optimized. Scholars found that the Si/Al of GIS-type zeolite strongly affected the
mechanism of CO2 adsorption. Specifically, for Na-GIS with Si/Al lower than 2.2, the
CO2 adsorption was hindered, and CO2 uptake was negligible due to the large number of
extra-framework cations near the 8-ring window [79].

The pore size of different zeolites was usually distributed in the range from 0.5 nm
to 1.2 nm due to their crystalline nature. It means that only when the kinetic diameter of
gas molecules is smaller than the pore size the gas can be adsorbed. To strengthen the
adsorption efficiency of CO2, it is very promising to synthesize zeolites with mesopores.
Due to the hierarchical structure, the obstruction of molecular diffusion is obviously re-
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duced, which can consequently promote CO2 adsorption. Chen et al. prepared mesoporous
LTA zeolite (Meso-LTA); it exhibited faster CO2 adsorption kinetics (1 bar) and higher CO2
adsorption capacities (>10 bar) at 298 K compared with microporous LTA zeolite [80].

CO2 adsorption is essentially the interaction between CO2 molecules and the electric
field caused by ions in zeolites, which is similar to CO2 desorption. Therefore, the CO2
capture efficiency can be promoted by adjusting the chemical composition of zeolite, for
instance, ion exchange. For instance, the simulation and experimental results of ion-
exchanged 13X zeolite (FAU type) indicated that, compared with Na+ and K+, LiX-80
exhibited better separation of CO2/N2. Furthermore, the doping of Pd2+ and Ag+ changed
the gradient of potential and strengthened the electrostatic potential (ESP), which increased
the CO2 adsorption capacity (1.89%) and the CO2/N2 selectivity (85.97%) compared with
LiX-80 [81].

Apart from the above factors, in flue gas, vapor is always accompanied by CO2. The
water molecules may compete with CO2 molecules for the active sites in zeolites, which
dramatically reduces the efficiency of CO2 adsorption. Some scholars proposed a strategy
that fabricating a shell around the zeolite using sol-gel coating and a poly-ethylenimine
impregnation process, and the diffusion of water molecules was hindered [82].

As a kind of promising CO2 solid adsorbent, zeolite has drawn great attention for
the past decades and exhibited excellent performance. However, its application still faces
a lot of challenges due to its structure characteristics and chemical composition. The
modification of zeolite used for CO2 capture will still be a research focus in the future.

3. Conclusions and Future Perspectives

Zeolite catalyst is featured in energy conversion, selective separation, pollution preven-
tion, and treatment. Generally, it exhibited better adsorption when the pore size of zeolite
was equivalent to that of the adsorbed molecule. Therefore, it was very important to select
the appropriate zeolite for different catalytic reactions. Since a state of long-term hydrother-
mal treatment at high temperatures is a necessary condition for its synthesis, numerous
problems such as long synthesis time, high energy consumption, high equipment cost, and
safety issues caused by the use of high-pressure hot-pressing tanks continuously emerged.
There is no doubt that shortening synthesis time and lowering synthesis temperature are
desperately needed. Reducing synthesis costs (energy consumption, autoclave productivity,
etc.) and environmental footprint and safety issues has always been the primary issue.

Despite the special structure and excellent properties, the promotion of the application
of zeolite catalysts also faces great challenges, such as the selectivity of specific products,
temperature adaptability, and the lifetime of catalysts. It was also noticed that the retention
of the reaction medium leads to the generation of by-products, resulting in micropore
blockage and reduced catalytic activity. However, it can be noticed that upgrading the
preparation method, regulating the pore structure, and increasing acid sites are three
awesome measures to improve the properties of zeolite catalysts. Zeolites are expected to
show their great advantage in energy-saving catalytic processes, environmentally friendly
adsorption and separation, and energy storage.
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