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Abstract: An improved para-selective C(sp2)-H borylation of anisole derivatives is described. The
selective borylation is probably dominated by the change in electron density on the aromatic ring
when a Lewis acid is coordinated with an anisole substrate. In addition, a sterically hindered bipyridyl
ligand used in the reaction also favors para-selectivity. With this strategy, it has been demonstrated
that the ratio of para-borylated products could be dramatically improved. The reaction proceeds at a
milder temperature, and most substrates display moderate to good site-selectivity.
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1. Introduction

In the past few decades, transition-metal-catalyzed C-H functionalization has emerged
as a powerful tool in synthetic organic chemistry [1–10]. The C-H bond, as the most basic
chemical bond in organic chemistry, can be directly converted into various functional
groups to construct different chemical bonds such as the carbon-carbon bond or the carbon-
heteroatom bond with transition metal catalysts (e.g., Fe [3], Co [4], Ni [5], Ru [6], Rh [7],
Pd [8], Ir [9], and Pt [10]). Compared with traditional synthetic methods, this strategy
does require the introduction of potentially reactive functional groups such as alkenyl,
carbonyl, aryl, and so on, greatly improving the efficiency of organic synthesis. However,
most transition-metal-catalyzed C-H transformations adopt the directing group strategy:
functional groups with coordinating ability (e.g., pyridine, amide, imine, ether, and car-
boxylate) chelate with transition-metal catalysts to form five/six-membered cyclometallic
intermediate to achieve C-H bond cleavage, and the following functionalization with other
reagents proceeds through oxidative addition and reductive elimination [11–13]. As a
result, the activated C-H bond will be restricted to the site capable of forming cyclometallic
intermediate [14–16]. For example, in the C-H functionalization of 2-phenylpyridine, only
C-H bonds at the two ortho-positions of the pyridine directing group can be functionalized,
while the C-H bonds at the meta- or para-positions far away from the pyridyl are difficult to
activate [17–19]. Moreover, the difficulty of distal site-selectivity is more obvious in iridium
(I)-catalyzed C(sp2)-H functionalization of aryl substrates, which is also a long-standing
challenge in this area [20–22].

In recent years, some remote site-selective aromatic C-H functionalization has been
accomplished with different methods mainly controlled by electronic effects, steric effects,
and intermolecular non-covalent bond interactions. In 2003, Miyaura’s group reported a
meta-selective C(sp2)-H borylation of 3-acylthiophene, in which the rich electronic effect of
a five-membered aromatic heterocycle plays an important role in the remote regioselectiv-
ity [23,24]. As regards steric hindrance dominating distal regioselectivity, a para-selective
aromatic C-H borylation of monosubstituted benzenes was disclosed by Itami’s group,
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which used a new iridium catalyst bearing a bulky diphosphine ligand. The para-selectivity
increases with increasing bulkiness of the substituent on the arene, indicating that the regios-
electivity of this reaction is primarily controlled by steric repulsion between substrate and
catalyst [25–29]. In addition, Kanai’s group developed an innovative approach for distal se-
lective aromatic C-H borylation [30,31]. Hydrogen-bonding interactions, an intermolecular
non-covalent bond interaction between bipyridyl ligand and substrate, lead to high meta-
selectivity. Based on this novel strategy, Phipps [32–34] and Chattopadhyay [35–37] created
another two kinds of para-selective C(sp2)-H borylation of aromatic substrates by using
intermolecular electrostatic interaction and Lewis acid-base interaction. Previously, we also
developed an ortho-selective C(sp2)-H borylation of thioanisole derivatives controlled by
Lewis acid-base interaction between bipyridyl ligand and substrates [38,39].

2. Results and Discussion

Anisole borylated derivatives, as an important structural unit, are widely utilized
in many areas of chemistry, including pharmaceuticals, perfumes, and dyestuffs [40].
However, the iridium-catalyzed C-H borylation of anisole, usually gives a mixture of
meta- and para-borylated products, and the ratio is about 3:1. It is difficult to obtain a
single isomer of a borylated product, especially for the para-isomer. Herein, we report an
improved para-selective C-H borylation of anisole assisted by the combination of a Lewis
acid and a bulky bipyridyl ligand. We proposed that the mechanism is that the methoxy
group, as a strong electron-donating group, will increase electron density at the ortho- and
para-positions of the anisole substrate, which makes the electron-deficient meta-position
easily functionalized. Once the Lewis acid is coordinated with the methoxy group, it results
in a decrease in electron density at the para-position, which will lead to an increase in
para-selectivity (Figure 1 (4)).
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Figure 1. Some pioneering remote selective C(sp2)-H borylation reactions [31,33,36,39]. 

We initiated our investigation by treating anisole (3a) with bis(pinacolato)diboron (4) 
in the presence of an iridium catalyst [Ir(OMe)(cod)]2 and dtbpy (4,4′-ditert-butyl-2,2′-di-
pyridyl) at 40 °C, which gave a mixture of meta- and para-borylated products 1a and 2a in 
80% yield, and the [para/meta] ratio was only 27:73 (Scheme 1, entry 1). Firstly, several 
Lewis acids were investigated (Scheme 1, entries 2–10). The borylation did not occur when 
trimethylaluminum was used. However, in the case of triisobutylaluminum, the 
[para/meta] ratio was improved to 50:50 (entry 3), but with a low yield. Then, we focused 
on screening some boron Lewis acid. The [para/meta] ratio was decreased to 38:62 when 
B(OMe)3 was used as Lewis acid. With increasing steric hindrance, the ratio was slightly 
increased to 58:42 (entry 5). We considered that the poor para-selectivity was probably due 
to the low Lewis acidity and steric hindrance [10]. Thus, we turned to tuning the electronic 
properties and steric hindrance of substituents on boron atoms. To our delight, B(Mes)3 
gave a good result, improving the [para/meta] ratio to 78:22 with a 50% yield (entry 6). 
Unexpectedly, B(C6F5)3 with stronger Lewis acidity did not improve the ratio (entry 7). In 
addition, changing its steric effect has no effect on the para-selectivity of this reaction (en-
tries 8–10). In order to further increase the [para/meta] ratio, we also screened a series of 
bipyridyl ligands [6]. In the case of bipyridyl ligands with substituents at different posi-
tions (entries 11–13), ligand 1 with substituents at the 2,2′-position gave a good [para/meta] 
ratio reaching 81:19 (entry 11), while ligand 2 and ligand 3 gave poor results. We postu-
lated that the steric hindrance at the 2,2′-position would be the determinant for the para-

Figure 1. Some pioneering remote selective C(sp2)-H borylation reactions [30,32,35,38].
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We initiated our investigation by treating anisole (3a) with bis(pinacolato)diboron
(4) in the presence of an iridium catalyst [Ir(OMe)(cod)]2 and dtbpy (4,4′-ditert-butyl-2,2′-
dipyridyl) at 40 ◦C, which gave a mixture of meta- and para-borylated products 1a and 2a
in 80% yield, and the [para/meta] ratio was only 27:73 (Scheme 1, entry 1). Firstly, several
Lewis acids were investigated (Scheme 1, entries 2–10). The borylation did not occur when
trimethylaluminum was used. However, in the case of triisobutylaluminum, the [para/meta]
ratio was improved to 50:50 (entry 3), but with a low yield. Then, we focused on screening
some boron Lewis acid. The [para/meta] ratio was decreased to 38:62 when B(OMe)3 was
used as Lewis acid. With increasing steric hindrance, the ratio was slightly increased to
58:42 (entry 5). We considered that the poor para-selectivity was probably due to the low
Lewis acidity and steric hindrance [38]. Thus, we turned to tuning the electronic properties
and steric hindrance of substituents on boron atoms. To our delight, B(Mes)3 gave a good
result, improving the [para/meta] ratio to 78:22 with a 50% yield (entry 6). Unexpectedly,
B(C6F5)3 with stronger Lewis acidity did not improve the ratio (entry 7). In addition,
changing its steric effect has no effect on the para-selectivity of this reaction (entries 8–10).
In order to further increase the [para/meta] ratio, we also screened a series of bipyridyl
ligands [25–30]. In the case of bipyridyl ligands with substituents at different positions
(entries 11–13), ligand 1 with substituents at the 2,2′-position gave a good [para/meta] ratio
reaching 81:19 (entry 11), while ligand 2 and ligand 3 gave poor results. We postulated that
the steric hindrance at the 2,2′-position would be the determinant for the para-selectivity.
Finally, we found that Ligand 6 with n-butyl at the 2,2′-position could further improve the
[para/meta] ratio to 84:16 with a 54% yield.
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With the optimized reaction conditions in hand, we began to investigate the substrate 
scope of this para-selective borylation (Scheme 2). Substrates 3b–3d bearing alkyl substit-
uents at ortho-position gave good [para/meta] ratios with moderate yields ranging from 
43% to 50%. In the case of 3e, the [para/meta] ratio slightly decreased. On anisole substrates 
with halogen atoms at ortho-positions 3f–3g, the desired para-selective C-H borylation oc-
curred with a good [para/meta] ratio without inhibition by the functional groups. In addi-
tion, the electronic properties of ortho-substituents have obviously an impact on para-se-
lectivity, which can be seen from the moderate [para/meta] ratio of substrates 3i–3o, which 
indicated that ortho-substituents (such as trifluoromethyl, trifluoromethoxy, cyano, ester, 
amide, acetyl, and formyl groups) with electron-withdrawing effects would generate two 
electron-deficient centers (the meta- and para-position of the methoxy group), so that the 
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With the optimized reaction conditions in hand, we began to investigate the sub-
strate scope of this para-selective borylation (Scheme 2). Substrates 3b–3d bearing alkyl
substituents at ortho-position gave good [para/meta] ratios with moderate yields ranging
from 43% to 50%. In the case of 3e, the [para/meta] ratio slightly decreased. On anisole
substrates with halogen atoms at ortho-positions 3f–3g, the desired para-selective C-H bory-
lation occurred with a good [para/meta] ratio without inhibition by the functional groups.
In addition, the electronic properties of ortho-substituents have obviously an impact on
para-selectivity, which can be seen from the moderate [para/meta] ratio of substrates 3i–3o,
which indicated that ortho-substituents (such as trifluoromethyl, trifluoromethoxy, cyano,
ester, amide, acetyl, and formyl groups) with electron-withdrawing effects would generate
two electron-deficient centers (the meta- and para-position of the methoxy group), so that
the worse para-selectivity was obtained. The para-selective borylation proceeded smoothly
in the case of substrates 3p to 3s with heterocyclic substituents at the ortho-position. As
regards 3t–3u, the reaction is expected to proceed at the para-position of the methoxy group
with good yields. Moreover, benzofuran 3v and benzopyran 3w could also give acceptable
[para/meta] ratios, while with thioanisole as substrate, the reaction still predominantly gave
a meta-borylated product.
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5-(4-methoxyphenyl)-1-(phenylsulfonyl)-1H-indole (the target compound; R=H) as a 
PED4 inhibitor was usually synthesized through Suzuki–Miyaura cross-coupling between 
para-borylated anisole (1′) and phenylsulfonyl protected 5-bromoindole (4′) (Scheme 3 (1)). 
The introduction of functional groups on the moiety of para-borylated anisole is a useful 
way to enrich the diversity of PED4 inhibitor compounds. However, substituted para-
borylated anisole generally needs to be prepared from the corresponding 4-bromoanisole 
(7) and borylate (8), which not only increases the synthesis cost but also does not comply 
with the principle of atom economy [42]. On the contrary, the improved para-borylation 
of anisoles developed by us could easily synthesize a series of para-borylated anisoles with 
an ortho-substituent (1′). As a representative example, a derivative of PDE4 inhibitor (6) 
was synthesized from product 1s with an ortho-morpholinyl group through two steps 
[43,44]. First, a palladium-catalyzed cross-coupling reaction between 1s and 5-bromoin-
dole (4) gave the coupling product (5) in a 65% yield without protecting the NH group. 
Then, the desired product (6) was obtained via acylation of 5 with phenylsulfonyl chloride 
in a yield of 88% (Scheme 3 (2)). 

Scheme 2. Substrates scope of anisole derivatives.

5-(4-methoxyphenyl)-1-(phenylsulfonyl)-1H-indole (the target compound; R=H) as a
PED4 inhibitor was usually synthesized through Suzuki–Miyaura cross-coupling between
para-borylated anisole (1′) and phenylsulfonyl protected 5-bromoindole (4′) (Scheme 3 (1)).
The introduction of functional groups on the moiety of para-borylated anisole is a useful
way to enrich the diversity of PED4 inhibitor compounds. However, substituted para-
borylated anisole generally needs to be prepared from the corresponding 4-bromoanisole
(7) and borylate (8), which not only increases the synthesis cost but also does not comply
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with the principle of atom economy [41]. On the contrary, the improved para-borylation of
anisoles developed by us could easily synthesize a series of para-borylated anisoles with an
ortho-substituent (1′). As a representative example, a derivative of PDE4 inhibitor (6) was
synthesized from product 1s with an ortho-morpholinyl group through two steps [42,43].
First, a palladium-catalyzed cross-coupling reaction between 1s and 5-bromoindole (4)
gave the coupling product (5) in a 65% yield without protecting the NH group. Then, the
desired product (6) was obtained via acylation of 5 with phenylsulfonyl chloride in a yield
of 88% (Scheme 3 (2)).
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Scheme 3. Synthesis of a derivative of a PED4 inhibitor.

According to the initial hypothesis, the para-selective C-H borylation can be explained
by a mechanism initiated by the formation of a bipyridyl-Ir-Bpin complex A with two cis-N
ligands, three Bpin ligands, and a vacant coordination site (square). As anisole substrates
and Lewis acid (B(Mes)3) were added to the reaction system, the vacant coordination site
of complex A would facilitate the cleavage of the C-H bonds at the para-position due to the
lower electron density caused by the coordination of Lewis acid with anisole substrate and
forming complex B. After eliminating a HBpin, the complex C, primarily activating the
para-Ar-H bonds, was formed. Then, the para-borylates product was given after reductive
elimination, and ligand exchange of complex D occurred with B2pin2 to regenerate complex
A (Figure 2).
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Figure 2. Proposed mechanism of the para-selective C-H borylation. Figure 2. Proposed mechanism of the para-selective C-H borylation.

3. Material and Methods
3.1. Materials

All reactions were carried out in a dry and degassed solvent in a glove box. Com-
pounds B(Mes)3, B2Pin2, and [Ir(OMe)(cod)]2, the most commonly used Ir(I) catalyst in
the C-H borylation reaction, were purchased from Aldrich (St. Louis, MO, USA) and Bide
Pharmatech (Shanghai, China) and used without further purification unless otherwise
noted. Anhydrous solvents were distilled and degassed by refluxing over CaH2 or a combi-
nation of sodium/benzophenone. Reactions were monitored by thin-layer chromatography
(TLC) and visualized with UV light (254 nm). The para-borylated product was separated by
preparative Gel Permeation Chromatography (GPC-JAI-LC9110NEXT) using chloroform
(HPLC grade) as eluent. NMR spectra were recorded on 400 MHz (400 MHz for 1H NMR,
100 MHz for 13C NMR) and 800 MHz (800 MHz for 1H NMR, 201 MHz for 13C NMR) spec-
trometers. Proton and carbon chemical shifts are reported relative to the solvent used as an
internal reference. The boron-bearing carbon atom was not observed due to quadrupolar
relaxation. ESI-MS spectra were measured on a spectrometer for HRMS.

3.2. Methods
3.2.1. Preparation of Lewis Acid (Pentafluorophenyl Borate ArFB-1 to ArFB-3) [44]

Pentafluorophenyl boronic acid (1.00 g, 4.72 mmol), substituted diol (2.0 equiv.), and
MgSO4 (1.14 g, 9.44 mmol) were dissolved in toluene (40 mL) in a 100 mL round-bottom
flask equipped with a magnetic stir bar, and the mixture was refluxed for 12 h. After
removal of the solvent, the crude product was purified by column chromatography on
silica gel (petroleum/ethyl acetate = 10:1).
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4-Methyl-2-(pentafluorophenyl)-1,3,2-dioxaborinane (ArFB-1) 

Yield: 0.98 g, 78%; 1H NMR (800 MHz, CDCl3) 4.37–4.34 (m, 1H), 4.24–4.19 (m, 1H), 4.18–
4.14 (m, 1H), 2.10–2.08 (m, 1H), 1.90–1.84 (m, 1H), 1.36 (d, J = 6.6 Hz, 3H); 13C NMR (201 
MHz, CDCl3) δ 149.1 (d, J = 247 Hz), 142.7 (d, J = 249 Hz), 137.8 (d, J = 255 Hz), 68.9, 62.0, 
34.0, 22.5; IR (KBr, ν/cm−1) 1507, 1404, 1320, 1283, 1068, 954, 763, 667; HRMS (ESI+) Calcd 
for C10H9BF5O2+ ([M + H]+) 267.0610, found 267.0598. 
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21.6; IR (KBr, ν/cm−1) 1651, 1508, 1429, 1321, 1259, 1045, 988, 969, 809, 691; HRMS (ESI+) 
Calcd for C11H11BF5O2+ ([M + H]+) 281.0767, found 281.0762. 
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Yield: 0.98 g, 78%; 1H NMR (800 MHz, CDCl3) 4.37–4.34 (m, 1H), 4.24–4.19 (m, 1H),
4.18–4.14 (m, 1H), 2.10–2.08 (m, 1H), 1.90–1.84 (m, 1H), 1.36 (d, J = 6.6 Hz, 3H); 13C NMR
(201 MHz, CDCl3) δ 149.1 (d, J = 247 Hz), 142.7 (d, J = 249 Hz), 137.8 (d, J = 255 Hz), 68.9,
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62.0, 34.0, 22.5; IR (KBr, ν/cm−1) 1507, 1404, 1320, 1283, 1068, 954, 763, 667; HRMS (ESI+)
Calcd for C10H9BF5O2+ ([M + H]+) 267.0610, found 267.0598.
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1H), 1.71–1.66 (m, 1H), 1.41 (s, 3H), 1.37 (s, 3H), 1.34 (d, J = 6.3 Hz, 3H); 13C NMR (201 MHz,
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30.8, 28.0, 22.8; IR (KBr, ν/cm−1) 1520, 1482, 1408, 1315, 1238, 1160, 975, 926, 891, 767, 720;
HRMS (ESI+) Calcd for C12H13BF5NO2
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3.2.2. Preparation of 2-alkyl Anisole Derivatives (3c to 3e) [45]

To a solution of 2-alkyl phenol (5.0 mmol) in anhydrous THF (20 mL), sodium hydride
(1.2 equiv.) was slowly added at 0 ◦C. After stirring for 1.5 h at the same temperature,
1-iodoalkane (2.0 equiv.) was added dropwise. The mixture was slowly warmed to room
temperature for 5 h. After that, the reaction was quenched by adding a saturated NH4Cl
aqueous solution (20 mL). The organic layer was separated and dried with Na2SO4. The
mixture was filtered, and the solvent was removed under vacuum. The crude product was
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1457, 1376, 1204, 838, 796, 724; HRMS (ESI+) Calcd for C9H13O+ ([M + H]+) 137.0961, found
137.0946.
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Yield: 1.94 g, 49%; 1H NMR (800 MHz, CDCl3) 7.55 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.8 Hz, 
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1-Methyl-2-ethoxylbenzene (3e)

Yield: 0.44 g, 64%; 1H NMR (800 MHz, CDCl3) δ 7.29–7.25 (m, 2H), 6.96–6.92 (m, 1H), 6.91
(d, J = 8.8 Hz, 1H), 4.17–4.08 (m, 2H), 2.36 (s, 3H), 1.55–1.51 (m, 3H); 13C NMR (201 MHz,
CDCl3) δ 157.1, 130.5, 126.7, 126.7, 120.1, 110.9, 63.3, 16.2, 14.9; IR (KBr, ν/cm−1) 1778, 1490,
1389, 1138, 854, 760, 697, 598; HRMS (ESI+) Calcd for C9H13O+ ([M + H]+) 137.0961, found
137.0958.
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3.2.3. Preparation of 2-Methoxy-N,N-Dimethylbenzamide (3m) [46]

2-Methoxybenzoic acid (5.00 g, 32.9 mmol) was added in a 100 mL round-bottom
flask equipped with a reflux condenser. Thionyl chloride (11.9 mL, 165 mmol) and five
drops of DMF were added, and the mixture was refluxed for 4 h. The reaction was
allowed to cool to room temperature, and the excess of SOCl2 was carefully removed
under vacuum. The crude acid chloride was dissolved in CH2Cl2 (80 mL), and Et3N
(23.0 mL, 165 mmol) was added. The mixture was cooled to 0 ◦C in an ice-water bath, and
dimethylamine hydrochloride (5.40 g, 65.8 mmol) was added. The reaction was stirred for
19 h at room temperature, concentrated, and purified by column chromatography on silica
gel (dichloromethane/ethyl acetate = 3:1).
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Yield: 3.24 g, 55%; H NMR (800 MHz, CDCl3) δ 7.33–7.30 (m, 1H), 7.21 (d, J = 7.4 Hz, 1H),
6.96 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H), 3.09 (s, 3H), 2.82 (s, 3H); 13C
NMR (201 MHz, CDCl3) δ 169.3, 155.2, 130.2, 127.8, 126.2, 120.8, 110.8, 55.5, 38.1, 34.6; IR
(KBr, ν/cm−1) 1622, 1471, 1395, 1246, 1075, 1021, 853, 755, 596; HRMS (ESI+) Calcd for
C10H14NO2

+ ([M + H]+) 180.1019, found 180.1017.

3.2.4. Preparation of 2-(2-Methoxylphenyl)-1,3-dioxolane (3p) [47]

In a 100 mL round-bottom flask equipped with a reflux condenser, o-Methoxy-benzaldehyde
(3.00 g, 22.0 mmol) and ethane-1,2-diol (18.2 mL, 330 mmol) were dissolved in toluene
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(20 mL). TsOH (69.6 mg, 0.441 mmol) was added at room temperature and allowed the
reaction mixture to stir at 115 ◦C for 5 h. After cooling to room temperature, the solvent
was removed under vacuum, and the mixture was extracted with ethyl acetate (20 mL × 2).
The organic layer was separated and dried over Na2SO4, filtered, and the solvent re-
moved in vacuo. The crude product was purified by column chromatography on silica gel
(petroleum/ethyl acetate = 5:1).
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Yield: 1.94 g, 49%; 1H NMR (800 MHz, CDCl3) 7.55 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.8 Hz,
1H), 6.98 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.18 (s, 1H), 4.16–4.12 (m, 2H),
4.06–4.02 (m, 2H), 3.87 (s, 3H); 13C NMR (201 MHz, CDCl3) δ 157.6, 130.2, 126.6, 125.7,
120.3, 110.6, 99.2, 65.2, 55.5; IR (KBr, ν/cm−1) 1685, 1598, 1484, 1466, 1394, 1285, 1244, 1161,
1021, 834, 756, 647; HRMS (ESI+) Calcd for C10H13O3

+ ([M + H]+) 181.0859, found 181.0865.

3.2.5. Preparation of 2-heterocycle Substituted Anisole (3r and 3s) [48]

In a 100 mL round-bottom flask equipped with a reflux condenser, a mixture of
o-anisidine (5.00 g, 40.6 mmol), 1,4-dibromobutane (10.5 g, 48.7 mmol), bis(2-bromoethyl)-
ether (11.3 g, 48.7 mmol), potassium iodide (14.8 g, 89.3 mmol), and potassium carbonate
(14.8g, 89.3 mmol) in acetonitrile (100 mL) was heated at 90 ◦C for 12 h. Then the reaction
mixture was cooled to room temperature and filtered. The filtrate was extracted with
dichloromethane (2 × 20.0 mL). The organic layer was separated and dried, and Na2SO4
was concentrated in vacuo. The crude product was purified by chromatography on silica
gel (petroleum ether/ethyl acetate = 8:1) to afford an oily product.
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3.2.6. Preparation of Para-Selective C-H Borylation of Anisole Derivatives (1a to 1x)

In a glove box, an oven-dried 10 mL sealed tube with a magnetic stir bar was charged
with [Ir(OMe)(cod)]2 (3.0 mol%), L6 (6.0 mol%), B2Pin2 (0.5 equiv.), and cyclohexane
(1.0 mL). The seal tube was moved to a preheated metal heating block (50 ◦C) for 30 min,
after which the color of the mixture turned deep green. Upon cooling to room temperature,
anisole substrate 3 (0.5 mmol), B(Mes)3 (1.0 equiv), and cyclohexane (1.0 mL) were added
sequentially. The reaction vessel was removed from the glovebox and stirred at 40 ◦C. After
24 h, the reaction mixture was cooled to room temperature, volatiles were removed under
reduced pressure, and the yield and the regio-isomer ratio were checked by 1H NMR using
1,1,2,2-tetrachloroethane as an internal standard. The para-borylated product was separated
by GPC.
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2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1a)

The mixture of product (63 mg, 54% yield, para/meta = 84:16); para-borylated product 1a was
obtained by further purification of the crude mixture by GPC (53 mg); 1H NMR (800 MHz,
CDCl3) δ 7.77 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 3.83 (s, 3H), 1.34 (s, 12H); 13C
NMR (201 MHz, CDCl3) δ 162.1, 136.5, 113.3, 83.5, 55.0, 24.8; IR (KBr, ν/cm−1) 1419, 1354,
1313, 1143, 1072, 963, 875, 705; HRMS (ESI+) Calcd for C13H20BO3

+ ([M + H]+) 235.1500,
found 235.1490.
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The mixture of product (62 mg, 50% yield, para/meta = 80:20); para-borylated product
1b was obtained by further purification of the crude mixture by GPC (49 mg); 1H NMR
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1352, 963, 863, 791, 702, 667; HRMS (ESI+) Calcd for C15H24BO3+ ([M + H]+) 263.1813, found 
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132.6, 109.6, 83.4, 55.2, 26.9, 24.8, 22.6; IR (KBr, ν/cm−1) 1676, 1501, 1438, 1256, 1071, 947, 
805, 720, 658; HRMS (ESI+) Calcd for C16H26BO3+ ([M + H]+) 277.1970, found 277.1980. 

 
2-(4-ethoxy-3-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1e) 

The mixture of product (68 mg, 52% yield, para/meta = 75:25); para-borylated product 1e 
was obtained by further purification of the crude mixture by GPC (51 mg); 1H NMR (800 
MHz, CDCl3) δ 7.64 (d, J = 9.9 Hz, 1H), 7.61 (s, 1H), 6.81 (d, J = 5.7 Hz, 1H), 4.06 (q, J = 7.0 

2-(4-methoxy-3-ethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1c)

The mixture of product (57 mg, 43% yield, para/meta = 81:19); para-borylated product
1c was obtained by further purification of the crude mixture by GPC (46 mg); 1H NMR
(800 MHz, CDCl3) δ 7.66 (d, J = 6.4 Hz, 1H), 7.60 (s, 1H), 6.84 (d, J = 8.2 Hz, 1H), 3.85 (s, 3H),
2.64 (q, J = 7.6 Hz, 2H), 1.34 (s, 12H), 1.19 (t, J = 7.5 Hz, 3H); 13C NMR (201 MHz, CDCl3)
δ 160.05, 135.61, 134.28, 131.89, 109.47, 83.45, 55.14, 24.83, 23.30, 14.28; IR (KBr, ν/cm−1)
1591, 1352, 963, 863, 791, 702, 667; HRMS (ESI+) Calcd for C15H24BO3

+ ([M + H]+) 263.1813,
found 263.1804.
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2-(4-ethoxy-3-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1e)

The mixture of product (68 mg, 52% yield, para/meta = 75:25); para-borylated product 1e was
obtained by further purification of the crude mixture by GPC (51 mg); 1H NMR (800 MHz,
CDCl3) δ 7.64 (d, J = 9.9 Hz, 1H), 7.61 (s, 1H), 6.81 (d, J = 5.7 Hz, 1H), 4.06 (q, J = 7.0 Hz, 2H),
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The mixture of product (55 mg, 44% yield, para/meta = 82:18); para-borylated product 1f was
obtained by further purification of the crude mixture by GPC (45 mg); 1H NMR (800 MHz,
CDCl3) δ 7.53 (d, J = 9.1 Hz, 1H), 7.49 (d, J = 11.8 Hz, 1H), 6.94 (t, J = 8.1 Hz, 1H), 3.90 (s,
3H), 1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 152.6, 151.4, 150.2, 150.2, 131.5, 131.4,
121.7, 121.6, 112.5, 83.8, 56.0, 24.8; IR (KBr, ν/cm−1) 1615, 1422, 1354, 1292, 1265, 1130, 967,
853, 758, 692; HRMS (ESI+) Calcd for C13H19BFO3
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2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1h)

The mixture of products (89 mg, 68% yield, para/meta = 100/0); 1H NMR (800 MHz, CDCl3)
δ 7.42 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 1.5 Hz, 1H), 6.88 (d, J = 7.9 Hz, 1H), 3.92 (s, 3H), 3.90 (s,
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3H), 1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 151.58, 148.29, 128.51, 116.50, 110.43, 83.60,
55.80, 55.69, 24.81; IR (KBr, ν/cm−1) 1408, 1352, 1296, 1220, 1027, 968, 855, 755, 682; HRMS
(ESI+) Calcd for C14H22BO4

+ ([M + H]+) 265.1606, found 265.1613.

Catalysts 2023, 13, x FOR PEER REVIEW 12 of 16 
 

 

Hz, 2H), 2.23 (s, 3H), 1.43 (t, J = 7.0 Hz, 3H), 1.34 (s, 12H); 13C NMR (201 MHz, CDCl3) 
δ 159.8, 137.1, 134.1, 126.0, 110.1, 83.4, 77.2, 76.8, 63.2, 24.8, 16.0, 14.8; IR (KBr, ν/cm−1) 1605, 
1353, 1285, 1247, 1133, 1046, 982, 854, 669; HRMS (ESI+) Calcd for C15H24BO3+ ([M + H]+) 
263.1813, found 263.1809. 

 
2-(3-fluoro-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1f) 

The mixture of product (55 mg, 44% yield, para/meta = 82:18); para-borylated product 1f 
was obtained by further purification of the crude mixture by GPC (45 mg); 1H NMR (800 
MHz, CDCl3) δ 7.53 (d, J = 9.1 Hz, 1H), 7.49 (d, J = 11.8 Hz, 1H), 6.94 (t, J = 8.1 Hz, 1H), 3.90 
(s, 3H), 1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 152.6, 151.4, 150.2, 150.2, 131.5, 131.4, 
121.7, 121.6, 112.5, 83.8, 56.0, 24.8; IR (KBr, ν/cm−1) 1615, 1422, 1354, 1292, 1265, 1130, 967, 
853, 758, 692; HRMS (ESI+) Calcd for C13H19BFO3+ ([M + H]+) 253.1406, found 253.1395. 

 
2-(3-chloro-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1g) 

The mixture of product (79 mg, 59% yield, para/meta = 80:20); para-borylated product (1g) 
was obtained by further purification of the crude mixture by GPC (63 mg); 1H NMR (800 
MHz, CDCl3) δ 7.80 (s, 1H), 7.67 (d, J = 8.2 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 3.92 (s, 3H), 
1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 157.3, 136.5, 134.7, 122.1, 111.3, 83.9, 56.0, 24.8; 
IR (KBr, ν/cm−1) 1599, 1406, 1351, 1261, 1138, 1063, 963, 872, 818, 701, 669; HRMS (ESI+) 
Calcd for C13H19BClO+ ([M + H]+) 253.1406, found 253.1400. 

 
2-(3,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1h) 

The mixture of products (89 mg, 68% yield, para/meta = 100/0); 1H NMR (800 MHz, CDCl3) 
δ 7.42 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 1.5 Hz, 1H), 6.88 (d, J = 7.9 Hz, 1H), 3.92 (s, 3H), 3.90 
(s, 3H), 1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 151.58, 148.29, 128.51, 116.50, 110.43, 
83.60, 55.80, 55.69, 24.81; IR (KBr, ν/cm−1) 1408, 1352, 1296, 1220, 1027, 968, 855, 755, 682; 
HRMS (ESI+) Calcd for C14H22BO4+ ([M + H]+) 265.1606, found 265.1613. 

 
2-(4-methoxy-3-(trifluoromethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1i) 

The mixture of product (83 mg, 55% yield, para/meta = 80:20) and para-borylated product 
(1i) was obtained by further purification of the crude mixture by GPC (67 mg); 1H NMR 
(800 MHz, CDCl3) δ 7.70 (d, J = 8.2 Hz, 1H), 7.64 (s, 1H), 6.97 (d, J = 8.2 Hz, 1H), 3.90 (s, 
3H), 1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 154.5, 134.9, 128.9, 121.9 (q, J = 257 Hz), 
112.1, 83.9, 55.9, 24.8; IR (KBr, ν/cm−1) 1615, 1361, 1307, 1258, 1169, 1053, 824, 685; HRMS 
(ESI+) Calcd for C14H19BF3O3+ ([M + H]+) 303.1374, found 303.1369. 

  

2-(4-methoxy-3-(trifluoromethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1i)

The mixture of product (83 mg, 55% yield, para/meta = 80:20) and para-borylated product
(1i) was obtained by further purification of the crude mixture by GPC (67 mg); 1H NMR
(800 MHz, CDCl3) δ 7.70 (d, J = 8.2 Hz, 1H), 7.64 (s, 1H), 6.97 (d, J = 8.2 Hz, 1H), 3.90 (s, 3H),
1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 154.5, 134.9, 128.9, 121.9 (q, J = 257 Hz), 112.1,
83.9, 55.9, 24.8; IR (KBr, ν/cm−1) 1615, 1361, 1307, 1258, 1169, 1053, 824, 685; HRMS (ESI+)
Calcd for C14H19BF3O3

+ ([M + H]+) 303.1374, found 303.1369.

Catalysts 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 

 
2-(4-methoxy-3-(trifluoromethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1j) 

The mixture of product (79 mg, 50% yield, para/meta = 79:21); para-borylated product 1j 
was obtained by further purification of the crude mixture by GPC (62 mg); 1H NMR (800 
MHz, CDCl3) δ 7.70 (d, J = 8.2 Hz, 1H), 7.64 (s, 1H), 6.97 (d, J = 8.3 Hz, 1H), 3.90 (s, 3H), 
1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 154.5, 137.7, 134.9, 121.3 (q, J = 257 Hz), 112.07, 
83.9, 55.9, 24.8; IR (KBr, ν/cm−1) 1609, 1418, 1328, 1245, 1132, 1028, 969, 851, 818, 699; HRMS 
(ESI+) Calcd for C14H19BF3O4+ ([M + H]+) 319.1323, found 319.1320. 

 
2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (1k) 

The mixture of product (84 mg, 65% yield, para/meta = 77:23); para-borylated product 1k 
was obtained by further purification of the crude mixture by GPC (65 mg); 1H NMR (800 
MHz, CDCl3) δ 8.01 (s, 1H), 7.95 (d, J = 8.5 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 3.95 (s, 3H), 
1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 163.2, 140.9, 140.6, 116.4, 110.5, 101.6, 84.2, 56.0, 
24.8; IR (KBr, ν/cm−1) 1602, 1507, 1402, 1381, 1261, 1127, 956, 850, 739, 675; HRMS (ESI+) 
Calcd for C14H19BNO3+ ([M + H]+) 260.1453, found 260.1448. 

The NMR data of para-borylated products 1l to 1x are shown in the Supplementary 
Materials. 

3.2.7. Preparation of PED4 Inhibitor [42] 
In a 50 mL two-necked flask equipped with a reflux condenser, 1s (500 mg, 1.56 

mmol), 5-bromoindole (4, 456 mg, 2.34 mmol), Pd(PPh3)4 (90.1 mg, 0.078 mmol, 5.0 mol%), 
K2CO3 (431 mg, 3.12 mmol, 2.0 equiv.), MeOH (30 mL), and H2O (3.0 mL) were added. 
Then, the mixture was heated at 100 °C for 3 h. The reaction mixture was cooled to room 
temperature and extracted with EtOAc (2 × 20.0 mL). The organic layer was separated and 
dried over Na2SO4. After filtration, the solvent was removed under vacuum, and the resi-
due was directly used in the next step without purification. Compound 5 (200 mg, 0.649 
mmol) was dissolved in 20 mL of anhydrous THF and cooled to 0 °C. NaH (29.5 mg, 0.779 
mmol) was slowly added to the solution, and the reaction mixture was stirred at the same 
temperature for 1 h. Then, PhSO2Cl (172 mg, 0.974 mmol, 1.5 equiv.) was dropped in the 
mixture and stirred at room temperature for 8 h. The solvent was removed in vacuo, and 
the residue was purified by column chromatography on silica gel (PE/EtOAc = 5:1). Yield: 
256 mg, 88%, 1H NMR (800 MHz, CDCl3) δ 8.03 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 8.0 Hz, 2H), 
7.67 (s, 1H), 7.58 (s, 1H), 7.56–7.49 (m, 2H), 7.45 (t, J = 7.8 Hz, 2H), 7.21–7.23 (m, 1H), 7.13 
(s, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.70 (s, 1H), 3.96–3.89 (m, 7H), 3.20–3.10 (m, 4H); 13C NMR 
(100 MHz, CDCl3) δ 151.6, 141.3, 138.2, 136.8, 134.2, 133.9, 133.8, 131.3, 129.3, 126.8, 126.7, 
124.1, 121.8, 119.4, 117.2, 113.6, 111.5, 109.4, 67.2, 55.5, 51.2; IR (KBr, ν/cm−1) 2926, 2765, 
1880, 1653, 1580, 1421, 1345, 1021, 967, 855, 791; HRMS (ESI+) Calcd for C25H25N2O4S+ ([M 
+ H])+ 449.1503, found 449.1512. 

4. Conclusions 
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rivatives. The regioselectivity was probably controlled by the change in electron density 
on the aromatic ring when a Lewis acid was coordinated with anisole. Most substrates 
could give an acceptable [para/meta] ratio. In addition, a bioactive molecule was synthe-
sized from the para-borylated product. Investigations into the diversified regioselectivity 
of aromatic compounds are ongoing in our laboratory. 
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The mixture of product (79 mg, 50% yield, para/meta = 79:21); para-borylated product 1j was
obtained by further purification of the crude mixture by GPC (62 mg); 1H NMR (800 MHz,
CDCl3) δ 7.70 (d, J = 8.2 Hz, 1H), 7.64 (s, 1H), 6.97 (d, J = 8.3 Hz, 1H), 3.90 (s, 3H), 1.33 (s,
12H); 13C NMR (201 MHz, CDCl3) δ 154.5, 137.7, 134.9, 121.3 (q, J = 257 Hz), 112.07, 83.9,
55.9, 24.8; IR (KBr, ν/cm−1) 1609, 1418, 1328, 1245, 1132, 1028, 969, 851, 818, 699; HRMS
(ESI+) Calcd for C14H19BF3O4

+ ([M + H]+) 319.1323, found 319.1320.
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2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (1k)

The mixture of product (84 mg, 65% yield, para/meta = 77:23); para-borylated product
1k was obtained by further purification of the crude mixture by GPC (65 mg); 1H NMR
(800 MHz, CDCl3) δ 8.01 (s, 1H), 7.95 (d, J = 8.5 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 3.95 (s, 3H),
1.33 (s, 12H); 13C NMR (201 MHz, CDCl3) δ 163.2, 140.9, 140.6, 116.4, 110.5, 101.6, 84.2, 56.0,
24.8; IR (KBr, ν/cm−1) 1602, 1507, 1402, 1381, 1261, 1127, 956, 850, 739, 675; HRMS (ESI+)
Calcd for C14H19BNO3

+ ([M + H]+) 260.1453, found 260.1448.
The NMR data of para-borylated products 1l to 1x are shown in the Supplementary

Materials.

3.2.7. Preparation of PED4 Inhibitor [41]

In a 50 mL two-necked flask equipped with a reflux condenser, 1s (500 mg, 1.56 mmol),
5-bromoindole (4, 456 mg, 2.34 mmol), Pd(PPh3)4 (90.1 mg, 0.078 mmol, 5.0 mol%), K2CO3
(431 mg, 3.12 mmol, 2.0 equiv.), MeOH (30 mL), and H2O (3.0 mL) were added. Then, the
mixture was heated at 100 ◦C for 3 h. The reaction mixture was cooled to room temperature
and extracted with EtOAc (2 × 20.0 mL). The organic layer was separated and dried over
Na2SO4. After filtration, the solvent was removed under vacuum, and the residue was
directly used in the next step without purification. Compound 5 (200 mg, 0.649 mmol) was
dissolved in 20 mL of anhydrous THF and cooled to 0 ◦C. NaH (29.5 mg, 0.779 mmol) was
slowly added to the solution, and the reaction mixture was stirred at the same temperature
for 1 h. Then, PhSO2Cl (172 mg, 0.974 mmol, 1.5 equiv.) was dropped in the mixture and
stirred at room temperature for 8 h. The solvent was removed in vacuo, and the residue was
purified by column chromatography on silica gel (PE/EtOAc = 5:1). Yield: 256 mg, 88%,
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1H NMR (800 MHz, CDCl3) δ 8.03 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 8.0 Hz, 2H), 7.67 (s, 1H),
7.58 (s, 1H), 7.56–7.49 (m, 2H), 7.45 (t, J = 7.8 Hz, 2H), 7.21–7.23 (m, 1H), 7.13 (s, 1H), 6.93 (d,
J = 8.4 Hz, 1H), 6.70 (s, 1H), 3.96–3.89 (m, 7H), 3.20–3.10 (m, 4H); 13C NMR (100 MHz,
CDCl3) δ 151.6, 141.3, 138.2, 136.8, 134.2, 133.9, 133.8, 131.3, 129.3, 126.8, 126.7, 124.1, 121.8,
119.4, 117.2, 113.6, 111.5, 109.4, 67.2, 55.5, 51.2; IR (KBr, ν/cm−1) 2926, 2765, 1880, 1653,
1580, 1421, 1345, 1021, 967, 855, 791; HRMS (ESI+) Calcd for C25H25N2O4S+ ([M + H])+

449.1503, found 449.1512.

4. Conclusions

In summary, we developed an improved para-selective C-H borylation of anisole
derivatives. The regioselectivity was probably controlled by the change in electron density
on the aromatic ring when a Lewis acid was coordinated with anisole. Most substrates could
give an acceptable [para/meta] ratio. In addition, a bioactive molecule was synthesized from
the para-borylated product. Investigations into the diversified regioselectivity of aromatic
compounds are ongoing in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13081193/s1, screening tables, 1H and 13C NMR spectra (1l
to 1x), more detailed materials, and methods. Table S1: Reaction optimization for the amount of
B(Mes)3. Table S2: Reaction optimization for different solvents.
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