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Abstract: In this work, a NixCox/Silk-PVDF bimetallic catalyst electrode was prepared for the hydro-
gen evolution reaction (HER) in hydropower. This cheap, durable, and efficient electrode has good
practical application prospects. Green natural silk, which will pollute the environment. The electrodes
(obtained by varying the Ni:Co ratio and hydrothermal times) were prepared hydrothermally. Ni and
Co elements were revealed by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission
electron microscopy. Ni2Co2/silk-PVDF was identified as an effective catalyst in 1 M KOH alkaline
electrolyte with an overpotential of 89.4 mV at 20 mA cm−2 and a Tafel slope of 47.46 mv dec−1. It
showed low resistance and a high specific surface area in EIS and CV tests, respectively, proving its
superior HER performance. Finally, the stability and durability of the electrode coated with PVDF
were demonstrated via testing at a voltage of −0.1 V over 24 h. This work provides an environ-
mentally friendly and simple method to load metal on a self-supporting electrode to be used in the
hydrogen evolution reaction.

Keywords: silk; PVDF; bimetallic electrocatalyst; electrochemical; HER

1. Introduction

With the development of science and technology and the study of basic theories, the
James Webb Space Telescope is a milestone in the human exploration of deep space. In
order to launch it into orbit, the rocket carrying it is extremely important. Today, all rockets
worldwide, without exception, use chemical fuel, which is generally composed of liquid
oxygen and liquid hydrogen. Due to the highly active chemical properties of hydrogen,
liquid hydrogen has a large calorific value. In addition, it has a higher specific impulse,
which is an indicator that measures the combustion efficiency of a rocket; the higher the
specific impulse value, the greater the impulse generated by consuming the same mass of
fuel and the greater the acceleration of the rocket. The combination of liquid hydrogen and
oxygen has a specific impulse of over 400 [1,2]. For highly pure hydrogen, the industry
usually uses hydroelectrolysis (hydrogen evolution), a green and economical method of
converting electrical energy into chemical energy [3].

Nowadays, some precious metal-based materials and their alloys are considered to be
ideal electrocatalysts for the HER process [4]. However, due to the low output and high
preparation cost of these rare metals, they have been unable to be used as the most cost-
effective electrocatalysts. Therefore, it is necessary to find electrocatalysts with high activity
and low cost that are environmentally sound and rich in earth to replace the above precious
metals. Thus far, a variety of low-cost alternatives to catalytic HER have been studied,
including metal oxides, chalcogenides, phosphates, and perovskites [5–11]. Atchudan’s
study used Anacardium occidentale nut’s skin to product the porous carbon material. The
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Anacardium occidentale nut’s skin is convenient to get at a low cost [12]. Many authors have
utilized natural green biowastes/biomass for the synthesis of carbon materials [13,14].

The method of hydrogen production via the electrolysis of water has developed rapidly
in recent years, and the technology is now more mature than traditional methods. Its raw
material is water, the reaction process is clean and environmentally friendly, and there is no
carbon dioxide in the product. Water electrolysis will not aggravate the greenhouse effect,
and the entire process is very much in line with the concept of sustainable development.
Therefore, it is a feasible and mainstream method for carrying out HER from electrolytic
water to prepare hydrogen. The electrolytic water reaction is divided into two semi-
reactions: the hydrogen evolution reaction and the oxygen evolution reaction [15–20]. The
cathode HER for the production of high-purity hydrogen is a reaction based on a two-
electron transfer process. In the alkaline solution, HER is divided into Volmer, Heyrovsky,
and Tafel steps, through which hydrogen atoms are adsorbed or desorbed [21,22]. The
specific reactions are as follows:

H2O + e− → Hads + OH− (Volmer)

Hads + H2O + e− → H2 + OH− (Heyrovsky)

Hads + Hads → H2 (Tafel)

Thus far, it has been reported that the number of HER catalysts in an alkaline medium is
less than that in an acidic medium. In an alkaline medium, HER commercial catalysts mainly
use platinum groups, such as Pt, Pd, etc. [23]. However, these are precious metals, which are
not only a scarce resource but also expensive; therefore, the use of transition metals instead
of precious metals is now an important replacement for commercial catalysts. Compared
with the platinum group, transition metals, for example Ni, Co, Fe, Cu, etc. [20,24], may
have good hydrogen spillover properties under certain conditions [25]. In addition, studies
have shown that bimetallic compounds have stronger electrochemical performance than
single metal compounds, which can bring better electrochemical performance to HER. In
recent years, because of the synergistic effect between the catalytic properties of Ni and Co,
Ni has become known for its low HER overpotential, whereas Co has become known for
its high hydrogen adsorption. Research on Ni and Co has steadily increased because their
hydrogen production activity is equivalent to that of precious metal catalysts [26–29].

In ancient China, silk is made into yarn and textiles on a large scale in the textile
industry. The Silk Road was a land-based trade route from China through Central Asia
to South and West Asia, as well as Europe and North Africa. Silk has good mechan-
ical properties, controlled biodegradability, and novel dielectric properties due to the
development of manufacturing technology and research on the structure of silk. Silk is
a well-known natural biomaterial. It has been processed into various materials such as
nanofibers, flexible films, hydrogels, and 3D porous aerogels. Therefore, this study used
silk as a self-supporting electrode.

Here, a NiCo bimetallic catalyst was synthesized using a simple and green solvother-
mal route. This study used waste silk as the self-supporting electrode on which the NiCo
bimetal was loaded. PVDF was used to coat the substrate of the silk electrode, which
increases the mechanical strength and durability for working stability in electrochemistry.
The Ni and Co metals were loaded directly on silk via hydrothermal synthesis twice and
grown uniformly on the silk surface to ensure maximum electrochemically active surface
area. Under the same metal load mass and conditions, metals Ni, Co, and NiCo were
loaded on four different electrodes separately as the control groups. Further, the four
different electrodes were used as four different electrocatalysts for HER in the alkaline
solution (1 M KOH). The crystal structure, physicochemical properties, and electrochemical
performance of the prepared samples were tested using various analytical instruments. The
HER reaction was monitored by cyclic voltammetry, electrochemically active surface area,
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electrochemical impedance spectroscopy, linear sweep voltammetry, long-term stability
and Tafel methods. Their applicability as HER electrocatalysts was studied.

2. Results and Discussion
2.1. Physicochemical Properties of the NixCox/Silk-PVDF Electrodes

The strategy used for the synthesis of NixCox/Silk-PVDF electrodes is illustrated in
Figure 1a. The waste silk was yellowish brown after being wrapped with PVDF. Subse-
quently, the final sample prepared by hydrothermal synthesis appeared brown and had
purple powder on the surface. In Figure 1b,c the SEM images show the overlapping of
the metal elements, where octahedral particles were attached to the surface of the silk. In
Figure 1c–e, the metal Ni was uniformly distributed on the surface of the silk, while the
metal Co was attached to the surface of the silk in an octahedral form (Figure 1d,e show
the distribution of the Ni and Co elements, respectively). The molar mass ratio of Ni and
Co used in the experiment was 50:50. According to Figure 1f, the mass percentage of Ni
and Co was close to 50:50, which conforms to the experimental rule.
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element mappings of the Ni2Co2/Silk-PVDF electrode (d–f), and TEM images of the Ni2Co2/Silk-
PVDF electrode (g).



Catalysts 2023, 13, 987 4 of 12

The morphology and fine structure of Ni2Co2/Silk-PVDF were further observed using
TEM images (Figure 1g). The TEM images show that the lattice fringes of the Co (111) layer
were clear, and the spacing of the lattice fringe was 0.2046 nm [30], which is very close
to the properties of metal Co. The lattice fringes of (111) Ni were also clear [31], and the
spacing of the lattice fringe was about 0.2034 nm, which is close to the value characteristic
of metal Ni.

Figure 2 shows the XRD patterns of the NixCox/Silk-PVDF electrodes synthesized
through the hydrothermal process. All the NixCox/Silk-PVDF sample electrodes showed
a distinct diffraction peak similar to Silk-PVDF between 18◦ and 26◦; the XRD patterns
of silk fibroin were determined in previous studies to have the specific silk II peak at
20.2◦ and silk I peak at 24.5◦ [32–34]. This is due to the fact that the amorphous diffraction
peak of the silk and the four diffraction peaks of α-PVDF are formed by overlapping
each other; due to the minimal amount of PVDF wrapping, the diffraction peaks of α-
PVDF were not obvious [35]. In general, the primary diffraction peaks of Co and Ni
appear at 2θ = 44.4◦, 51.6◦, and 76.1◦ (PDF#00-001-1255 for Co and PDF#00-001-1258 for
Ni) [36–38]. Next, the Co/Silk-PVDF, Ni/Silk-PVDF, Ni1Co1/Silk-PVDF, and Ni2Co2/Silk-
PVDF samples were compared with the Silk-PVDF sample. The difference was that there
were (111), (200), and (220) diffraction peaks corresponding to the two metals. In the four
cases of the NixCox/Silk-PVDF electrodes, the corresponding diffraction peaks of the NiCo
bimetal were almost the same as those of the single Ni or Co metal. Lastly, when the
Co/Silk-PVDF and Co/Silk-PVDF samples were compared with the Ni1Co1/Silk-PVDF
and Ni2Co2/Silk-PVDF samples, the diffraction peak intensity of the bimetal synthesis was
obviously due to that of the single metal synthesis. Furthermore, in the case of the same
quality of loaded metal, the corresponding diffraction peaks of the NixCox/Silk-PVDF
electrocatalysts became sharp and narrow with an increasing number of syntheses.
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Figure 3a presents the XPS survey spectrum for Ni2Co2/Silk-PVDF, also confirming
the presence of the Ni and Co elements. Figure 3b–d show the XPS spectra in the C
1s, Ni 2p, and Co 2p regions. As shown in Figure 3b, the C 1s spectrum presents three
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peaks located at 284.58 eV, 285.88 eV, and 287.78 eV, corresponding to the binding energy
(BE) of C-C, C-O, and O-C=O, respectively [39]. Figure 3c shows that for Ni 2p, the two
peaks of 855.68 eV and 873.18 eV were consistent with the BEs of Ni 2p3/2 and Co 2p1/2,
respectively, confirming the presence of the Ni element in the form of metallic Ni. The
BEs at 861.18 eV and 879.68 eV with two satellites also corresponded to metallic Ni [40,41].
The high-resolution Co 2p spectrum was fitted into four peaks (Figure 3d). The doublet
peaks at 776.28 eV and 789.98 eV were ascribed to the Co0 2p3/2 and Co0 2p1/2, while the
doublet peaks at 781.28 eV and 797.68 eV were attributed to the Co2+ 2p3/2 and Co2+ 2p1/2,
respectively. The BEs at 785.58 eV and 803.78 eV with two satellite peaks indicated the
existence of Co [41–43]. When the peaks of the BEs were combined with EDS (Figure 1d–f),
the ratio of Ni and Co was about 50:50 as a whole, suggesting that the loading of metallic
NiCo was successful.
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2.2. Electrochemical Properties of the NixCox/Silk-PVDF Electrodes

The silk self-supporting electrode was used as the working electrode. The activity
of HER was measured with the traditional three-electrode system structure, and a Pt
electrode was used as the counter electrode. Their catalytic activities in a 1 M KOH
solution were determined by using linear sweep voltammetry (LSV) [44]. Figure 4a shows
the LSV curves of different catalysts in the potential range of −0.4 V–0 V (vs. RHE)
with a scanning rate of 5 mV s−1. The overpotentials of the Ni1Co1/Silk-PVDF and
the Ni2Co2/Silk-PVDF electrodes reached 179.4 mV and 161.7 mV at a current density
of 100 mA cm−2, respectively. Meanwhile, the electrodes loaded with the single metals
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Ni and Co showed insignificant catalytic activity, and the current density did not reach
100 mA cm−2. In summary, the Ni2Co2/Silk-PVDF electrocatalysts showed the best HER
performance among all electrocatalysts synthesized in this study.

Figure 4b shows the Tafel slopes. The Tafel slope is determined according to the η
(overpotential) and j (current density) values in the LSV curve, which reflect the change
in the steady-state current under different overpotentials. The linear portion of the Tafel
plot corresponds to the equation η = a + b × log j, where b is the Tafel slope and a is the
constant of the material [20,45]. Tafel data can be verified by LSV and converted from
LSV’s ordinate to Tafel’s abscissa through log |current density| calculation. The smaller
the Tafel is, the higher the current density that can be achieved with a lower overpotential;
thus, the Tafel slope is related to the mechanism of HER [46]. The Tafel slopes of the
Co/Silk-PVDF, Ni/Silk-PVDF, Ni1Co1/Silk-PVDF, and Ni2Co2/Silk-PVDF electrodes were
219.67 mV dec−1, 121.14 mV dec−1, 93.65 mV dec−1, and 67.46 mV dec−1, respectively,
indicating that the Ni2Co2/Silk-PVDF bimetal exhibited higher catalytic activity than the
other three HER catalysts. Consequently, all the samples loaded with the same quality metal
were tested to confirm that the best catalytic performance was provided by the Ni2Co2/Silk-
PVDF electrode. The Tafel slope of the Ni2Co2/Silk-PVDF electrode (67.46 mV dec−1) was
slightly larger than that of the commercial Pt/C electrode (42.6 mV dec−1) [47]; however, it
had better performance than most NiCo catalysts reported to date (Table 1) [20,48,49].
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Table 1. The comparative set up showing HER activities of the present work with reported data.

Catalysts Electrolyte Overpotential/
(mV)

Tafel Slope
(mV dec−1)

J
(mA cm−2) Ref.

NiFeCo 1.0 M KOH 64 64 10 [50]
Co0.5Zn0.5MoO4 1.0 M KOH 201 162.7 10 [51]
Ti3C2Tx@ZIF-8 1.0 M KOH 107 77 20 [52]

NiSSe 1.0 M KOH 154 125 10 [53]
Fe-NiS2 0.5 M H2SO4 198 42 10 [54]
NiTe2 0.5 M H2SO4 560 44 10 [55]

Ni95Fe5/CP 1.0 M KOH 130 95.4 20 [20]
NiCl2 1.0 M KOH 176 41 10 [56]

10% F/BCN 0.5 M H2SO4 222 87 10 [57]
Ni2Co2/Silk-PVDF 1.0 M KOH 89.4 67.46 20 This work

Furthermore, electrochemical impedance spectroscopy (EIS) was used to explore the
mechanical process kinetics of HER at the electrode interface. The Randles equivalent circuit
is used in EIS analysis and includes Rs (solution resistance), Rct (charge transfer resistance),
and Cdl (electrochemical double-layer capacitance) [58,59]. Usually, the semicircle radius
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of impedance in the low-frequency region of the EIS diagram is directly related to the
charge transfer resistance. Therefore, a smaller semicircle induces better electrode electrical
conductivity. The Rct values of the Co/Silk-PVDF, Ni/Silk-PVDF, Ni1Co1/Silk-PVDF, and
Ni2Co2/Silk-PVDF electrodes were 8.61 Ω, 8.032 Ω, 4.629 Ω, and 3.847 Ω, respectively.
Obviously, the impedance semicircle radius of the Ni2Co2/Silk-PVDF electrode catalyst
was smaller than that of the other three electrodes. The recorded EIS Nyquist plot was
perfectly fitted with the proposed equivalent circuit, as shown in the inset of Figure 5a. In
particular, the Ni2Co2/Silk-PVDF electrode showed the lowest resistance, which meant
that the dynamics of the hydrogen evolution reaction of the Ni2Co2/Silk-PVDF were faster;
thus, it had the best charge transfer efficiency.

The double-layer capacitance (Cdl) is shown in Figure 5b,c. A double-layer capacitor
was used to estimate the electrochemically active surface area (ECSA) [60], as shown in
Figure 5b, at a scan rate of 120 mV s−1 and a voltage window of 0.18 V–0.28 V. The value of
the ECSA directly affects the performance of HER. The width of the electrode CV curve
increased sharply with the addition of the NiCo bimetal. In addition, the Ni2Co2/Silk-
PVDF electrode displayed symmetrical CV curves with no obvious pseudocapacitive
behavior at a voltage window of 0.18 V–0.28 V and scan rates of 20 mV s−1, 40 mV s−1,
60 mV s−1, 80 mV s−1, and 120 mV s−1 (Figure 5c) [61], indicating that this electrode had a
low charge-transfer resistance. The Cdl value trend lines were calculated from the slopes
of the CV curve, and the value of the Ni2Co2/Silk-PVDF electrode was 133.04 mF cm−2

(Figure 5d) [62]. Obviously, the Ni2Co2/Silk-PVDF electrode exhibited the highest Cdl value.
Thus, the Ni2Co2/Silk-PVDF electrode was expected to exhibit excellent electrocatalytic
activity because of its high electrical capacity.

Catalysts 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. EIS (a), ECSA (b), and electrochemical double-layer capacitance (Cdl) (c) of the NixCox/Silk-
PVDF electrodes. (d) Nyquist plots for the NixCox/Silk-PVDF electrodes. 

 
Figure 6. Time-dependent current density changes for various electrodes under a constant potential 
of −0.1 V (vs RHE) (a), the morphology of the Ni2Co2/Silk electrode after testing (b), and the mor-
phology of the Ni2Co2/Silk-PVDF electrode after testing (c). 

3. Experimental Section 
3.1. Reagents and Materials 

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O, GR, 99%, CAS: 13478-00-7) was commer-
cially available from Sinopharm Chemical Regent Co., Ltd. (Shanghai, China). Cobaltous 
nitrate hexahydrate (Co(NO3)2·6H2O, AR, 99%, CAS: 10026-22-9) was purchased from the 
Chengdu Kelong Chemical Reagent Company (Chengdu, China). N,N-dimethylforma-
mide (DMF, GC, 99.9%, CAS: 68-12-2), 2-methylimidazole (HMlm, 98%, CAS: 693-98-1), 
polyvinylidene difluoride (PVDF, average Mw: 2.75 × 105, average Mn: 1.07 × 105, CAS: 
24937-79-9), and polyvinyl pyrrolidone (PVP, average Mw: 5.5 × 104, CAS: 9003-39-8) 
were provided by Shanghai Civi Chemical Technology Co., Ltd. (Shanghai, China). Meth-
anol (AR, 99.5%, CAS: 67-56-1) and potassium hydroxide (KOH, AR, 99%, CAS: 1310-58-

Figure 5. EIS (a), ECSA (b), and electrochemical double-layer capacitance (Cdl) (c) of the NixCox/Silk-
PVDF electrodes. (d) Nyquist plots for the NixCox/Silk-PVDF electrodes.

Long-term stability is a very important indicator for commercial use. As shown in
Figure 6a, we observed the change in current density at a constant potential difference of
−0.1 V. The current density of the Ni2Co2/Silk-PVDF electrode decreased very little within
90,000 s, whereas that of the Ni2Co2/Silk electrode rapidly changed in a relatively short
period of time. Figure 6b, 6c show the morphology of the Ni2Co2/Silk electrode and the
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Ni2Co2/Silk-PVDF electrode during electrochemical stability tests for 7000 s and 90,000 s,
respectively. It was obvious that the PVDF still retained the original electrode shape after
the electrode was tested for 90,000 s, which proves that PVDF can improve the durability
of silk electrodes.
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morphology of the Ni2Co2/Silk-PVDF electrode after testing (c).

3. Experimental Section
3.1. Reagents and Materials

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O, GR, 99%, CAS: 13478-00-7) was commer-
cially available from Sinopharm Chemical Regent Co., Ltd. (Shanghai, China). Cobaltous
nitrate hexahydrate (Co(NO3)2·6H2O, AR, 99%, CAS: 10026-22-9) was purchased from the
Chengdu Kelong Chemical Reagent Company (Chengdu, China). N,N-dimethylformamide
(DMF, GC, 99.9%, CAS: 68-12-2), 2-methylimidazole (HMlm, 98%, CAS: 693-98-1), polyvinyli-
dene difluoride (PVDF, average Mw: 2.75 × 105, average Mn: 1.07 × 105, CAS: 24937-79-9),
and polyvinyl pyrrolidone (PVP, average Mw: 5.5 × 104, CAS: 9003-39-8) were provided
by Shanghai Civi Chemical Technology Co., Ltd. (Shanghai, China). Methanol (AR, 99.5%,
CAS: 67-56-1) and potassium hydroxide (KOH, AR, 99%, CAS: 1310-58-3) were purchased
from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China)

3.2. Preparation of Silk-PVDF

Waste silk was collected from a recycling station. The waste silk was cut into 1 × 2 cm
pieces [63,64]. A total of 5 g of PVDF powder, 0.33 g of PVP, and 5 g of HMlm were added
to 28 mL of DMF solvent and dissolved via magnetic stirring in an oil bath at 60 ◦C for 12 h
to obtain a uniform brown, transparent solution. The obtained solution was then scraped
evenly on the silk surface before being transferred to an air oven at 60 ◦C for 8 h to dry and
obtain the Silk-PVDF sample.

3.3. Electrode Preparation

Briefly, the dried Silk-PVDF was laid at the bottom of a hydrothermal kettle; then,
Ni(NO3)2·6H2O and Co(NO3)2·6H2O were added to a beaker containing DMF and HMlm,
respectively. At this time, the molar mass ratios of Ni:Co were adjusted to 0:100, 100:0, and
50:50, corresponding to samples Co/Silk-PVDF, Ni/Silk-PVDF, and Ni1Co1/Silk-PVDF.
A subsequent separate weighing of Ni and Co with a molar mass ratio of 50:50 was half
that of Ni1Co1/Silk-PVDF as the first hydrothermal condition of Ni2Co2/Silk-PVDF. The
samples were thoroughly stirred and added to the hydrothermal kettle. The hydrothermal
kettle was then transferred to the air oven, where the temperature was raised to 140 ◦C for
2 h, and the reaction was allowed to progress for 48 h. After the reaction, the filter paper at
the bottom of the kettle was removed, cleaned with DMF and methanol, and dried in an
air oven at 60 ◦C for 8 h. Finally, according to the above Ni2Co2/Silk-PVDF experimental
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conditions, the secondary hydrothermal process was carried out. There are two schemes
for the synthesis of bimetallic NiCo, ‘Ni1Co1/Silk-PVDF’ and ‘Ni2Co2/Silk-PVDF’. For
example, the Ni1Co1/Silk-PVDF uses 0.2 g Ni(NO3)2·6H2O and 0.2 g Co(NO3)2·6H2O for
one solvothermal synthesis. The Ni2Co2/Silk-PVDF uses 0.1 g Ni(NO3)2·6H2O and 0.1 g
Co(NO3)2·6H2O for first solvothermal synthesis. After the completion of first solvothermal
synthesis, 0.1 g Ni(NO3)2·6H2O and 0.1 g Co(NO3)2·6H2O were used for second solvother-
mal synthesis. It means that the total quality of Ni(NO3)2·6H2O and Co(NO3)2·6H2O was
0.4 g for Ni1Co1/Silk-PVDF and Ni2Co2/Silk-PVDF. The Ni2Co2/Silk-PVDF electrode was
obtained after rinsing and drying for further analysis (Figure 1).

3.4. Physicochemical Characterization of Electrocatalysts

The NixCox/Silk-PVDF electrodes were analyzed via X-ray diffraction (XRD, PW3040/60,
Philips, Tokyo, Japan). The XRD patterns of a catalyst were recorded over the scanning
range of 2θ (5◦ to 90◦) with Cu Ka radiation, the target voltage was 40 kV and the current
was 30 mA. By comparing the diffraction peaks of the measured XRD spectrum with a
standard, the composition and crystal structure of the sample can be determined. The
morphology, size, and distribution of the Ni2Co2/Silk-PVDF electrodes was observed
through the use of scanning electron microscopy (SEM, Sigma 300, Zeiss, Oberkochen,
Germany) and energy-dispersive X-ray spectroscopy (EDS). The SEM tests were performed
with a 10 kV electron beam. The SEM images was taken with an InLens at magnifications
ranging from 20,000× to 50,000×. X-ray photoelectron spectroscopy (XPS, Thermo Fisher
Nexsa, Waltham, MA, USA) was used to determine the chemical composition and valence
of the elements in the samples. All XPS spectra were corrected to the binding energy (BE)
of C 1 s = 284.58 eV. The ultrastructure of the samples was observed using an ultra-high-
resolution transmission electron microscope (TEM, JEM 2100, JEOL, Tokyo, Japan).

3.5. Evaluation of Electrochemical Properties

All electrochemical tests were conducted at an electrochemical workstation (CHI760E,
Shanghai, China). The cyclic voltammetry (CV), electrochemical impedance spectrum (EIS),
linear sweep voltammetry (LSV), and long-term stability were tested using a standard
three-electrode system (NixCox/Silk-PVDF (working electrode area: 1 × 1 cm2), a Pt sheet,
and a saturated calomel electrode (RHE, ERHE = EHg/Hg2Cl2 + 0.0592× pH + 0.24 V)) reacted
in 1 M KOH electrolyte [65]. The electrochemical double-layer capacitance (Cdl) of the
NixCox/Silk-PVDF electrodes was obtained via CV measurements at scan rates of 20, 40,
60, 80, 100, and 120 mV s−1 over the non-Faradaic region. The electrode polarization curves
were recorded by performing LSV measurements. The Tafel slopes of electrodes were
calculated from the LSV curves. A frequency ranging from 0.1 Hz to 100 kHz with a scan
rate of 5 mV s−1 at open circuit potential was used to test EIS. Long-term stability under
the same conditions was set at 90,000 s (over 24 h). This was used to assess the durability
and stability of the electrode.

4. Conclusions

In this study, NixCox/Silk-PVDF bimetal catalysts were designed via PVDF wrapping
and hydrothermal synthesis. Silk, as a self-supporting electrode, was used as the working
electrode. By varying the Ni and Co ratio, four different samples were prepared: Co/Silk-
PVDF, Ni/Silk-PVDF, Ni1Co1/Silk-PVDF, and Ni2Co2/Silk-PVDF. The results of XRD, XPS,
and TEM revealed the existence of the Ni and Co elements. The XRD diffraction peaks
of bimetallic electrodes were significantly stronger than those of monometallic electrodes.
In particular, Ni2Co2/Silk-PVDF had the highest intensity of diffraction peaks. The XPS
revealed the presence of elements and the intensity of their binding energy. The TEM
images showed that the lattice fringes of the metal Co and Ni. The EDS images showed
that the Ni and Co elements were evenly distributed. The ratio of Ni and Co was in
line with our expectations. As shown by electrochemistry, when the current density was
10 mA cm−2, the overpotential of the Ni2Co2/Silk-PVDF was 89.4 mV. Furthermore, the
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Tafel slope of the Ni2Co2/Silk-PVDF was just 67.46 mV dec−1. The Nyquist plots showed
its Rct value was 3.847 Ω. At a scan rate of 120 mV s−1, the electrode showed the widest
CV curves, indicating that its ECSA was the largest. Meanwhile, the electrode’s Cdl value
was 133.04 mF cm2. After stability and long-term testing, there was a significant difference
in the morphology of silk before and after wrapping with PVDF. Therefore, the proposed
route can provide a reference for the preparation of electrochemical catalysts in the field of
green, renewable biomass.
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