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Abstract: The problem of phosphorus pollution and its resource utilization has been a source of
general concern. The preparation of green, renewable, and non-secondary pollution adsorbents
has become a research direction. In this paper, a one-step hydrothermal preparation method of
Ca-modified magnetic sludge biochar (Ca-MSBC) is used for enhancing phosphate removal. The
results show that the adsorption rate of phosphate by Ca-MSBC is mainly controlled by chemisorption
but is also related to physical adsorption and an internal diffusion mechanism. The maximum phos-
phorus adsorption capacity of Ca-MSBC was 89.25 mg g−1 at 343 K (initial phosphate concentration
500 mg L−1). After nine cycles of adsorption experiments, the adsorption capacity of 70.16 mg g−1

was still high. In addition, coexisting ions Cl−, NO3
−, SO4

2−, and CO3
2− have no significant effect

on the adsorption properties of phosphate. XRD, FT-IR, VSM, XPS, and N2 adsorption/desorption
isotherms showed that the mechanism of phosphate removal from water by Ca-MSBC was mainly
the chemical precipitation reaction of phosphate and calcium. The results of this study indicate that
Ca-MSBC has potential application and environmental value as a solid waste recycling material for
environmental remediation.

Keywords: calcium; magnetic biochar; phosphate; resource reuse; sewage sludge

1. Introduction

With the continuous improvement of the economic level, the population has been
rapidly increasing. The world’s population is expected to reach 10.1 billion in 2050 [1].
Population growth is associated with increases in wastewater discharge, and phosphate is
one of the main pollutants in the wastewater treatment process. With the increasing use of
household washing products and agricultural fertilizers, more and more P is discharged
into environmental water. The increase in phosphate concentration in water will cause
eutrophication, leading to water pollution. In addition, phosphate resources are decreasing
worldwide, and the demand for phosphate in agriculture and forestry is increasing year
by year [2–8], resulting in a prominent contradiction between phosphate emissions and
phosphate demand. With the increase in wastewater production, the sewage sludge (SS)
produced by wastewater treatment plants is also increasing year by year. According to
statistics, the SS produced in the sewage treatment process in China is about 20 million
tons (dry base) every year, and if a large amount of SS is not properly disposed of, it will
cause serious harm to the environment [9]. In addition, SS contains about 10–20 g kg−1 of
phosphorus resources, and the conventional landfill disposal of SS occupies land while
preventing the phosphorus resources from being recycled. Therefore, how to safely treat
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SS and recover P from wastewater and sludge to achieve the recycling of SS resources has
become a hot research topic in recent years.

At present, the removal methods of phosphate pollutants in the process of sewage
treatment mainly include chemical precipitation and biochemical and adsorption methods.
The chemical and biochemical methods have the problems of multi-factor constraints, large
sludge production, high operating cost, and difficult process control. By contrast, the
adsorption method is considered a promising phosphorus removal technology due to its
advantages of low cost, high selectivity, and simple operation [10]. Adsorption materials
are generally divided into natural materials, waste materials, and synthetic materials. For
example, natural materials such as walnut shell [11,12], struvite [13,14], agricultural waste
straw [15,16], and synthetic materials such as (Fe-Al-MOF) [17,18] have been reported con-
tinuously in recent years. However, most of the adsorption materials have disadvantages
such as high raw material cost, low adsorption efficiency and capacity, poor regeneration ca-
pacity, and poor performance stability [19,20]. Compared with other adsorption materials,
SS has the advantages of wide source, high carbon content (17–23%), and rich functional
groups (C-O-C, C=O-, -CH3, -CH2-) [21,22]. At the same time, SS has attracted wide interest
because of its low cost and environmentally friendly characteristics [23,24].

In recent years, the research on sludge source adsorption materials has focused on
the removal of organic pollutants and heavy metals [25–28]. Scholars in the field have also
carried out a series of studies on the removal of phosphate from sewage by SS biochar.
Peng et al. [29] prepared Mn/Al modified sludge biochar by a one-step hydrothermal
method, and the maximum phosphate adsorption capacity of phosphate at 298 K was
28.20 mg g−1. Zhang et al. [30] prepared SS biochar by pyrolysis and found that mineral
particles containing Si, Ca, Al, and Fe formed the active site of phosphate binding on
the surface of sludge biochar, among which minerals containing calcium played a major
role in removing phosphate. As a strong magnetic material, Fe3O4 is conducive to the
recycling of biochar. Additionally, the incorporation of the Fe element will further increase
the adsorption sites of biochar and enhance its adsorption capacity for phosphate. At
present, there is a lack of research on the regulation effects of Fe and Ca bimetals on the
pore size of SS biochar adsorption materials and the mechanism and process parameters of
phosphate adsorption.

In this paper, Ca-modified sludge-sourced magnetic carbon (Ca-MSBC) with a meso-
porous structure was synthesized by a simple and green one-step hydrothermal method
for the removal of phosphate pollutants from wastewater. The five components of this
study were as follows: (1) the structure and composition of the prepared Ca-MSBC were
characterized using scanning electron microscopy (SEM), X-ray diffraction(XRD), Fourier
transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and N2 ad-
sorption/desorption isotherms; (2) magnetic material (Fe3O4) was introduced to realize the
rapid separation and recycling of the adsorbent; (3) the adsorption efficiency of Ca-MSBC
to phosphate in wastewater was investigated under different operating environments (pH,
temperature, time, and coexisting ions); (4) through the analysis of adsorption kinetics,
the adsorption mechanism of phosphate by Ca-MSBC was elaborated; (5) The application
potential of Ca-MSBC in real wastewater was evaluated. Our ultimate goal is to use sewage
sludge to develop a new material that is easy to recycle, can efficiently adsorb phosphate
from wastewater, and has a wide range of applications.

2. Results and Discussion
2.1. Characterization of Ca-MSBC

Ca-MSBC adsorbents prepared with different molar concentrations of Ca were ex-
pressed as Ca-MSBC-Cax (x = 0.02, 0.04, 0.06, 0.08, and 0.10 mol). Figure 1A XRD shows
that the characteristic peaks of Fe3O4 appear around 30.31◦, 35.45◦, 43.23◦, 57.25◦, 62.98◦,
and 74.53◦ (PDF#01-1111) [31] of Ca-MSBC-Cax. This indicates that Fe3O4 was successfully
loaded onto the surface of the carbon matrix. In addition, Ca-MSBC-Cax showed charac-
teristic peaks of CaO at 31.77◦, 37.41◦, and 68.45◦ (PDF#99-0070) [32]. This indicates that
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calcium was successfully loaded onto the surface of Ca-MSBC and mainly exists in the
form of CaO.
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Figure 1. XRD (A) and FT-IR (B) patterns of Ca-MSBC.

As shown in Figure 1B, the characteristic peak of the Fe–O bond appeared at 575 cm−1,
indicating that Fe3O4 was successfully magnetized on Ca-MSBC [33]. Meanwhile, 1032 cm−1

is the C-O-C characteristic peak, 1432 cm−1 is the C=C characteristic peak, and 3604 cm−1

is the -O-H characteristic peak. In addition, the C-O-C characteristic peak at 1032 cm−1

was significantly enhanced compared with SS, which indicated that the magnetization and
calcium modification of Ca-MSBC could form the active site.

SS and Ca-MSBC were characterized by EDX. Compared with SS, the atomic percent-
age of Fe and Ca increased by 3.68% and 0.36% in Ca-MSBC, which further proved the
successful loading of iron and calcium ions in Ca-MSBC.

As shown in Figure 2A, the structure of activated sludge is dispersed, and the surface
is relatively smooth. Figure 2B shows that the channels and holes of Ca-MSBC provide a
large specific surface area. Combined with the analysis results in Table S1 and Figure 1, it is
proved that Fe3O4 and CaO are successfully loaded on the surface of carbon-based carriers.
The large specific surface area and large number of active sites of Ca-MSBC are helpful for
improving the adsorption performance of Ca-MSBC for phosphate [34].
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Figure 2. SEM and EDX (A,C) of SS; SEM and EDX (B,D) of Ca-MSBC. The Chinese term showed
in (C,D) means region.

The possible adsorption mechanism was explored by characterizing the Ca-MSBC
before and after phosphate adsorption by XPS spectroscopy. As seen in Figure 3A, the
Ca-MSBC adsorbent is mainly composed of C, O, Fe, Ca, and P elements. In Figure 3D
phosphate produces a P 2p peak at ~133.4 eV, demonstrating that phosphate is successfully
adsorbed, moving toward the lower energy side compared to the pure KH2PO4 adsorbent
(133.7 eV); the P 2p peak shifted to a lower energy, indicating that phosphate and Ca-MSBC
were tightly bound by chemical bonds [35]. Figure 3A,B,D show that the O 1s binding
energy of 531.4 eV, Ca 2p2/3 347.3 eV, and P 2p 133.4 eV indicate that phosphate could
be adsorbed on the surface of Ca-MSBC in the form of CaHPO4, while Ca-MSBC has a
good adsorption effect on phosphate under alkaline conditions. It has been reported that
phosphate at effluent 7.0 < pH < 10.0 is mainly in the form of HPO4

2−, which further
supports the above conclusion.

VSM can verify the magnetization intensity of Ca-MSBC, which is an important
performance index of magnetic materials. As can be seen in Figure 4, the SS hysteresis line
is almost straight, and in comparison, Ca-MSBC shows an S-shaped hysteresis loop, which
indicates that the material shows ferrimagnetic behavior [36]. The Ca-MSBC saturation
magnetization was 0.18 emu g−1, the value of coercivity was 55.46 Oe, and remanence
was 0.02 emu g−1 [37,38]. In addition, Ca-MSBC is easily adsorbed by magnets, which is
conducive to the magnetic separation of Ca-MSBC for recovery and reuse [39].
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The pore structure of Ca-MSBC was characterized by N2 adsorption/desorption
isotherms, and the effect of phosphate adsorption on pore structure was analyzed. As
shown in Figure 5A, N2 adsorption and desorption isotherms of magnetic carbon samples
before and after Ca-MSBC adsorption belong to typical type IV isotherms, which shows
that Ca-MSBC adsorbent has a typical mesoporous structure [40]. At p/p0 = 0.6~1.0, the
adsorption isotherms and desorption isotherms gradually separate with the increase of
p/p0, and the H4-type hysteresis loop is generated, further proving the existence of the
mesoporous structure of Ca-MSBC.
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As shown in Figure 5B, the pore size of Ca-MSBC before and after adsorption is
mainly distributed between 20 and 40 nm, and Table S2 shows that the average pore size is
18–19 nm, which proves again that Ca-MSBC is dominated by a mesoporous structure. At
the same time, it was found that the total surface area, total pore volume, and average pore
size of Ca-MSBC decreased to different degrees after adsorbing phosphate, which may be
related to phosphate occupying the adsorption site of Ca-MSBC.

2.2. Effect of Adsorption Conditions on the Phosphorus Removal Performance of Ca-MSBC

Research shows that the main form of phosphate under different pH values is as
follows: H3PO4 (pH < 2.16), H2PO4

− (pH = 2.16–7.21), HPO4
2− (pH = 7.21–12.31), and

PO4
3− (pH > 12.32) [41]. Figure 6A showed that the adsorption capacity of Ca-MSBC

for phosphate changed significantly with the increase in pH value. Under acidic con-
ditions, phosphate substances mainly exist in water in the form of HPO4

2− and cannot
react with Ca2+ to form precipitation, so the removal efficiency is low. At the same time,
Table S1 shows that Ca-MSBC contains a certain amount of phosphorus element, and
under acidic conditions, phosphate on the surface of Ca-MSBC is dissolved and released
into the water. As a result, the phosphate adsorption capacity is negative. Similar exper-
imental results and inferences have also been mentioned in the relevant literature [42].
Phosphate with 7.0 < pH < 10.0 exists in the form of HPO4

2−. CaHPO4 (2.57 × 10−7) [43]
and Ca5(PO4)3(OH) (3.7 × 10−58) have low ksp values [44]. Therefore, HPO4

2− tends to
react with Ca2+ and precipitate on the surface of the prepared adsorbent. At the same
time, the surface of Ca-MSBC is positively charged due to the proton-carrying positive
charge of the Me-OH group, which promotes the electrostatic attraction between phosphate
anions [45,46]. These two points are conducive to the adsorption of phosphate by Ca-MSBC.
Therefore, when the pH value is 9.0, the phosphate adsorption capacity reaches 43.2 mg
g−1. When the pH value was further increased to 10.0, the phosphate adsorption capacity
decreased by 0.4 mg g−1 to a certain extent. The reason is that the negative charge gener-
ated on the surface due to the deprotonation of Ca-MSBC in the strong alkali medium and
the electrostatic repulsion between the phosphate anions resulted in a small decrease in the
phosphate adsorption capacity [47]. Comparing the results of the S3 study, the adsorbent
showed superior phosphate adsorption capacity under alkaline conditions compared to
other similar biomass-derived biochar [48–51].
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As shown in Figure 6B, when the adsorption time is 0–10 min, the adsorption rate
is fast, and when the adsorption time is 10–60 min, the effect on Ca-MSBC’s adsorption
of phosphate is not obvious. The reason is that in the early stage of adsorption, the
concentration difference between Ca-MSBC and phosphate in the solution is the largest, and
the adsorption rate of phosphate by Ca-MSBC is positively correlated with the concentration
difference. The larger the concentration difference, the easier it is for phosphate to overcome
the mass transfer resistance and occupy the adsorption site, which is consistent with the
research conclusion of Dong et al. [52]. The Ca-MSBC prepared in this experiment has a
fast adsorption rate of phosphate at 0–10 min. Thus, the Ca-MSBC reached equilibrium
very quickly after the onset of the reaction.

It is generally believed that in the process of phosphate adsorption, the amount of
phosphate adsorption will increase with the increase in the solution temperature, which is
related to the finding that an increase in temperature will increase the initial adsorption rate
of phosphate adsorption and shorten the time needed for phosphate adsorption to reach
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equilibrium [53]. At the same time, it was also reported that the increase in temperature
increased the thermal energy of the system, increased the fluidity of phosphate ions, and
promoted the occurrence of the adsorption process [54]. As shown in Figure 6C, the
adsorption capacity gradually increases with the increase in temperature, because the
adsorption process is an exothermic reaction process, and the increase in temperature is
conducive to the improvement in adsorption efficiency. When the temperature exceeds
70 ◦C, phosphate adsorption capacity reaches adsorption equilibrium, and the tendency of
phosphate molecules to increase their activity on the adsorbent surface leads to a decrease
in adsorption efficiency.

2.3. Kinetics of Adsorption

As shown in Figure 7A, adsorption kinetics fitting of Ca-MSBC was carried out.
According to the fitting results of the three kinetic models, the correlation coefficient of the
pseudo-second-order kinetic model (R2 = 0.9899) was higher than that of the pseudo-first-
order kinetic model (R2 = 0.9742). Moreover, this study found that if intraparticle diffusion
is the only limiting step, the curve between qe and t0.5 must pass through the origin [55].
Figure 7B shows that although intraparticle diffusion is involved in the adsorption process,
it is not the only control step, which further indicated that the mechanism of phosphate
adsorption onto Ca-MSBC was not unique, but rather a reaction with several mechanisms.
In the first stage of the adsorption reaction (k1 = 39.94), the active center of Ca-MSBC
enhanced the adsorption of phosphorus, and the main factor limiting the adsorption rate
was membrane diffusion. In the second stage, the adsorption sites on the surface of Ca-
MSBC were gradually saturated, resulting in the boundary layer. Therefore, the adsorption
rate was decreased (k2 = 13.52), and the adsorption process may be controlled by both
in-particle diffusion and surface adsorption. In the third stage, the adsorption equilibrium
stage was reached, and the adsorption rate of Ca-MSBC decreased significantly.
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2.4. Thermodynamics of Adsorption

The positive value of ∆H (S4) indicates that the adsorption of phosphate on Ca-MSBC
is heat-absorbing, which is consistent with the previous results of increased adsorption
efficiency at increasing temperatures. The positive value of ∆ S indicates that the increase
in disorder at the solid–liquid interface favors adsorption. In general, the adsorption
process of P on Ca-MSBC is spontaneous and does not require additional external energy
input, since ∆G < 0 regardless of temperature. In addition, the magnitude of ∆G increases
(becomes more negative) with increasing temperature, indicating that adsorption increases
with temperature [56].
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2.5. Effect of Coexisting Ions and the Reusability of Ca-MSBC

In order to analyze the effect of coexisting ions in wastewater on phosphate adsorption,
the influence of anions such as Cl−, NO3-, SO4

2−, and CO3
2− on phosphate adsorption

was investigated under different conditions, as shown in Figure 8A. It can be observed
that Cl− has almost no effect on phosphate removal, and it is worth noting that NO3

− can
slightly increase phosphate removal, as shown by [57], a result that we confirmed was
not due to measurement errors. Further studies will be conducted in future work. SO4

2−

has a slight effect on the adsorption performance, which may be related to the Helfferich
anion exchange selectivity sequence. Compared with low-valence anions, high-valence
anions are more likely to combine with Ca-MSBC adsorbents [58,59]. SO4

2− reduces the
adsorption capacity of the adsorbent for phosphates by competing for adsorption sites.
Compared with other anions, CO3

2− has a relatively large impact on phosphate adsorption,
which may be due to the alkaline environment of the CO3

2− solution, which reduces the
adsorption capacity of the adsorbent [60].
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In view of the great significance of adsorbent recovery for industrial applications,
this experiment used a 0.1 M NaOH solution for the desorption of phosphate. The des-
orption process resulted in the desorption of phosphate from the adsorbent due to the
formation of soluble Na3PO4 for the purpose of desorption. The results are shown in
Figure 8B. Ca-MSBC still had a high adsorption capacity (70.16 mg P g−1) for phosphate
after 9 consecutive adsorption–desorption cycles. There are two possible reasons for this.
First, the decrease in adsorption capacity was related to the low desorption efficiency, which
was caused by the low concentration of NaOH used for desorption, resulting in some phos-
phate not being completely desorbed from the adsorbent and occupying some of the active
sites, and accumulating several times. Secondly, the CaO on the adsorbent surface may
have been partially eluted during the elution process, resulting in fewer adsorption sites
and reduced adsorption capacity. These results indicate that Ca-MSBC has good reusability.

It is worth mentioning that based on the above study results, we used the actual
wastewater of a municipal sewage treatment plant to carry out the experiment on the
adsorption effect of Ca-MSBC phosphorus. The phosphorus content at the inlet of the
wastewater was 4.0 mg P L−1, and adding 0.1 g of adsorbent, the phosphorus content in
the effluent after adsorption was <0.5 mg P L−1, as required by the national discharge
standard, proving that Ca-MSBC has a good adsorption effect on phosphorus in the actual
wastewater treatment process, and has good prospects for industrial application.
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3. Materials and Methods
3.1. Materials

All chemicals used in this study were analytical grade and used without further pu-
rification. FeCl3, FeSO4·7H2O, CaCl2, and KH2PO4 were obtained from Shanghai Macklin
Biochemical Co., Ltd., Shanghai, China. SS (dried sample) was produced from wet sludge
released from the dewatering process at the Panjin wastewater treatment plant (Panjin,
China) by drying at 105 ◦C for 6 h, and the actual sewage comes from the inlet of the
equalization tank at the same plant.

3.2. Preparation Method of Ca-MSBC

First, 50 mL of deionized water was added to a 100 mL glass bottle with a lid
and stirred on a magnetic stirrer. FeCl3 and FeSO4·7H2O were weighed according to
nFe3+:nFe

2+ = 1.5:1.0. After being completely dissolved, 10 g SS was added, and the lid was
tightened and stirred for 1 h. The pH was adjusted to 11.0 using a configured 10 mol L−1

NaOH solution, after which nCa = 0.1 mol was added, and the mixture was stirred to
fully dissolve and mix evenly with the sludge. The mixed solution was transferred to
the hydrothermal reactor and reacted for 24 h at 180 ◦C. After the hydrothermal reaction,
magnetic biochar was separated with magnets and washed repeatedly with deionized
water until the cleaning solution appeared clear, and then the magnetic biochar was placed
in a drying oven at 100 ◦C to prepare Ca-MSBC.

The water content of sewage sludge is about 80%, and water has a large heat capacity,
so the hydrothermal method can reduce the heat loss, and make the pore size structure
of the prepared material more uniform, which has a positive effect on improving the
adsorption efficiency of Ca-MSBC. Hydrothermal carbonization temperature is usually
between 150–280 ◦C. Relevant studies have shown that the carbon conversion rate is highest
at the hydrothermal reaction temperature of 180 ◦C when the pH of the hydrothermal
reaction is adjusted by NaOH, and the increase in hydrothermal time is beneficial to the
homogeneous loading of metal oxides. Therefore, the above parameters were chosen as the
hydrothermal synthesis conditions [61].

3.3. Method of the Static Adsorption Experiment
3.3.1. Static Adsorption Experiment

The initial pH of the solution was adjusted to 10.0 utilizing 1 M NaOH. Amounts of
0.1 g Ca-MSBC and 25 mL of KH2PO4 simulated water containing 500 mg L−1 were added,
and stirred in a constant temperature oscillator at 30 r min−1 for 10 min. Considering the
economics of the filtration process in industrial applications, this study used quantitative
filter paper to simulate the filtration process for solid–liquid separation after adsorption
and to determine the P content of the filtrate.

The wastewater used in the static adsorption test was obtained from the influent of
the anaerobic–anoxic–oxic (AAO) process of the Panjin wastewater plant, with a phosphate
content of 4.0 mg L−1. An amount of 0.1 g Ca-MSBC was weighed and added to 100 mL
of actual wastewater, stirred in a constant temperature shaker at 30 r min−1 for 10 min,
and the content of phosphate in the filtrate was measured after filtration using quantitative
filter paper.

3.3.2. Adsorption Performance Index

The phosphate content in the liquid phase was determined according to the national
standard (GB 11893-1989) ammonium molybdate spectrophotometric method. The phos-
phate adsorption capacity was used as an indicator of Ca-MSBC adsorption performance,
The equilibrium adsorption capacity (q, mg g−1) of the adsorbent was calculated according
to the following Equation (1):

q =
(c0 − c)× V

m
(1)
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where c0 and c (mg L−1) are the initial and final concentrations of phosphate, V is the
volume of solution (L), and m (g) is the mass of Ca-MSBC.

3.3.3. Adsorption Kinetic Model

To further understand the kinetic mechanism of phosphorus adsorption, three com-
monly used models were used to evaluate the data:

Pseudo-first-order : ln (qe − qt) = lnqe − k1t (2)

Pseudo-second-order :
t
qt

=
1

k2q2
e
+

t
qe

(3)

Intra-particle diffusion : qt = kpt0.5 + Ci (4)

where qe (mg g−1) and qt (mg g−1) are the phosphate adsorption capacity of the adsor-
bent at equilibrium and time t, respectively, and k1 (min−1), k2 (g mg−1 min−1), and
kp [g (mg−1min0.5)−1] are the adsorption kinetic constants.

3.3.4. Adsorption Thermodynamics

Ca-MSBC was synthesized for phosphate removal from wastewater, where one of the
most significant factors affecting phosphate adsorption is temperature. Equations (5)–(7)
were used to calculate the relevant thermodynamic parameters, the Gibbs free energy
change (∆Gθ, KJ mol−1), average standard enthalpy (∆Hθ, KJ mol−1), and standard entropy
change (∆Sθ, KJ mol−1 K−1) to verify the effect of temperature on the adsorption process.

Kd=
qe

ce
(5)

∆G= −RTlnKd (6)

lnKd = −∆H
RT

+
∆S
R

(7)

where R (8.314 J mol−1·K−1) is the universal gas constant, T is the adsorption tempera-
ture (K), Kd is the equilibrium constant, which is calculated by plotting lnKd versus T−1

(Figure S1), qe is the equilibrium adsorption capacity (mg g−1), and ce is the equilibrium
concentration (mg L−1).

3.4. Analytical Methods

An X-ray diffractometer (XRD) was used to determine the fabricated materials struc-
ture and crystalline form (D8 Advance, Bruker, Karlsruhe, Germany), with Cu target as
the radiation source with a radiation wavelength of 1.5418 Å, scanning range of 5–90◦,
an operating voltage of 40 kV, and an operating current of 40 mA. A scanning electron
microscope (SEM) (Jsm7610f, JEOL’s, Tokyo, Japan) was used to observe the materials’
microscopic morphology and surface structure, operating at a voltage of 20 kV.e. A Fourier
transform infrared spectrometer (FT-IR) was used to analyze the surface functional groups
(WQF-520, Bei Fen Rui Li, Beijing, China) in the range of 4400–400 cm. A vibrating sample
magnetometer (VSM) was used to measure the magnetization curve that characterizes
the material (7407, Lakeshore, Westerviller, OH, USA) under an applied magnetic field
of ±2000 Oe. N2 adsorption/desorption isotherms (ASAP2460, Micromeritics, America)
specific surface area, average porosity, and total pore volume of Ca-MSBC were measured
using the Quantachrome Instruments N2 adsorption–desorption method. Elements in
Ca-MSBC samples were quantitatively determined by inductively coupled plasma mass
spectrometry (ICP-MS) (ICAP7400, ThermoFisher, Waltham, MA, USA). The chemical
composition and surface functional groups of the prepared materials were analyzed using
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X-ray photoelectron spectroscopy (XPS) (ESCALAB 250Xi, ThermoFisher, Waltham, MA,
USA) with Al Kα radiation at a voltage of 12 kV and a current of 6 mA. The content of
C and O elements in the material was determined by an element analyzer (FlashSmart,
ThermoFisher, Waltham, MA, USA).

4. Conclusions

Herein, a sludge-sourced mesoporous Ca-MSBC adsorbent was prepared by a simple
and green one-step hydrothermal method for the effective removal of phosphate from real
wastewater. Interestingly, Ca-modified Ca-MSBC adsorbent exhibits excellent adsorption
performance towards phosphates in alkaline conditions in wastewater, with the main ad-
sorption mechanism being physisorption according to the ∆Hθ value and thermodynamics
of adsorption. The maximum adsorption capacity of Ca-MSBC for phosphates is 89.25 mg
g−1, and after nine consecutive adsorption–desorption cycles, Ca-MSBC still retained a high
adsorption capacity for phosphates. Additionally, the coexistence of anions such as Cl−,
NO3

−, SO4
2−, and CO3

2− has little effect on the adsorption of phosphates by Ca-MSBC.
Moreover, Ca-MSBC still has a good adsorption effect on phosphorus in actual wastewater,
and the phosphorus content of the adsorbed wastewater meets the national wastewater
discharge standard of <0.5 mg L−1. To the best of our knowledge, this is the first report
on a Ca-modified magnetic sludge biochar adsorbent acting as an excellent phosphate
adsorbent. Taking into account its ease of preparation, cost-effectiveness, environmental
friendliness, stable performance, and high efficiency, Ca-MSBC has great potential for the
high-value utilization of SS.
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www.mdpi.com/article/10.3390/catal13060927/s1, Figure S1: Linear plot of lnKd vs. 1/T;
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pore volume pore size table; Table S3: Comparison of similar feedstock adsorption capacities;
Table S4: Thermodynamic parameters of phosphate adsorption on Ca-MSBC.
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