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Abstract: Degradation of pharmaceuticals in water by TiO2 photocatalysis often suffers from low
efficiency due to low activity and mass transfer limitation. In this work, diclofenac removal in tap
water was performed by photocatalysis on TiO2 nanotube growth on Ti mesh substrate assisted by
ozone (O3), which was generated from a hole-arrayed boron-doped diamond (HABDD) film electrode.
The vertically oriented TiO2 nanotubes were used as the heterogeneous photocatalyst. The HABDD,
as a self-standing diamond electrode, was designed and custom-made by MWCVD technology. The
microstructures and crystalline of the TiO2 nanotubes and HABDD were characterized by a scanning
electronic micrograph (SEM) and X-ray diffraction (XRD). Unlike other ozone generation methods,
direct generation of ozone in the flowing water was applied in the photocatalysis process, and its effect
was discussed. The diclofenac removal performance of the electrochemical-photocatalytic system was
studied depending on O3 generation efficiency, flowing rate, and the initial diclofenac concentration.
The enhanced degradation effect from O3 molecules on TiO2 photocatalysis was attributed to the
larger active surface area, the increased photo-generated charge separation rate, and the contact area of
O3. The degradation efficiency in the combined electrochemical-photocatalytic TiO2/O3/UV system
was higher than that of the O3/UV and TiO2/UV routes individually. Furthermore, a theoretical
calculation was used to analyze the TiO2/O3 interface in aqueous media in terms of the final energy.
This system created an almost in situ feeding channel of oxidants in the TiO2 photocatalysis process,
thus increasing photocatalytic efficiency. This synergetic system is promising in the treatment of
pharmaceuticals in water.

Keywords: TiO2 nanotubes; ozone; photocatalysis; diclofenac degradation; boron-doped diamond

1. Introduction

The development of powerful and cost-effectively photocatalytic systems for the
degradation of organics in water has attracted attention since it is of great importance
for the protection of public health and the environment. TiO2 photocatalyst, owing to
its chemically inert, environmentally friendly, and low cost, has been extensively studied
for the decomposition of varieties of pharmaceuticals in water [1,2]. In recent years,
the degradation of diclofenac in municipal drinking water has been investigated by TiO2
photocatalysis [3,4]. Diclofenac is a popular anti-inflammatory pharmaceutical drug, and its
trace has been widely used around the world. The presence of diclofenac in environmental
water has been found, and its degradation is a complicated problem [5]. Diclofenac is
susceptible to photocatalysis degradation with complex mechanisms, depending on the
method. Many by-products will be generated in the treatment processes, and drinking
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water should be free from these compounds to minimize the unpredictable risk even with
low concentrations. Therefore, developing new powerful treatment methods are required
not only for diclofenac removal but also for the by-product’s mineralization.

Currently, TiO2 materials used for organic waste degradation in water are usually
TiO2 powders, films, or doped composites. Alternatively, TiO2 nanotubes are ideal candi-
dates in future environmental technologies due to their high areas and high adsorption
ability. However, the relatively low utility efficiency of photo energy on TiO2 is the main
drawback when used in the photocatalytic oxidation of pollutants in water. Under this
circumstance, combining TiO2 nanotubes and Ozone (O3) is an effective process for phar-
maceutical mineralization in drinking and municipal water [6,7]. Ozone itself can quickly
remove many organic compounds in water to some extent [8]. The use of O3 in TiO2
photocatalysis is helpful for the oxidation of organics with the advantage of boosting the
reactions at room temperature since O3 can capture the photo-generated electrons on the
TiO2 surface to form active radicals, thus achieving a cost-effective advanced oxidation
process (AOP) effect [9,10]. In general, O3 is produced from pure oxygen Sanders genera-
tors [5], which require special instruments or a pure oxygen supply to ensure continuous
generation. However, ozone generated directly in the aqueous solution following TiO2
photocatalysis has not been systematically investigated, which may demonstrate special
properties in the synergetic TiO2/O3/UV system from the larger reaction cross-section in
homogeneous reactions.

In this work, we proposed an electrochemical system based on a hole-arrayed boron-
doped diamond (HABDD) free-standing electrode as the ozone generator to feed the
TiO2 nanotubes photocatalysis process, which was used for the purification of diclofenac-
containing tap water (Figure 1). Boron-doped diamond (BDD) film electrodes are promising
for the electrochemical generation of ozone from tap water electrolysis at room temper-
ature [11]. BDD materials have attracted attention since they are promising anodes in
wastewater treatment due to their lower adsorption surface, highly anti-corrosion per-
formance, low background current, and wide potential window. Direct generation of O3
from BDD in tap water plays an important role in affecting the diclofenac degradation effi-
ciency in liquid fluent reactors. Combining BDD electrochemistry and TiO2 photocatalysis
has been proven as an effective strategy for organics degradation in water [12,13]. The
O3 molecule, as a powerful oxidant, can capture the photo-generated electrons on TiO2,
producing highly active species to attack organics in water. In this system, an almost in situ
feeding path was provided to further improve the photocatalytic efficiency.
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2. Results and Discussion
2.1. HABDD Characterization

The SEM images of the HABDD surface and its inner structure are shown in Figure 2.
The arrayed holes are equally distributed in the HABDD structure, forming squares by each
four neighboring ones. The interval between each neighbored hole on the HABDD is about
2 mm (Figure 2a). Each hole has a diameter of about 0.5 mm (500 µm) with a depth of 1 mm,
the same as the HABDD thickness (Figure 2b). All the substrate surfaces, including the
planar surface on both sides and along the hole depth, are covered with the diamond phase.
The HABDD has a uniform surface compacted with diamond microcrystals, as shown in
Figure 2c. The reaction areas on the HABDD electrode are expanded from the plane surface
to the sectional depth, which forms a three-dimensional reaction zone and raise the active
sites in the electrode. The kinetics process of the 3D holey framework enables the ions to be
efficiently transported to active sites buried deeply in the electrode.
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Figure 2. SEM graphs of (a) One side of the HABDD surface from the top view; (b) Insight of a micro
hole; and (c) Morphology of the HABDD surface.

2.2. TiO2 Nanotubes Characterization

A top view of the TiO2 nanotube growth on the Ti mesh is shown in Figure 3a. The
TiO2 nanotubes formed on the Ti substrate are vertically aligned on the surface. The
nanotubes have an internal diameter of about 60~100 nm, wall thickness of about 20 nm,
and film thickness of about 10 µm. The nanotubes allow the photon absorption path length
to exceed the electron transport distance along the nanotube length. The XRD results of the
TiO2 nanotubes and the Ti substrate are shown in Figure 3c. It can be seen the nanotubes
were formed in anatase TiO2 characterized by the featured diffraction peaks at 2θ of 25.5◦,
38.1◦, and 48.3◦, which belong to the (101), (004), and (200) lattice facets of anatase TiO2
phase. The TiO2 nanotubes, with a larger surface area with a BET value of 269 m2/g, could
provide a more active reaction place for the photogeneration of electrons and holes for
active radicals formation. In contrast with commercial P25 TiO2, anatase TiO2 nanotubes
have a higher photocatalytic activity.
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2.3. Ozone Generation Performance

The generated ozone in the tap water from 0.064 mg/L to 0.382 mg/L almost linearly
with the applied current increased, ranging from 0.1 A to 0.5 A (Figure 4a). The production
rate of ozone dissolved in the tap water was almost linear to the applied current. The
continuous evolution of bubbles from tap water electrolysis will cause mechanical damage
to conventional electrode materials. Therefore, mechanical durability is an urgent concern
in ozone production from electrolysis, which can be reflected by the ozone production rate
over working time. Fortunately, ozone could be continuously produced on the HABDD
free-standing electrode after long-term durability (Figure 4b) due to the high stability
of diamond materials. The concentrations of the ozone were almost maintained around
0.36 mg/min at the applied current at 0.5 A for a 25 h working period, illustrating the ideal
durability of the HABDD. The free-standing HABDD electrode is suitable for O3 generation
from H2O electrolysis under high-power operation [11].

The electrolytic reactions involving ozone production on diamond electrodes proceed
as follows [11]:

2H2O→ O2 + 4H+ + 4e− (E0 = 1.23 V) (1)

3H2O→ O3 + 6H+ + 6e− (E0 = 1.51 V) (2)

H2O + O2 → O3 + 2H+ + 2e− (E0 = 2.07 V) (3)

Oxygen (O2) evolution will take place with a higher potential on the diamond elec-
trode (1), which is thermodynamically preferred at E0 = 1.23 V. O3 is produced through
reactions (2) and (3) with the O2 evolution by reaction (1). Even if they are not thermodynamic,
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O3 generation will occur more efficiently due to a large overpotential for oxygen evolution on
diamond electrodes.
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2.4. Photocatalysis Reactions

The main reactions in TiO2/O3/UV photocatalysis include the following reaction
paths [14].

TiO2 + hυ→ e− + h+ (4)

H2O + h+ → O· + H+ (5)

O3 + e− → O3·− (6)

O3
− + H+ → HO3 (7)

HO3· → OH· + O2 (8)

O3 + hυ→ O· + O2 (9)

O· + H2O→ 2OH (10)

O3 + OH· → HO2· + O2 (11)

Hydroxyl radicals (OH·) and other reactive oxygen species (ROS) generated on the
TiO2 surface are the main active species responsible for the degradation of organics in
wastewater by advanced oxidation processes (AOPs). It should be noted TiO2 nanotube
growth on the Ti mesh structure is favorable for the adsorption of UV energy. The synergetic
TiO2/O3/UV method is an ideal AOP method for waste degradation in air or water. Under
UV irradiation, the photo-generated electrons (in the conduction band, CB) and holes (in the
valence band, VB) are separated in TiO2 (4), which are captured by H2O and O3 molecules
on the TiO2 surface to form more active radicals such as OH· to attack the organics in
water (5)–(8) (Figure 5a). Besides the decomposition of organics via the reactions (9)–(11)
by O3 individually, O3 on the TiO2 surface can trap the photo-generated electrons, thus
effectively suppressing the recombination of the charge carrier pairs. In this case, more OH·
and other ROS radicals will be generated by the synergetic effect from the TiO2/O3/UV
system. In the continuous flowing mode, the ROS radicals are formed in a dynamic balance.
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tion. Electrons and holes are generated and separated under UV energy excitation. Electrons are
injected into the CB and react with O3 molecules, while holes are left in the VB and react with H2O
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The diclofenac removal efficiency upon the response to O3 on TiO2 photocatalysis
was tested by discontinuous supplying of O3, and the result is presented in Figure 5b. It
can be seen O3 assistance plays an important role in the organics degradation rate of TiO2
photocatalysis. Besides absorbing UV energy, TiO2 nanotubes could reflect the UV light
among the microstructure and into the tap water, thus increasing the reaction probability
of diclofenac with O3. In comparison with the single TiO2 photocatalysis process, the
TiO2/O3/UV system improves the degradation efficiency due to its synergistic effect, both
from the oxidation ability and charge separation assistance from O3. This TiO2/O3/UV
treatment system is able for the mineralization of pharmaceuticals with low concentrations
in drinking water.

2.5. Diclofenac Degradation Efficiency

It is necessary for the evaluation of the degradation efficiency upon the mass transfer
ability [15], which is in close relationship to the O3 production efficiency. The photocatalytic
degradation efficiency versus the electrolyte flowing rate is presented in Figure 6a. The
highest removal efficiency was found at the flow rate of 150 mL/min on the HABDD surface.
Initially, 10 min of photolysis with a 150 mL/min flow rate led to more than half degradation.
This was because, on the one hand, under a lower flowing rate, the O3 generation rate on
the local area was increased while the total reaction rate was decreased due to a lower
contact surface area at the interface of the electrode surface and the tap water. On the other
hand, at a higher flowing rate, the tap water could not sufficiently contact the electrode
surface before it flowed out. Hence, the flowing rate of the tap water should be selected at
a moderate value.

The influence of the initial diclofenac concentration in the tap water was evaluated,
and the result between 10 mg/L~100 mg/L is shown in Figure 6b. It was found the lower
concentration (10 mg/L) had the highest removal efficiency than that with higher concen-
trations in 60 min of treatment. Organics with higher concentrations may be mass adsorbed
on the TiO2 surface, thus decreasing the photocatalytic activity. Diclofenac molecules at
high concentrations also absorbed a considerable quantity of photons, thus leading to a
decrease in the available photons absorbed by TiO2. In addition, a higher amount of O3 is
required to completely decompose pharmaceuticals with higher concentrations. Concern-
ing the practical concentration level of diclofenac is usually below 20 mg/L, this treatment
can satisfy the requirement degradation needs. The heterogeneous reaction of the TiO2
photocatalysis is affected by mass transfer from the O3 molecules flowing to the catalyst
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surface. An appropriate amount of O3 enhances the TiO2 photocatalytic activity, but excess
O3 will eliminate hydroxyl radicals by reaction (11).

Figure 6. (a) Diclofenac concentration changes depending on the treatment time, flowing rate
(50~200 mL/min), and (b) Initial concentration (10~100 mg/L) at flowing rate of 150 mL/min.

2.6. Ozone-Assisted TiO2 Photocatalysis

In order to evaluate the ozone effect, different treatment routes upon the O3 partic-
ipation were compared. Diclofenac could be decomposed by TiO2, O3, or UV via five
reaction paths [16], which include (a) UV, Direct photolysis of diclofenac by UV irradiation;
(b) O3, Direct oxidation of diclofenac by O3; (c) O3/UV, O3 photocatalysis at the presence of
H2O (reaction 9); (d) TiO2/UV, TiO2 photocatalysis in aqueous solution; (e) TiO2/O3/UV,
Synergistic photocatalysis in aqueous solution. The efficiency of these reaction paths
followed the trend (e) > (c) > (d) > (b) > (a), as shown in Figure 7. The TiO2/O3/UV
photocatalysis process showed the highest removal efficiency among these routes, which
consumed 22.8 mg of O3 to remove 85.56% diclofenac in tap water per hour. O3 can react
with organic compounds, and UV irradiation can accelerate the reaction rate [17]. Direct
ozone attacks may take place on the amine group of organics [18]. In any case, ozonation
assistance of diclofenac degradation is a fast reaction.
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In this work, unlike other anticipation modes of O3 into TiO2 photocatalysis, the short
diffusion distance of the O3 molecule’s travel paths improves the contact areas or reaction
cross-section since O3 generation from the HABDD surface to the TiO2 surface. In addition,
the mesh structure of the substrate provided good diffusion channels of organics and
O3 molecules in the TiO2 nanotubes and improved the reflection efficiency of UV light.
Under this circumstance, the reaction kinetic was increased due to the better diffusion
pathways and pre-mixing effect in homogeneous conditions. Moreover, the reaction paths
(a) (b) (c) together contribute to the TiO2/O3/UV photocatalysis more than their individual
effect. Hence, the application of TiO2/O3/UV photocatalysis allowed almost complete
removal of pharmaceuticals by ozonation and further mineralization of the by-products in
the photocatalytic treatment [8].

Currently, the mainstream methods for photocatalytic degradation of diclofenac
or other organics in water are normally based on oxides (TiO2, MoS2, ZnO, g-C3N4,
etc.) nanoparticles dispersion in the aqueous media, achieving a highly heterogeneous
catalysis efficiency. In general, more than 85% of diclofenac within 0.2 µg/L~10 mg/L
could be removed at catalyst dose within 20 mg/L~1.5 g/L in 2 h in organics/catalysts
mixtures [19–22]. Besides most photocatalysts are zero-dimensional nanomaterials, one-
dimensional and two-dimensional nanostructures have been applied in diclofenac degrada-
tion in recent years [23,24]. Visible light or solar energy-driven photocatalytic degradation
has attracted attention in future development [20,25,26]. In order to improve the removal
performance, oxidants were introduced into photocatalysis to assist the oxidation and to
expand the lifetime of the photo-generated holes and electrons [27]. The generation of more
ROS plays an important role in increasing degradation efficiency [21,28]. Concerning the
diclofenac concentration in this study was higher than many other methods, the removal
efficiency of the TiO2/O3/UV system was satisfactory.

2.7. Theoretical Study on TiO2/O3 Interface

To further understand the synergistic effect of water-generated O3 in the TiO2 photo-
catalysis, the adsorption site and adsorption mode were studied by theoretical calculation.
The final energy (single point energy) of different geometries and adsorption modes at the
TiO2/O3 interface were calculated by the CASTEP (Cambridge serial total energy package,
materials studio version 8.0). The single point energy is a measure of the electronic stability
of a given atomic configuration and is typically used as a reference point for comparing
the energies of different structures or for calculating thermodynamic properties such as
enthalpy and entropy. The adsorption model in water is essential to investigate the adsorp-
tion behavior of O3 molecules at the anatase TiO2 (101) surface, which was constructed in a
supercell (2 × 4 lattice) of anatase TiO2 (101) lattice face with a slabbing thickness of ca. 5 Å.
The lattice size of the adsorption model was built in 10.88 × 15.10 × 20.56 Å3 volume, with
the vacuum at 15 Å to avoid unnecessary inter-slab interactions. Surface water molecules
(≡H2O) and surface hydroxyl groups (≡OH) were chosen at the O3 reaction sites. Bridging
and side-armed configurations were regarded as effective linking ways for O3 molecules
to bind the reaction sites. Our simulations were constructed based on the generalized
gradient approximation (GGA) of Perdew and Wang (PW91) calculations. The ultrasoft
pseudopotentials were applied with a cutoff energy of 340 eV. The default Monkhorst–Pack
was employed for the determination of k-points, and relaxation of the positions of all atoms
was allowed.

As shown in Figure 8, the TiO2 (101)/O3 adsorption models have five maind ad-
sorption models according to the simulation, named as (a) TiO2≡(H2O)2-O3 bridging,
(b) TiO2≡(OH)2-O3 bridging, (c) TiO2≡H2O-O3 bridging, (d) TiO2≡H2O-O3 single-armed,
(e) TiO2≡OH-O3 single-armed, respectively. H2O molecules or –OH species act as im-
portant linking bridges between O3 molecules and TiO2 surface, since they are linked in
aqueous media.
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The final energy (Ea) of O3 molecules on the anatase TiO2 (101) surface was calculated
by the equation:

Ea = Ems − Em − Es

where Ems is the total energy of the TiO2 surface with adsorbed O3, Em and Es is the energy
of the TiO2 surface and O3 molecules, respectively. The final energy of the adsorption mode
is listed in Table 1. Both the exothermicity and stability in this interface system could be
stable at a negative Ea value. The results illustrated that the bridging configuration (b) was
more favorable for O3 molecules adsorption in water than the other configuration, partly
because the bridging mode (b) has a shorter average O-H binding length of 0.98 Å between
the surface O atom and the H atom linking to the O3 molecule. The Ti-O-H-O bridging
mode benefits the photocatalysis reaction most since it can improve the separation efficiency
of the photo-generated charges.

Table 1. Final energy of the adsorption mode.

Energy (eV) a b c d e

Ems −61,825.7 −61,798.6 −61,357.8 −61,357.7 −61,344.1

Em 60,487.69 60,456.88 60,036.76 60,036.73 60,021.25

Es 1337.362 1337.362 1320.758 1320.683 1320.683

Ea −0.62541 −4.3352 −0.28652 −0.32541 −2.19725

The adsorption of O3 molecules on the TiO2 surface is a key step to determine the
efficiency of ROS generation since O3 conversion to ROS species occurs at the TiO2/O3
interface [29]. Side-arms and bridging configurations are considered favorable styles for
O3-TiO2 binding. Hydroxyl (-OH) groups and H2O molecules on the surface are the
dominant sites for the interaction with O3 molecules since the reactions occur in aqueous
media. Enhanced O3 adsorption at the TiO2 surface plays an important role in promoting
heterogeneous catalysis performance.

3. Materials and Methods

Diclofenac as sodium salt was purchased from Sigma-Aldrich and directly used
without further treatment. Tap water was obtained from the Chengdu Service Lines
(Chengdu, China) and was purified by a Milli-Q system before use. Diclofenac aqueous
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solution was prepared by direct dissolving in tap water at room temperature. Trimethyl
borate (B(OCH3)3) was bought from Sigma Aldrich. Ti mesh was obtained from ChangTi
Metal Co. (Shenzhen, China) and washed with ethanol before use.

The HABDD free-standing film was costume made by Zhengyinghao Metal Co.
(Hefei, China) and was prepared using a microwave plasma-assisted chemical vapor
deposition (MPCVD, 2.45 GHz) device. A Ta plate (10 × 10 cm2) with arrayed holes was
used as the deposition substrate for the diamond growth. Acetone and hydrogen gas
mixture was used as the carbon source in the deposition. Trimethyl borate as the boron
doping agent was mixed into the carrier gas (boron doping affords the conductivity of
synthetic diamond). Both sides of the Ta substrate were exposed for the diamond growth in
sequence. TiO2 nanotubes on the Ti mesh were synthesized by electrochemical anodization
treatment according to our past works [30]. Briefly, the Ti mesh was used as the working
electrode, and a Pt plate as the counter electrode. The anodization reaction was performed
in an electrolyte containing formamide (94.7 wt%), H2O (4.4 wt%), and NH4F (0.9 wt%) for
20 h treatment.

The electrochemical-photocatalytic system for the degradation of diclofenac in tap
water is schematically illustrated in Figure 1. The reactor was made of Pyrex glass to
observe the reaction state. This electrochemical part was composed of the HABDD anode
(4 × 4 cm2) and a platinum mesh cathode that separated by Nafion films (DuPont, Wilm-
ington, DE, USA), which were also used as the solid-state electrolyte membrane. On the
cathodic side, hydrogen was produced on the Pt electrode and was carried out by the flow-
ing tap water. In the photocatalysis part, the as-obtained TiO2 nanotube film (4 × 4 cm2)
was parallel placed adjacent to the HABDD and illuminated by an incident UV lamp
(254 nm, Atlantic Ultraviolet Co., Hauppauge, NY, USA) behind. The distance between
the TiO2 nanotubes and the HABDD surface was 2 cm. The degradation treatment was
conducted in a continuous flowing mode with diclofenac-containing tap water inlet and
water outlet channels circulated by a pump. The diclofenac-containing tap water streamed
in a screw-like fluent through the TiO2 photocatalyst in circulation driven by the pump
from an external reservoir tank.

The surface morphologies of the samples were examined by scanning electron micro-
scope (SEM, JSM-5400, JEOL). The phase of the TiO2 nanotube sample was characterized
by X-ray diffraction (XRD, Rigaku RINT1500). The BET was measured by physisorption
analyzer (ASAP 2460). The diclofenac concentration was measured by high-performance
liquid chromatography (HPLC, Varian 940) with a photodiode array detector. Samples
were taken at interval time for HPLC analysis. Ozone dissolved in the tap water was on-line
monitored by a table ozone detector (PGD3-C, Xinhairui Co. Shenzhen, China), which was
calibrated by laboratory instrument before use.

4. Conclusions

TiO2 nanotubes fabricated on a Ti mesh were used as the photocatalyst in combination
with O3 for the degradation of diclofenac in tap water. An HABDD electrode was used
to electrochemically generate O3, which created almost in situ ozone-feeding channels
to assist the TiO2 photocatalysis. The study investigated the effect of O3 generation rate,
diclofenac removal performance, treatment time, flowing rate, and initial concentration
of diclofenac on the degradation efficiency. The TiO2/O3/UV photocatalysis system was
found to be more effective than other methods, such as UV, O3, O3/UV, and TiO2/UV,
due to its synergetic efficiency. Additionally, the nanostructure of TiO2 and the mesh
microstructure optimized the diffusion pathways for O3 molecules and organics onto
the photocatalyst surface. The study also estimated the O3 adsorption capability on the
TiO2 (101)/O3 interface and suggested that O3 assistance is an effective method for
enhancing the decomposition rate of organics. Overall, the synergetic TiO2/O3/UV
photocatalysis system shows promise for the treatment of tap water and wastewater
containing pharmaceuticals.
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