
Citation: Magomedova, A.; Isaev, A.;

Orudzhev, F.; Sobola, D.; Murtazali, R.;

Rabadanova, A.; Shabanov, N.S.; Zhu, M.;

Emirov, R.; Gadzhimagomedov, S.;

et al. Magnetically Separable

Mixed-Phase α/γ-Fe2O3 Catalyst for

Photo-Fenton-like Oxidation of

Rhodamine B. Catalysts 2023, 13, 872.

https://doi.org/10.3390/catal

13050872

Academic Editors: Meng Li and

Marta Pazos Currás

Received: 20 March 2023

Revised: 22 April 2023

Accepted: 8 May 2023

Published: 11 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Communication

Magnetically Separable Mixed-Phase α/γ-Fe2O3 Catalyst for
Photo-Fenton-like Oxidation of Rhodamine B
Asiyat Magomedova 1 , Abdulgalim Isaev 1,* , Farid Orudzhev 1 , Dinara Sobola 1,2,3 , Rabadanov Murtazali 1,
Alina Rabadanova 1, Nabi S. Shabanov 4, Mingshan Zhu 5 , Ruslan Emirov 1, Sultanakhmed Gadzhimagomedov 1,
Nariman Alikhanov 1 and Kaviyarasu Kasinathan 6,7

1 Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, St. M. Gadjieva 43-a,
367015 Makhachkala, Russia; asiyat_magomedova1996@mail.ru (A.M.); farid-stkha@mail.ru (F.O.);
sobola@vut.cz (D.S.); rab_mur@mail.ru (R.M.); aderron@mail.ru (R.E.); darkusch@mail.ru (S.G.);
alihanov.nariman@mail.ru (N.A.)

2 Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology,
Technická 2848/8, 61600 Brno, Czech Republic

3 Central European Institute of Technology BUT, Purkyňova 123, 61200 Brno, Czech Republic
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Abstract: Iron oxides are widely used as catalysts for photo-Fenton-like processes for dye oxida-
tion. In this study, we report on the synthesis of an α/γ-Fe2O3 mixed-phase catalyst with magnetic
properties for efficient separation. The catalyst was synthesized using glycine–nitrate precursors.
The synthesized α/γ-Fe2O3 samples were characterized using scanning electron microscopy, X-ray
diffraction spectroscopy (XRD), Raman shift spectroscopy, X-ray photoelectron spectroscopy (XPS),
and vibrating sample magnetometer (VSM). The diffraction peaks were indexed with two phases,
α-Fe2O3 as the main phase (79.6 wt.%) and γ-Fe2O3 as the secondary phase (20.4 wt.%), determined
using the Rietveld refinement method. The presence of Fe2+ was attributed to oxygen vacancies. The
mixed-phase α/γ-Fe2O3 catalyst exhibited remarkable photo-Fenton-like degradation performance
for Rhodamine B (RhB) in neutral pH. The effects of operating parameters, including H2O2 concentra-
tion, catalyst concentration, and RhB concentration, on the degradation efficiency were investigated.
The removal rates of color were 99.2% after 12 min at optimal conditions of photo-Fenton-like oxida-
tion of RhB. The sample exhibited a high saturation magnetization of 28.6 emu/g. Additionally, the
α/γ-Fe2O3 mixed-phase catalyst showed long-term stability during recycle experiments, with only a
5% decrease in activity.

Keywords: iron oxides; α/γ-Fe2O3 mixed-phase catalyst; magnetically separable; Rhodamine B;
photo-Fenton-like

1. Introduction

Advanced oxidation processes are currently being utilized as an effective method for
treating industrial wastewater that contains non-biodegradable organic compounds [1].
One of the most extensively studied oxidation processes is the Fenton process, which
utilizes hydrogen peroxide and ferrous ions and exhibits an effective ability to destroy
a wide range of contaminants. However, this process can only be effectively used with
acidic or neutral pH wastewater [2]. The Fenton process is a homogeneous catalytic system,
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where the catalyst (Fe2+) is added in the form of a soluble salt and is removed from the
reactor with the outgoing stream of purified water, due to the impossibility of its separation.
This problem is further exacerbated by the fact that upon further neutralization of the
purified solution, Fe3+ precipitates, necessitating the separation of the resulting precipitate,
which collectively leads to a decrease in the efficiency of the process [3]. In this regard, the
use of the heterogeneous Fenton-like process in the presence of iron compounds in the
form of a precipitate on which the hydroxyl radical is generated from hydrogen peroxide
is more promising [4]. Heterogeneous Fenton-like reactions can also efficiently degrade
organic compounds in wastewater [5,6]. Solid catalysts can be reused after separation [7,8].
The use of the heterogeneous Fenton-like process overcomes some of the disadvantages of
the homogeneous Fenton reaction, such as reduced reactivity due to catalyst consumption
and the need to adjust pH [9].

At the same time, it is known that in the dark processes of homogeneous and het-
erogeneous Fenton, Fe3+ ions accumulate in the system and the reaction rate decreases
significantly with time and stops after the complete consumption of Fe2+ ions [10]. The com-
bination of Fenton and Fenton-like processes with simultaneous exposure to UV/visible
radiation (λ < 600 nm) can solve this problem due to the photoreduction reaction of Fe3+

ions to Fe2+ [11].
Iron oxides are among the widely used materials as catalysts for Fenton-like pro-

cesses for the oxidation of organic compounds [12–16]. Among the most studied and
promising iron oxides and hydroxides for use as catalysts in Fenton-like processes, mag-
netite (Fe3O4) [17–24], goethite (α-FeOOH) [25,26], maghemite (γ-Fe2O3) [12,27–31], and
hematite (α-Fe2O3) [32–34] can be noted. Various physicochemical characteristics of these
oxides make them more or less favorable for oxidative reactions. These solid catalysts
have good potential to degrade bio-oxidation-resistant contaminants [35,36]. Among these
crystal structures, hematite is the most stable state of iron oxide under environmental
conditions [37]. The prevailing use of α-Fe2O3 is due to its excellent physical and chemical
properties, which can manifest themselves in samples with different morphology [38–40],
particle size [41], and also in composite structures [42–44], which is especially important
for creation of efficient heterogeneous catalysts in Fenton-like oxidation processes [45,46].
Maghemite also finds use as a catalyst in Fenton-like processes for the oxidation of organic
compounds [47,48]. Unlike α-Fe2O3, γ-Fe2O3 is magnetic and can be easily reduced using
a magnet. At the same time, γ-Fe2O3 retains catalytic activity for many cycles of use [49].

Various methods are used to synthesize iron oxides [50]. Specifically, the solution
combustion method, using glycine as a fuel, was employed to synthesize α-Fe2O3 and
γ-Fe2O3 [51–53]. This method results in the formation of ultra-small α-Fe2O3 nanopar-
ticles (less than 5 nm) that exhibit superparamagnetism in the temperature range of
70–300 K [54]. Additionally, biphasic α/γ-Fe2O3 nanoparticles have been reported, which
demonstrate high sensitivity to detecting volatile organic compounds such as acetone [55]
and ethanol [56]. Biphasic α/γ-Fe2O3 exhibits significantly higher sensitivity than α-Fe2O3
and γ-Fe2O3 alone [57]. The work [58] reports higher photocatalytic activity of heterophase
α/γ-Fe2O3 during methylene blue oxidation due to a decrease in the rate of electron-hole
pair recombination. Therefore, a new approach to enhance metal oxide catalyst perfor-
mance is to integrate different crystalline forms of the same metal oxide into a single
structure. Currently, there is no information available on the use of biphasic α/γ-Fe2O3
in Fenton-like processes for organic compound oxidation. Based on this, this paper in-
vestigates the production of biphasic iron oxide and its use as a magnetically separable
heterogeneous catalyst in the Fenton-like process for RhB oxidation.

2. Results
2.1. Catalyst Characterizations

Iron oxides (Fe2O3) with various ratios of fuel and oxidizer (ϕ) were synthesized using
the conventional solution combustion method. Glycine is widely used in the so-called
glycine–nitrate synthesis of metal oxide nanoparticles by combustion [56,57].
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The ongoing combustion reaction can be written according to Equation (1).

6Fe(NO3)3 + 10C2H5NO2 → 3Fe2O3 + 20CO2 + 14N2 + 25H2O (1)

The coefficients of the expected reaction were placed based on the theory of combus-
tion [59]. The fuel–oxidizer ratio of 0.4 (ϕ < 1) was chosen so that the amount of oxidizer
was in excess and there was no need for atmospheric oxygen. Additionally, it was shown
that in several systems, solution combustion synthesis of reactive solutions with an excess
of fuel (ϕ > 1) leads to the formation of pure metals [60].

The morphology of the synthesized powders was studied using SEM. The images at
various magnifications are shown in Figure 1.
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Figure 1. SEM images of catalyst samples at various magnifications (a,b). EDS elemental mapping of
the selected area (c–e).

In Figure 1a, at low magnifications, it can be seen that the powder has a loose flaky
texture characteristic of the combustion method with a large number of pores. At high
magnifications in Figure 1b, one can see that the powder is in the form of large submicron
agglomerates of a bone-like structure, sintered at high temperatures during synthesis. In
this case, the grain boundaries are quite clearly traced. It can be seen that, along with
large micron-sized pores, there is a large number of nanopores. From the EDS images
(Figure 1c–e), it is clearly seen that the atoms of iron and oxygen are uniformly distributed
over the surface under study. EDX spectra are presented in Supplementary Materials
(Figure S1). Analysis of the atomic percentage of the elements Fe and O showed that the
ratio is close to stoichiometric, Fe (47 wt.%) O (53 wt.%) with a slight oxygen deficiency.

It is known from the literature that varying the fuel-oxidizer ratio affects the phase
of the synthesized iron oxide [61]. Therefore, the crystal structure of the powder was
investigated by XRD and Raman methods. The data are presented in Figure 2a,b.
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Figure 2. (a) Rietveld refinement graphs of Fe2O3. The red circles indicate the experimental data, the
black line is the fitting value, the blue line is the difference, and the orange and green ticks are the
Bragg reflections of the α-phase and γ-phase, respectively. (b) Raman spectra in different areas.

Figure 2a shows the XRD spectrum of the sample with the structure refined by the
Rietveld method. The spectrum is well described by two phases, namely α-Fe2O3 with
Hexagonal structure and space group R-3c (Ref. Code 98-006-6756) and γ-Fe2O3 with Cubic
structure and space group Fd-3m (Ref. Code 98-006-6756). Quantitative phase evaluation
carried out using the Rietveld method showed that α-Fe2O3 exists as the main phase
(79.6 wt.%) and γ-Fe2O3 is present in an amount (20.4 wt.%). The presence of background
noise indicates a high proportion of amorphous Fe2O3 in the sample. The Rietveld reliability
factors displayed in Table 1 show that the quality of the fit is appreciable.

Table 1. Results of phase quantification and Rietveld refinement of Fe2O3.

Sample

Phases α-Fe2O3 γ-Fe2O3
wt.% 79.6 20.4
Space group R-3c (No. 167) F d-3 m (No. 227)
Crystal system Hexagonal Cubic

Lattice parameters a (Å) 5.0339 8.3421
c (Å) 13.742 -

Cell volume V (Å3) 301.57 580.53

Rietveld reliability factors

Rexp 1.5628
Rw 1.7091
Rp 1.3556
GoF 1.1961

Crystallite size LVol−IB (nm) 47.4 45.7

The resulting fitted D-V function was then used for the calculation of volume-weighted
mean crystallite size (LVol−IB) via the Scherrer equation. The average crystallite size of
α-phase was found to be 47.4 nm, while that of the γ-phase was 45.7 nm.

Iron oxide polymorphs of the α- and γ-phases are also distinguishable by Raman
spectroscopy. The Raman spectra from two different parts of the sample are shown in
Figure 2b. The black line shows two classes of Raman active modes of hematite in the range
from 200 to 800 cm–1. The existence of characteristic A 1g bands at 221 and 491 cm–1 and
Eg bands at 239, 287, 401, and 605 cm–1, respectively, is attributed to the main hematite
bands. Low-frequency modes (200–300 cm–1) were attributed to vibrations of the Fe atom,
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and bands from 400 to 650 cm–1 were attributed to vibrations of the O atom [62–65]. The
red line in Figure 2b shows three Raman active phonon modes at 365 cm–1 (T2g), 511 cm–1

(Eg), and 700 cm–1 (A1g), characteristic of maghemite. The spectrum is in good agreement
with the data for maghemite previously published in the literature [66–68].

The surface states play a key role for heterogeneous photo-Fenton-like catalysis; the
surface was investigated by XPS. The obtained results are presented in Figure 3.
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With a wide panoramic scan in Figure 3a, peaks of C 1s, O 1s, and Fe 2p were detected,
which indicates the absence of impurities. Peak C 1s comes from random carbon [67,69,70].
The high-resolution spectrum of Fe 2p after deconvolution with approximation of Gaussian
peaks is shown in Figure 3b. It can be seen that the spectrum is well described by the
superposition of six peaks. There were two peaks at 726.1 and 712.5 eV, which are typical
characteristic peaks of Fe3+ in 2p 1/2 and 2p 3/2 orbitals [71]. In addition, two deconvoluted
peaks at 723.9 and 710.5 eV correspond to Fe2+, which can be due both to the presence of
magnetite in the structure, which is quite difficult to distinguish from maghemite by XRD
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and Raman methods, and to the formation of oxygen vacancies in Fe2O3. Generation of
oxygen vacancies in the crystal lattice leaves two electrons per missing oxygen atom, which
leads to the reduction of Fe3+ to Fe2+ [72]. The generation of oxygen vacancies is common
for the high-temperature combustion method [73]. The two deconvolution peaks at 732.1
and 718.3 eV are attributed to the presence of their satellite vibrational peaks (labeled
“Sat.”). From a comparison of the integral areas of the Fe3+ peaks in Fe2+, it was found that
their ratio is 60:40%. Data are presented in Supplementary Materials (Figures S2 and S3).

To confirm the presence of oxygen vacancies, the spectrum of the O 1s level was
studied. Figure 3c shows the O 1s spectra after deconvolution with approximation of
Gaussian peaks. The spectrum is well described by the superposition of three components
centered at 529.6, 531.0, and 532.8 eV, respectively. The peak at 529.6 was a typical lattice
oxygen peak, and that at 531.0 eV could be attributed to the low-coordinated oxygen species
adsorbed onto the oxygen vacancies. The peak at 532.8 eV was assigned to the hydroxyl
species of surface-adsorbed H2O molecules [74].

The XPS results indicate the co-presence of Fe2+ and Fe3+ and that the presence of Fe2+

is not associated with the presence of magnetite in the structure, confirming the results of
XRD and Raman. It is important that the Fe2+/Fe3+ redox pair formed on the surface can
accelerate the charge transfer in Fe2O3, since Fe3+ is reduced to Fe2+ during heterogeneous
Fenton-like catalysis [75].

The XPS valence band (VB) region analysis is a powerful tool for understanding the
electronic structure of a material. Figure 3d shows the XPS (VB) spectrum in the binding
energy range 0–10 eV. The VB spectrum is the result of hybridization of Fe3d and O 2p
atomic orbitals [76] and can apparently be described by three bands, which is consistent
with previously published results [77] and corresponds to the states of Fe 3d eg strongly
hybridized with O 2p and non-bonding O 2p, and the C characteristic is dominated by
bond states of the O 2p and Fe t2g orbitals. The inset to Figure 3d shows that the valence
band maximum (VBM) is 1.25 eV below the Fermi level.

2.2. Catalytic Activity in Fenton-like Process

The catalytic activity of two-phase α/γ-Fe2O3 was studied by oxidation of the dye
RhB under various conditions. Figure 4 shows a typical change in the absorption spectra of
RhB during treatment for 12 min.

Changes in the catalytic activity of sample α/γ-Fe2O3 in the form of kinetic curves of
the RhB oxidation are shown in Figure 4a. When using the heterogeneous Fenton-like sys-
tem using α/γ-Fe2O3 catalysts, RhB slowly decomposes and was 4% after 12-min treatment
with α-Fe2O3. The use of UV-visible light irradiation leads to a significant acceleration of
the oxidation of RhB. Irradiation with light has a dual effect on a heterogeneous system:
the oxidation of the dye directly by hydrogen peroxide upon irradiation with light and the
acceleration of the formation of hydroxyl radicals (HO•) as a result of the decomposition of
H2O2 in the presence of a catalyst [78,79].

H2O2 + hv→ 2HO• (2)

≡ FeIII + H2O + hv→≡ FeII + HO• + H+ (3)

≡ FeII + H2O2 →≡ FeIII−OH + HO− (4)

The effect of H2O2 concentration, catalyst dose, and RhB concentration on degradation
is also shown in Figure 4. Increasing the H2O2 concentration improved the decomposition
activity. It has been shown in the literature that only increasing the concentration of H2O2
up to 15 mM led to a decrease in the efficiency of decomposition due to the unfavorable
consumption of excess H2O2 due to the effect of scavenging free radicals [80,81]. The
highest performance was achieved using a catalyst dosage of 0.2 g/L. The decrease in
activity with an excess of catalyst is associated with blocking the penetration of light and
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active sites on the catalyst surface. A study of the effect of dye concentration on degradation
efficiency (Figure 4d) demonstrated that the lower the initial concentration, the higher the
efficiency. At a concentration of 1 mg/L, 99.2% of the dye decomposes in 12 min. The
decrease in activity with increasing dye concentration may be due to the formation of a
larger number of intermediate products that can occupy active sites on the catalyst surface.
As pH is an important parameter for the photo-Fenton process, additional studies were
conducted to investigate its influence. The data is presented in the Supplementary Materials
(Figure S4), which show that the pH of the medium does not affect the reaction progress.
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Figure 5 shows the results of catalyst recycling and magnetic properties. The separation
of the spent catalyst was carried out by magnetic separation. Figure 5a shows that the
sample exhibits long-term stability. After five repeated uses, the activity of the catalyst
decreased by 5%. However, it is also important to investigate the leaching of iron ions into
the solution in the photo-Fenton-like process. After each cycle, we determined the content
of iron ions in the solution using the colorimetric method with nitroso-R-salt. The results
showed that the concentration of Fe2+ after the process was 330 µg/L.
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Figure 5. (a) Long-term catalyst stability results (CRhB = 8 mg/L; C(H2O2) = 0.18 mM; t =12 min);
(b) magnetic hysteresis loop for mixed α/γ-Fe2O3.

The magnetic hysteresis loop (MH) measured at room temperature is shown in
Figure 5b. The sample is ferromagnetic at room temperature.

The loop has an obvious hysteresis loop, and the coercive force (Hc) is 383.2 Oe, the
magnetization vector (Ms) is 28.6 emu/g, and the remanence intensity (Mr) is 9.7 emu/g, as
shown in Figure 5b. The inset to Figure 5b shows a photograph of the magnetic separation
process. For clarity, a sample is presented consisting only of the α-Fe2O3 phase.

3. Materials and Methods
3.1. Synthesis Procedure

Synthesis of mixed α/γ-Fe2O3 was carried out using the combustion of glycine–nitrate
precursors [59,60]. An aqueous solution of iron (III) nitrate was used as the starting material
for the preparation of the two-phase α/γ-Fe2O3 catalyst. The precursor was prepared
by mixing glycine and Fe(NO3)3 in an aqueous solution. The resulting solution was
evaporated to a gel state on an electric heater with an operating temperature up to about
180 ◦C. During further heating, the reaction mixture ignited and iron(III) oxide powder
was formed. Combustion was fast and self-sustaining, with a flame temperature of 1100 to
1450 ◦C. The synthesized samples were annealed at 400 ◦C for 1 h.

3.2. Characterizations

Characterization of the obtained heterostructures was performed using scanning
electron microscopy (SEM) with the Aspex ExPress VP (FEI Company, Hillsboro, OR,
USA). X-ray diffraction (XRD) studies were done using an Empyrean PANalytical X-ray
diffractometer (Almelo, The Netherlands) in the radiation of a copper anode with a nickel
filter, with radiation wavelength λ(CuKα) = 0.154051 nm. Data processing was performed
using the High Score Plus application program, included in the instrument software, and
the diffraction database ICSD (PDF-2). The surface composition was carried out by an AXIS
SupraTM X-ray photoelectron spectrometer (XPS) (Kratos Analytical Ltd., Manchester, UK).
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The data were processed by CasaXPS v.2.3.23 software (Casa Software Ltd., Wilmslow,
UK). Raman spectra were examined by a Laser Raman 3D scanning confocal microscope
(Ntegra Spectra, Moscow, Russia) using a green laser (532 nm) with a spot size of 1 µm and
a resolution of 0.5 cm−1.

3.3. Fenton-like Oxidation of the Rhodamine B

The catalytic activity of the samples in Fenton-like process were evaluated using the
degradation of RhB in an aqueous solution (8 mg/L). The experiments were carried out
in a 50 mL glass beaker. The 250 W high-pressure mercury lamp (Phillips, Amsterdam,
The Netherlands) was used as a source of UV-visible light at photo-Fenton-like process
investigation. The oxidant (H2O2) was added to the Rhodamine B solution with α/γ-Fe2O3
suspension. The light source was placed above the reactor at a distance of 10 cm. The
RhB concentration was measured using an SF-2000 spectrophotometer (Saint-Petersburg,
Russia) from the characteristic absorption peak at a wavelength of 553 nm. After the
measurement, the solution was poured back into the reactor and the process continued.
The concentration of iron in the solution after the process was determined by photometric
method using nitroso-R-salt [82].

4. Conclusions

Heterogeneous photo-Fenton-like degradation of RhB with high efficiency has been
demonstrated over a mixed-phase α/γ-Fe2O3 catalyst. α/γ-Fe2O3 was prepared by a
combustion of glycine–nitrate precursors with fuel–oxidizer ratio of 0.4 (ϕ < 1). At the
same time, a powder with a composition of 80%α/20%γ-Fe2O3 was synthesized, with
crystal sizes of 47.4 and 45.7 nm, respectively. XPS analysis showed that Fe2+ ions, up
to 40%, were present on the surface along with Fe3+ ions, due to the presence of oxygen
vacancies. Optimization of photo-Fenton-like degradation of RhB showed that reducing
the dye concentration from 8 to 1 mg/L, increasing the H2O2 concentration from 0.09 to
0.90 mmol, and reducing the mass loading from 2 to 0.2 g/L leads to an increase in catalytic
activity. At optimal efficiency, 99.2% degradation is achieved in 12 min of the process. It has
been shown that the pH of the medium does not affect the catalytic activity of α/γ-Fe2O3.
The 80% α-Fe2O3 and 20% γ-Fe2O3 mixed-phase catalyst showed no obvious decrease in
degradation performance over five consecutive cycles. The results show that the mixed-
phase α/γ-Fe2O3 catalyst is a very promising catalyst that is magnetically separable and a
suitable candidate for practical applications of dye containing wastewater treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13050872/s1, Figure S1: EDX spectra of α/γ-Fe2O3; Figure S2:
Fe 2p level XPS spectra; Figure S3: O 1s level XPS spectra; Figure S4: Dependence of the catalytic
activity of the photo-Fenton-like process on pH (CRhB = 8 mg/L; C(H2O2) = 0.18 mM; t =12 min).
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