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Abstract: Three types of α-Mn2O3 catalysts with different well-defined morphologies (cubic, trun-
cated octahedra and octahedra) and exposed crystal facets have been successfully prepared via
hydrothermal processes, and evaluated for ethanol total oxidation with low ethanol concentration at
low temperatures. The α-Mn2O3-cubic catalyst shows a superior catalytic reaction rate than that of α-
Mn2O3-truncated octahedra and α-Mn2O3-octahedra under high space velocity of 192,000 mL/(g·h).
Based on the characterization results obtained from XRD, BET, FE-SEM, HR-TEM, FT-IR, H2-TPR,
XPS, ethanol-TPD, and CO-TPSR techniques, the observed morphology-dependent reactivity of
α-Mn2O3 catalysts can be correlated to the good low-temperature reducibility, abundant surface
Mn4+ and adsorbed reactive oxygen species, which was originated from the exposed (001) crystal
planes. Through tuning the morphology and exposed (001) crystal facet of α-Mn2O3, a highly active
ethanol oxidation catalyst with high selectivity and excellent stability is obtained. The developed
approach may be applied broadly to the development of the design principles for high-performance
low-cost and environmentally friendly Mn-based oxidation catalysts.

Keywords: ethanol combustion; manganese oxide; morphology effect; structure-sensitive

1. Introduction

As atmospheric and photochemical contaminants, Volatile Organic Compounds (VOCs)
emitted from fossil fuel combustion, transportation, automobile exhaust, and photochemical
pollution have caused tremendous detrimental impact on the environment and human’s
health [1,2]. As one of the typical gaseous pollutants among these VOCs, ethanol derived
mainly from the residue of unburned ethanol in ethanol-fueled vehicles [3,4]. By comparing
different technologies for burning ethanol into CO2, H2O, and other less hazardous by-
products, the catalytic ethanol combustion has been recognized as one of the most viable
and environmentally-friendly technologies at low concentration and lower temperature
(200–600 ◦C) owing to its higher efficiency and yields, and lower cost than that of traditional
physical/chemical adsorption and non-catalytic thermal oxidation technologies [5]. Thus,
the development of the efficient ethanol combustion catalysts is of great significance in
reducing ethanol emissions below the limits imposed by the regulation standards.

In the past few decades, noble metal-based catalysts such as Pt, Pd, Ir, Rh and
Au [6–10], etc., have been reported to exhibit high performance of ethanol oxidation at low
operation temperatures. However, the high cost of noble metals have caused bottlenecked,
which limits the economic viability and impedes the widespread use in ethanol-fueled
vehicles. Therefore, it is highly desirable to develop an alternative catalyst to substitute for
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the noble-metal-based catalyst in order to meet the ever-rigorous ethanol emission stan-
dards. Metal oxides, such as Cu/Al2O3 [11], CuO/Fe2O3 [3], Al/Mn-K [12], CoFe2O4 [13],
Mn-Ce-Zr-O [14], Mn-Cu [15], etc., are considered as the most promising alternative ma-
terials, which have been validated via their good catalytic activity, low cost, resistant to
poisonings and higher thermal stability. Catalyst composition, specific surface area, crystal
and pore structure have been reported to be the key factors in determining the ethanol
combustion efficiencies. Despite its excellent catalytic performance, most of the studies
were performed to work the catalysts under lower space velocity, remaining insufficient for
practical application.

During recent years, more and more researchers have paid their attention to nano/
microsized metal oxides material with different morphologies, such as tube, rods, wires,
spheres, cubic, and octahedra, etc. Generally, the catalytic reaction performance of catalyst
particles can be finely tuned by their anisotropic morphology, which further results in
different exposed crystal facets, to this end, the degree of coordination unsaturation of
catalytically active atoms are vital for the correlation between structure and catalytic
performance, as reported in the earlier literatures [16–22]. For instance, Shen et al. [21]
investigated that the catalytic oxidation of CO over nanoscale catalytic particles of Co3O4
with controlled size and topology, and found that Co3O4 nanorod have highly structure-
ordered, constituting 40% of the (110) crystal plane on the nanorod surface was able to
oxidize CO at−77 ◦C, showing a 10 times higher activity than conventional Co3O4 catalysts.
Trovarelli et al. [19] reported that soot combustion over ceria was a surface-dependent
reaction and (100) surface for nanocubes; (100), (110) and partially (111) for nanorods,
and enclosed octahedral possessed much higher catalytic performance for soot oxidation
than ceria polycrystalline powders, which in agreement with the density functional theory
(DFT) calculations that the formation energies of ceria surface oxygen vacancies decreased
tendency were obtained: (111) < (100) < (110) [23]. Hence, morphology-controlled synthesis
of nano/microsized metal oxides further brings up new opportunities for tuning the
catalytic activity, selectivity, and stability of metal oxide catalysts via selectively exposing
uniform and higher energy/reactive crystal facets.

For transition-metal oxides (TMOs), the Mars-Van Krevelen (MVK) mechanism is
proverbially accepted to be responsible for the oxidation of VOCs; the gas-phase organic
molecules are oxidized by the active oxygen species of TMOs, then re-oxidized by gas-
phase oxygen molecules, which will regenerate or maintain the oxidation state of the metal
cations [24,25]. The MVK mechanism is mainly caused by transition-metal cations which
possess the ability of electron transport or lattice oxygen mobility for their d or f outer
electrons. As an important TMOs, earth-abundant manganese oxides (MnOx), such as
MnO2, Mn2O3, and Mn3O4, are considered as promising catalytic materials due to their
potentially high catalytic performance, low cost, low toxicity, and durable for the catalytic
oxidation of VOCs [1,26–31], soot [32,33], or CO [34–36]. The superior efficiency catalytic
reactivity of MnOx material mainly related to the existence of various valence states of
manganese ions (Mn2+, Mn3+, and Mn4+ species) and lattice oxygen on the MnOx materials,
resulting in a facile and reversible Mn3+/Mn2+ or Mn4+/Mn3+ redox cycle [25,32,37–39]. For
example, Gandhe et al. [39] revealed that the total oxidation performance of ethyl acetatethe
over cryptomelane type octahedral molecular sieve (OMS-2) material was dependent on the
existence of Mn4+/Mn3+ type redox couples and facile lattice oxygen on catalysts. Peluso
et al. [40] reported that high concentration of Mn3+ was beneficial to weakening Mn-O bond
and increasing the concentration of active oxygen species, which would enhance catalytic
performance of MnOx in the catalytic oxidation of ethanol. Kim et al. [37] reported that
VOCs oxidation over manganese oxides catalysts, including Mn3O4, Mn2O3 and MnO2
follows Mn3O4 > Mn2O3 > MnO2 could be correlated to the surface area and oxygen
mobility of samples. Hence, the multiple valence states and surface reactive oxygen
species of MnOx catalysts are the major determining factors for the catalytic activity of
VOCs oxidation.
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So far, much research efforts have been devoted to further develop high-performance
MnOx catalysts with excellent reactivity and selectivity by tailoring the shape of the cata-
lysts [20,32,41,42]. Feng et al. [43] reported different manganese oxides with distinct mor-
phologies (1D-Mn3O4 nanorod, 2D-Mn3O4 nanoplate, and 3D-Mn3O4 nano-octahedron)
were synthesized by hydrothermal treatment. The Mn3O4 nanoplate catalyst exhibits a
small crystal size, large surface area, more exposed (112) facets, abundant Mn4+, and defec-
tive structure, contributing to a superior catalytic performance at the high space velocity
of 120,000 mL g−1 h−1. Wang et al. [41] reported shape-dependent activation of peroxy
monosulfate by single crystal α-Mn2O3 (cube, octahedra and truncated octahedra) for
catalytic phenol degradation in aqueous solution followed the order of catalytic activity of
three α-Mn2O3 samples as α-Mn2O3-cubic > α-Mn2O3-octahedra > α-Mn2O3-truncated.
Recently, [32] crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for
soot combustion was reported, in the rank of α-Mn2O3-cubic > α-Mn2O3-truncated octa-
hedra > α-Mn2O3-octahedra. The origin of the superior performance of cubic α-Mn2O3
was correlated with the higher concentration of low-coordinated surface oxygen sites and
improved surface redox properties on deliberately exposed (001) crystal facets.

To the best of our knowledge, the ethanol total combustion over different morpholo-
gies α-Mn2O3 materials with selectively exposed different crystal facets has not yet been
investigated in the literature. In the presented work, three types of controllably synthesized
three types of α-Mn2O3 catalysts with different morphology and exposed crystal facets
were prepared by a facile hydrothermal route. The intrinsic properties of α-Mn2O3 catalysts
are characterized by means of XRD, BET, FE-SEM, HR-TEM, FT-IR, H2-TPR, XPS, Ethanol-
TPD, and CO-TPSR techniques. Kinetic study was also performed to understand the
morphology-dependent reactivity of α-Mn2O3 catalysts for ethanol total combustion. As
demonstrated by various physicochemical characterizations, the morphology of α-Mn2O3
catalysts was identified to play a crucial role in exposing the different crystal facets and
therefore dictate the catalytic performance of the ethanol total combustion.

2. Results and Discussion
2.1. Crystal Phase Structure and Morphology of Catalysts

The crystal phase of as-prepared manganese oxides catalysts was confirmed by XRD,
whose patterns were presented in Figure 1. All catalysts showed the same main charac-
teristic diffraction peaks with a remarkable crystallinity, agreeing well with the previous
work [32,41,44,45]. The main characteristic diffraction peaks at 23.1◦, 33.0◦, 38.2◦, 45.2◦,
49.3◦, 55.2◦, and 65.9◦ (2θ values), corresponding to the (211), (222), (400), (332), (431), (440),
and (622) (hkl) planes, can be well-indexed to the body centered cubic phase crystalline
structure of α-Mn2O3 with the lattice parameter a = 0.9409 nm (JCPDS Card No:00-041-
1442). From the diffraction profiles of α-Mn2O3-C, α-Mn2O3-TO, and α-Mn2O3-O, one
can observe the considerably sharpening of the characteristic diffraction peaks with the
increasing relative intensity, indicating the enhanced crystallinity. The crystalline sizes
of α-Mn2O3-C, α-Mn2O3-TO and α-Mn2O3-O were estimated to be 24.8 nm, 51.6 nm and
76.1 nm, respectively. No diffraction peaks of other impurities phase were observed via the
XRD patterns, further implying that three catalysts possessed high phase purity.

The morphologies and crystallographic microstructures of α-Mn2O3 catalysts were
investigated by using FE-SEM and HR-TEM. Figure 2 clearly showed that three catalysts
possessed the same Mn2O3 crystal phase but presented completely different morpholo-
gies, including cubic, truncated octahedra, and octahedra, implying the morphologies
can be controlled by adjusting hydrothermal temperatures and different solvents. The
observations were quite similar to the previous works [32,41]. The α-Mn2O3-C presented
well-regulated cubic morphology with amiable edges and particle sizes ranging between
0.7 and 2.0 µm (Figure 2a,b). Based on these FE-SEM images (Figure 2c–f), the α-Mn2O3-TO
and α-Mn2O3-O catalysts clearly presented uniform distribution of truncated octahedra
and octahedra morphologies with the smooth surface and sharp edges and particle sizes
ranging from 1.0–2.2 µm and 0.8–2.5 µm, respectively. No particle with other morpholo-
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gies was observed in the three samples with cubic, truncated octahedra, and octahedra
morphologies (Figure 2a,c,e).
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TEM characterizations were performed on various α-Mn2O3 catalysts to further inves-
tigate the morphologies and crystallographic features i.e., the exposed crystal facets. TEM
and HR-TEM images (Figure 3) clearly showed that three α-Mn2O3 catalysts presented mor-
phologies of cubic (Figure 3a), truncated octahedra (Figure 3c), and octahedra (Figure 3e),
in consistent with the results of FE-SEM and previous reports [32,41]. Figure 3c showed
that the lattice fringe of cubic α-Mn2O3 (004) facets was 0.23 nm, and α-Mn2O3-C mainly
exposed the (001) crystal facets as the crystal (001) facets and (004) facets were parallel
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to each other. Figure 3f showed that α-Mn2O3-O mainly exposed the crystal (111) facets
which stays parallel to the (222) facets. In addition, the truncated octahedra (Figure 3d)
exposed truncated crystal (001) facets and crystal (111) facets, in good agreement with the
previous works [32,41,44]. According to the literatures [46,47], crystal growth rates in the
direction perpendicular to a high-index plane are usually much faster than those along the
normal direction of a low-index plane, therefore high-index planes are rapidly eliminated
during particle formation. Li et al. [44] studied the influence of preparation conditions on
the morphology control of α-Mn2O3 and found out that the domain relied on the different
growth rates of [001] and [111] crystallographic directions. Therefore, growing orientation
along the [001] and [111] crystallographic directions can form both morphologies of cubic
and octahedra with exposed (001) and (111) crystal facets, respectively.
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FT-IR spectra of the α-Mn2O3 catalysts with different morphologies were shown in
Figure S1. It can be seen that the different catalysts presented the analogical positions of
characteristic peaks as in literature [32], which located around 481, 529, 572, 660, 1626,
3432 cm−1, respectively. In the fingerprint region, the presence of peaks at around 529 cm−1,
572 cm−1, and 660 cm−1 were assigned to the Mn-O-Mn band asymmetric and symmetric
stretching vibration and the peak corresponded to metal-oxygen chains (Mn-O band)
bending vibrations in α-Mn2O3 [48]. In the functional group region, the weak broad band
at around 3432 cm−1 was attributed to the stretching vibration modes of the hydroxyl
functional group and the peak at around 1626 cm−1 was mainly caused by the adsorbed
water molecules on the α-Mn2O3.

2.2. Surface Area and Surface Chemical Properties

The N2 physical adsorption-desorption isotherms and BJH pore-size distribution
patterns of different α-Mn2O3 catalysts are shown in Figure S2 and their SBET, Dp, and
Vp are listed in Table 1. All catalysts displayed a similar type IV isotherms, with H3
(P/P0 = 0.6–1.0) hysteresis rings, indicating the presence of microporous and mesoporous
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in the α-Mn2O3 materials. Table 1 showed that α-Mn2O3-C, α-Mn2O3-TO, and α-Mn2O3-O
catalysts possessed surface area of 30.5, 2.5, and 1.0 m2/g, the pore diameter of 22.1, 13.5,
12.9 nm, pore volume of 0.212, 0.009, and 0.004 cm3/g, respectively. Comparing to α-Mn2O3-
TO and α-Mn2O3-O catalyst, α-Mn2O3-C had much higher surface area, pore diameter, and
pore volume, which is favorable for the activation and diffusion of the reactants, thereby
enhancing the catalytic performance of the catalyst. From the adsorption-condition of N2
molecules on the surface of porous material at 77 K, the surface area and pore volume of
α-Mn2O3-TO and α-Mn2O3-O catalysts primarily relied on interparticle spaces, thus both
catalysts were seen as less developed porous α-Mn2O3 catalysts. The morphologies and
structures of catalysts would have great influence on pore size distributions, which is likely
to be correlated with the distribution of the active sites [24,49]. From FE-SEM images, one
can also observed that all catalysts were composed of solid single crystals with smooth
planes, which brought about much smaller surface area, pore diameter, and pore volume.

Table 1. Preparation parameters, BET specific surface areas (SBET), pore volumes (Vp), Pore diameters
(Dp), reduction peak temperatures, H2 consumptions and surface element composition of three
α-Mn2O3 catalysts.

Catalyst SBET
a

(m2/g)
Vp

(cm3/g)
Dp

b

(nm)

T (◦C) H2 Consumptions (mmol/g) Surface Element
Molar Ratio c

Peak1 Peak2 Mn2O3→Mn3O4 Mn3O4→MnO Total Mn4+/Mn3+ Oads/Olatt

α-Mn2O3-C 30.5 0.212 22.1 287 383 2.5 3.7 6.2 1.27 0.53
α-Mn2O3-TO 2.5 0.009 13.5 409 458 3.6 2.5 6.1 1.15 0.43
α-Mn2O3-O 1.0 0.004 12.9 449 496 3.7 2.3 6.0 1.07 0.38

a Specific surface areas were calculated by the BET method. b The data was calculated via the BJH method
according to the N2 adsorption-desorption isotherms. c The ratios were calculated based on the peak areas
processed by the XPS-Peak software.

The redox properties of various α-Mn2O3 catalysts were examined by using H2-
TPR technique. Figure 4 presented the reduction profiles of the α-Mn2O3 catalysts in
the temperature range from 100 ◦C to 600 ◦C. Two typical peaks can be observed for all
catalysts. The different H2-TPR profiles of three α-Mn2O3 samples indicated the different
reactivity of reduction of reactive oxygen species in different local environments [50,51].
The α-Mn2O3-O catalyst exhibited a large reduction peak centered at about 496 ◦C with a
low temperature shoulder peak at 449 ◦C, corresponding to H2 consumptions of 2.3 and
3.7 mmol·g−1, respectively (Table 1). Comparing with α-Mn2O3-O catalyst with exposed
crystal (111) facets, a similar reduction pattern was observed for the α-Mn2O3-TO catalyst
with exposed (001) & (111) crystal facets, which had the primary reduction peak at 458 ◦C
and the low temperature shoulder peak n at 409 ◦C, corresponding to H2 consumptions
of 3.6 and 2.5 mmol·g−1, respectively (Table 1). The alteration of the reduction behavior
might be caused by the presence of crystal (001) facets on truncated octahedra α-Mn2O3
sample. In the case of α-Mn2O3-C catalyst, two distinct lower temperature reduction
peaks at 287 and 383 ◦C were observed, corresponding to H2 consumptions of 2.5 and
3.7 mmol·g−1, respectively (Table 1). The two reduction peaks of various α-Mn2O3 samples
corresponds to a stepwise transformation under H2 atmosphere. The first step peak
represented the reduction of Mn2O3 to Mn3O4, whereas the second step peak corresponded
to the reduction of Mn3O4 to the final state MnO, similar to the findings reported in the
previous literatures [27,32,52–56]. The order of low-temperature reducibility for surface
oxygen is α-Mn2O3-C with crystal (001) facets > α-Mn2O3-TO with crystal (001) & (111)
facets > α-Mn2O3-O with crystal (111) facets, which is related to the fact that surface O
atoms on (001) facet, due to its high flexibility, are energetically more facile for release
and participation than those on (111) facet [32], suggesting a more facile surface oxygen
reducibility for α-Mn2O3-C and morphology-dependence of redox behavior. The excellent
reducibility of the α-Mn2O3 could be beneficial to the enhanced catalytic activity for the
ethanol combustion.



Catalysts 2023, 13, 865 7 of 19

Catalysts 2022, 12, x FOR PEER REVIEW 8 of 22 
 

 

 

 
Figure 4. H2-TPR profiles of α-Mn2O3 catalysts with different morphologies. 

XPS measurements were carried out to identify the surface element compositions, 
element valence states, and adsorbed oxygen species of α-Mn2O3 catalysts. In the XPS 
survey spectrum presented in Figure S3A, the peaks of carbon (C 1s), oxygen (O 1s), and 
manganese (Mn 2p) can be clearly detected. In Figure S3B, the binding energy (BE) ob-
tain at 284.6 eV and 287.8 eV obtained were assigned to the C-C (nonoxygenated carbon) 
and C-O (oxidized carbon) species, respectively. Figure 5 displayed the Mn 2p and O1s 
spectra for different samples, respectively. The related results of surface element compo-
sitions in molar ratio were listed in Table 1. The XPS spectra of Mn 2p presented two 
contributions, assignable to spin-orbit splitting into Mn 2p3/2 (641.6 eV) and Mn 2p1/2 
(653.2 eV), respectively. The BE separation between the two main peaks was 11.6 eV [57]. 
The Mn 2p spectrum of each catalyst could be further resolved into four peak compo-
nents, attributable to the presence of surface Mn3+ species at BE = 641.2 and 652.9 eV and 
Mn4+ species at BE = 642.6 and 654.0 eV [58]. According to Table 1, the surface Mn4+/Mn3+ 
molar ratio of α-Mn2O3-C was significantly higher than the other two catalysts, indicat-
ing that α-Mn2O3-C with (001) crystal facets possessed more surface Mn4+ species. The 
differences in surface Mn4+/Mn3+ molar ratios of three catalysts may be explained by the 
difference in morphologies and the degree of coordination unsaturation of surface active 
atoms on exposed crystal facets. 

Figure 4. H2-TPR profiles of α-Mn2O3 catalysts with different morphologies.

XPS measurements were carried out to identify the surface element compositions,
element valence states, and adsorbed oxygen species of α-Mn2O3 catalysts. In the XPS
survey spectrum presented in Figure S3A, the peaks of carbon (C 1s), oxygen (O 1s), and
manganese (Mn 2p) can be clearly detected. In Figure S3B, the binding energy (BE) ob-
tain at 284.6 eV and 287.8 eV obtained were assigned to the C-C (nonoxygenated carbon)
and C-O (oxidized carbon) species, respectively. Figure 5 displayed the Mn 2p and O1s
spectra for different samples, respectively. The related results of surface element com-
positions in molar ratio were listed in Table 1. The XPS spectra of Mn 2p presented two
contributions, assignable to spin-orbit splitting into Mn 2p3/2 (641.6 eV) and Mn 2p1/2
(653.2 eV), respectively. The BE separation between the two main peaks was 11.6 eV [57].
The Mn 2p spectrum of each catalyst could be further resolved into four peak components,
attributable to the presence of surface Mn3+ species at BE = 641.2 and 652.9 eV and Mn4+

species at BE = 642.6 and 654.0 eV [58]. According to Table 1, the surface Mn4+/Mn3+ molar
ratio of α-Mn2O3-C was significantly higher than the other two catalysts, indicating that
α-Mn2O3-C with (001) crystal facets possessed more surface Mn4+ species. The differences
in surface Mn4+/Mn3+ molar ratios of three catalysts may be explained by the difference
in morphologies and the degree of coordination unsaturation of surface active atoms on
exposed crystal facets.

As revealed in Figure 5B, the O1s spectra of different α-Mn2O3 catalysts were decom-
posed into two components at BE = 529.6 and 531.2 eV, corresponding to the surface lattice
oxygen (Olatt: O2−) and Oads such as O−, O2

−, O2
2− and OH− [37,58–60], respectively. The

surface Oads/Olatt molar ratios of α-Mn2O3-C, α-Mn2O3-TO, and α-Mn2O3-O were 0.53,
0.43, and 0.38, respectively (Table 1). Obviously, the amount of surface adsorbed oxygen in
α-Mn2O3-C with (001) facets is much higher than that of α-Mn2O3-TO with (111) & (001)
and α-Mn2O3-O with (111) facets, implying the important role of exposed (001) crystal
facet in oxygen vacancy formation. The increase in surface adsorbed oxygen species might
have a significant effect in enhancing catalytic performance for total oxidation reactions
mainly because the surface oxygen species had higher mobility than lattice oxygen in the
presence of abundant oxygen vacancies [61–63].

Oxygen vacancy concentration is crucial in combustion reaction, and oxygen can be
chemisorbed on the site of oxygen vacancy to become adsorbed reactive species under
reaction atomosphere. Russo et al. [59] have directly detected the existence of oxygen
vacancy by Raman characterization, agreeing with the XPS characterization results of
surface adsorbed oxygen species.



Catalysts 2023, 13, 865 8 of 19

Catalysts 2022, 12, x FOR PEER REVIEW 9 of 22 
 

 

 

 
Figure 5. XPS patterns of the Mn 2p (A) and O 1s (B) of α-Mn2O3 catalysts with different mor-
phologies. 

As revealed in Figure 5B, the O1s spectra of different α-Mn2O3 catalysts were de-
composed into two components at BE = 529.6 and 531.2 eV, corresponding to the surface 
lattice oxygen (Olatt: O2−) and Oads such as O−, O2−, O22− and OH− [37,58–60], respectively. 
The surface Oads/Olatt molar ratios of α-Mn2O3-C, α-Mn2O3-TO, and α-Mn2O3-O were 0.53, 
0.43, and 0.38, respectively (Table 1). Obviously, the amount of surface adsorbed oxygen 
in α-Mn2O3-C with (001) facets is much higher than that of α-Mn2O3-TO with (111) & 
(001) and α-Mn2O3-O with (111) facets, implying the important role of exposed (001) 
crystal facet in oxygen vacancy formation. The increase in surface adsorbed oxygen spe-
cies might have a significant effect in enhancing catalytic performance for total oxidation 
reactions mainly because the surface oxygen species had higher mobility than lattice 
oxygen in the presence of abundant oxygen vacancies [61–63]. 

Oxygen vacancy concentration is crucial in combustion reaction, and oxygen can be 
chemisorbed on the site of oxygen vacancy to become adsorbed reactive species under 
reaction atomosphere. Russo et al. [59] have directly detected the existence of oxygen 
vacancy by Raman characterization, agreeing with the XPS characterization results of 
surface adsorbed oxygen species. 

In order to further unravel the origin of the morphology effect of α-Mn2O3, 
CO-TPSR was also performed by using CO as probe molecule over online MS. The 
curves of the CO2 (m/z = 44) signals for three catalysts were displayed in Figure 6. The 
positions of CO2 peaks can be related to the different reactivity of the surface reactive 
oxygen species to oxidize CO. Figure 6 clearly showed the different capability for CO2 
generation by surface active oxygen species over the samples, which was ranked as the 
decreased order of α-Mn2O3-C with (001) facets > α-Mn2O3-TO with (001) & (111) facets > 
α-Mn2O3-O with (111) facets. It was evident that theα-Mn2O3-C sample with exposed 
(001) could afford the much more abundant surface reactive oxygen species for CO2 
generation than the other two samples with exposed (111) and mixed (001) & (111) fac-
ets, agreeing well with the sequence of the H2-TPR and XPS results discussed above. The 
results demonstrated the α-Mn2O3-C with (001) facets contains more lattice oxygen and 
surface oxygen species as activated oxygen species for CO oxidation than (111) facets. 

Figure 5. XPS patterns of the Mn 2p (A) and O 1s (B) of α-Mn2O3 catalysts with different morphologies.

In order to further unravel the origin of the morphology effect of α-Mn2O3, CO-TPSR
was also performed by using CO as probe molecule over online MS. The curves of the CO2
(m/z = 44) signals for three catalysts were displayed in Figure 6. The positions of CO2 peaks
can be related to the different reactivity of the surface reactive oxygen species to oxidize
CO. Figure 6 clearly showed the different capability for CO2 generation by surface active
oxygen species over the samples, which was ranked as the decreased order of α-Mn2O3-C
with (001) facets > α-Mn2O3-TO with (001) & (111) facets > α-Mn2O3-O with (111) facets. It
was evident that theα-Mn2O3-C sample with exposed (001) could afford the much more
abundant surface reactive oxygen species for CO2 generation than the other two samples
with exposed (111) and mixed (001) & (111) facets, agreeing well with the sequence of the
H2-TPR and XPS results discussed above. The results demonstrated the α-Mn2O3-C with
(001) facets contains more lattice oxygen and surface oxygen species as activated oxygen
species for CO oxidation than (111) facets.
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H2-TPR and CO-TPSR have provided a great deal of practical information on the
reactivity of surface oxygen species towards hydrogen molecule. However, the information
is indirect as to how strongly the surface and lattice oxygen held in α-Mn2O3 catalysts
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reacts with substrate molecule i.e., ethanol. Ethanol-TPD is a much more direct measure for
the determination of surface oxygen species as compared to H2-TPR. Hence, the catalytic
nature of surface adsorbed reactive oxygen species and the desorption behavior of ethanol
on the morphology-controlled α-Mn2O3 catalysts with different exposed crystallographic
facets has been investigated by using ethanol-TPD technique. Figure 7 showed the ethanol-
TPD profiles of different morphologies α-Mn2O3 catalysts. As the desorption temperature
rises, the ethanol reactant as well as some important intermediates including ethanol,
acetaldehyde, CO2, and H2O were detected on mass spectrometer, corresponding to the
signals of m/z = 31, m/z = 29, m/z = 44, and m/z = 18, respectively. It was noticed that the
dehydrogenation of ethanol occurred already over three samples in the low temperature
range of 40–200 ◦C, as evidenced by the characteristic peak of acetaldehyde at m/z = 29.
TPD profiles for α-Mn2O3 catalysts show an apparent morphology-dependent CO2 desorp-
tion profile at temperature above 160 ◦C. The significantly higher intensity as well as the
lowered desorption temperature of CO2 over α-Mn2O3-C catalyst strongly suggest that the
preferential exposure of (001) crystal facet by tailoring the catalyst morphology may favor
the generation of more abundant surface oxygen reactive species and therefore facilitate
CO2 production.
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2.3. Catalytic Performance of Different Shaped α-Mn2O3 Catalysts

The morphology-dependent catalytic performances of α-Mn2O3-C, α-Mn2O3-TO, and
α-Mn2O3-O catalysts were evaluated for ethanol total combustion and the results were
shown in Figure 8, Figure S4 and Table 2. Figure 8A shows a clear morphology-dependent
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catalytic performance for ethanol total combustion with the following order: α-Mn2O3-C
(190 ◦C) > α-Mn2O3-TO (290 ◦C) > α-Mn2O3-O (340 ◦C). α-Mn2O3-C catalyst with exposed
(001) facets exhibited the best catalytic performance on ethanol total oxidation, achieving
the complete conversion temperature at 190 ◦C, which was 150 ◦C lower than α-Mn2O3-O
catalyst with exposed crystal (111) facets. The same order of CO2 yield was found in
Figure 8B, exhibiting nearly 100% CO2 yield at temperature of 240 ◦C over α-Mn2O3-C,
350 ◦C over α-Mn2O3-TO, and 400 ◦C over α-Mn2O3-O catalysts, respectively. Figure 8C
showed the volcano-like plot of the acetaldehyde yield over three catalysts, presenting
the maximum in acetaldehyde yield of 35.4% at 160 ◦C over α-Mn2O3-C, 45.8% at 230 ◦C
over α-Mn2O3-TO, and 42.2% at 300 ◦C over α-Mn2O3-O catalyst, respectively, strongly
suggesting that acetaldehyde is the primary intermediate species during ethanol total
oxidation, in good accordance with previous work [5,25,28]. It was worth noting that
acetaldehyde and CO2 were the only detected carbon-containing products. On the basis
of product distribution observed, we concluded that the cascade reaction pathway of
ethanol total combustion via acetaldehyde as important intermediate over different crystal
facets of α-Mn2O3. Figure 8D and Table 2 further listed the important catalytic data of
different α-Mn2O3 catalysts with different exposed crystal facets in terms of T10, T50, and
T90, which were defined as the values of the reaction temperature corresponding to the
ethanol conversions of 10%, 50%, and 90%, respectively. In this study, T10 for α-Mn2O3-C,
α-Mn2O3-TO, and α-Mn2O3-O catalysts were 90, 151, and 179 ◦C; T50 were 140, 208, and
261 ◦C; and T90 were 178, 259, and 314 ◦C, respectively. In addition, the normalized ethanol
combustion rate of α-Mn2O3-C, α-Mn2O3-TO, and α-Mn2O3-O at 90 ◦C were about 2.84,
1.53, and 0.84 mmol·min−1·m−2·104, respectively. The superior ethanol combustion activity
for α-Mn2O3-C catalyst with exposed (001) crystal facets than α-Mn2O3 with only (111)
crystal facets can be closely related to the low-temperature reducibility and highly active
surface mobile oxygen species over the α-Mn2O3 surface.
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Table 2. The catalytic activity data of the α-Mn2O3 catalysts with different exposed crystal facets for
ethanol oxidation under the same reaction conditions: 600 ppm ethanol, 20 vol.% O2, N2 as balance
gas, SV = 192,000 mL/(g·h).

Catalysts
Catalytic Activity (◦C) T

(◦C)
Ethanol

Conversion (%)
Normalized Rate

(mmol·min−1·m−2) × 104
Ea

(kJ/mol)
R2

for EaT10 T50 T90

α-Mn2O3-C 90 140 178 90 10.1 2.84 55.3 0.99
α-Mn2O3-TO 151 208 259 90 0.50 1.53 63.7 0.99
α-Mn2O3-O 179 261 314 90 0.10 0.84 68.3 0.98

The BET surface area is an important parameter in determining the catalytic per-
formance of heterogeneous catalysts [64–66]. Herein, to eliminate the effect of the BET
surface areas, the kinetics of ethanol catalytic oxidation were investigated. And Arrhenius
plots were obtained over α-Mn2O3 catalysts with different exposed crystal facets in the
kinetically controlled regime. The apparent activation energy (Ea) was calculated via Ar-
rhenius equation by normalizing reaction rate on per unit BET surface area. The results
in Figure 9A and Table 2, showed that α-Mn2O3-C catalyst exhibited the much higher
initial normalized ethanol reaction rate at low temperature compared with α-Mn2O3-TO,
and α-Mn2O3-O catalysts, in the reverse order of the apparent reaction activation energy.
The lower the Ea values indicate the easier oxidation of ethanol, and hence the better
performance of a catalyst [1,31,32,34,67]. Under the same reaction conditions, (Table 2)
the Ea values of α-Mn2O3-C, α-Mn2O3-TO, and α-Mn2O3-O catalysts were 55.3 kJ/mol,
66.7 kJ/mol, and 68.3 kJ/mol, respectively. The observed morphology effect of α-Mn2O3
on the catalytic activity is presumably related to the nature of exposed crystal facets, and
density of surface Mn4+ and surface reactive oxygen species, which are responsible for
the adsorption/activation of ethanol and oxygen molecules. Hence, α-Mn2O3-C exhibited
superior catalytic performance than α-Mn2O3-TO and α-Mn2O3-O catalysts, and further
illustrated cubic with (001) facets was more active followed by octahedra with (111) facets,
in consistent with our XPS, CO-TPSR, and ethanol-TPD results discussed earlier.
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As documented in the literature, the dissociation of oxygen molecules on can be seen
as the first elementary step of catalytic oxidation over metal or oxide surfaces. Therefore,
the activation capability of oxygen molecules play an important role in surfaces of oxidation
catalyst. For metal oxide catalyst, oxygen molecules can be facilely adsorbed and activated
in the presence of oxygen vacancies, forming surface adsorbed reactive oxygen species,
which would participate in the oxidation of organic substrates. Recently, a combined
experimental/theoretical study has been performed by our group [32] to investigate the
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morphology–dependent reactivity of α-Mn2O3 on soot combustion and gained the origin
of the difference on their crystal facet-dependent reactivity. The density functional theory
(DFT) calculations revealed that the oxygen atoms on top-layer of crystal (001) facets on α-
Mn2O3 catalysts can flexibly move with the oxygen atoms of sub-layer. By contrary, such a
transfer is energetically unfavorable over the crystal (111) facets of α-Mn2O3. Moreover, the
formation energy of oxygen vacancy over (001) crystal facet and the coordination number
(CN) of surface oxygen atoms is remarkably lower than that on (111) surface. As pointed
by An et al. [68], the enhanced coordination unsaturation on specially exposed crystal facet
may facilitate oxidation reactions. Accordingly, abundant surface Mn4+ ions and surface
adsorbed reactive oxygen species over (001) surface of α-Mn2O3 catalysts may facilitate
ethanol/oxygen activation at low temperature and boost ethanol combustion efficiency, in
good accordance with our activity and characterization results.

2.4. Effects of SV, Ethanol, and Water Vapor Concentration

The influence of SV, ethanol, and water vapor concentration was investigated over the
so-far best-performing α-Mn2O3-C catalysts and presented in Figure 10. The effect of SV
in Figure 10A showed that the catalytic performance increased as the SV decreased, and
the temperatures for complete ethanol oxidation to CO2 also shifted from 230 ◦C down
to 180 ◦C. The temperature values corresponding to the maximum acetaldehyde yield
also decreased from 160 ◦C to 150 ◦C, indicating that the activity of the sample increased
as the space velocity decreased. The influence of the initial concentration of ethanol
was studied and depicted in Figure 10B. Under the reaction conditions of initial ethanol
concentration = 1200 ppm, α-Mn2O3-C catalyst showed the catalytic activity of T10 = 99 ◦C,
T50 = 156 ◦C, and T90= 203 ◦C which was inferior to those (T10 = 90 ◦C, T50 = 140 ◦C,
and T90 = 178 ◦C) obtained from the initial ethanol concentration = 600 ppm as shown
in Table 3 and Figure 10B. The impact of steam was also investigated over α-Mn2O3-C
catalyst. Figure 10C clearly showed that the oxidation rate of ethanol could be considerably
suppressed by the presence of steam in the feed, in accordance with the inhibition effect of
steam on VOCs combustion in the literatures [28,30,69]. This is not unexpected because
the strong and competitive adsorption of water vapor on the catalyst surface may lead to
a decrease in the available active sites towards VOCs and oxygen, and therefore inhibit
ethanol combustion reaction. Under the reaction conditions of 6 vol.% H2O in the feed, the
catalytic activity (T10 = 150 ◦C, T50 = 195 ◦C, and T90 = 218 ◦C) over α-Mn2O3-C catalyst
became much worse than that under conditions without H2O (T10 = 90 ◦C, T50 = 140 ◦C,
and T90 = 178 ◦C), as shown in Table 3 and Figure 10D.

2.5. The Stability of α-Mn2O3-C Catalyst

Figure 11 displayed the ethanol catalytic combustion performance as a function of
time on stream over the best-performing α-Mn2O3-C catalyst with exposed (001) crystal
facets under the conditions of reaction temperature 230 ◦C, SV 192,000 mL/(g·h), and feed
composition of 600 ppm ethanol, 20 vol.% O2, 6 vol.% H2O, N2 as balance gas. Apparently,
with the addition of 6 vol.% H2O, the α-Mn2O3-C catalyst exhibited outstanding reac-
tion stability for ethanol oxidation was assessed with experiments lasting at over 230 ◦C.
According to the stability data of successive measurements (Figure 11A), the ethanol conver-
sion, acetaldehyde yield, and CO2 yield remained almost unchanged for the test duration
of more than 50 h, illustrating the excellent stability over the entire run of the stability
test. Figure 11B presented almost the same XRD diffraction peaks on the used α-Mn2O3-C
catalyst as the pattern on the fresh example. Furthermore, the FE-SEM inset in Figure 11B
illustrated that the α-Mn2O3-C sample remained their original cubic morphology after the
test duration of more than 50 h. Based on the stability test, it appeared that α-Mn2O3-C
could be used as one of the promising manganese based catalysts for efficient ethanol
combustion under practical conditions.
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Figure 10. The catalytic performances of the α-Mn2O3-C catalyst under different reaction conditions
of ethanol combustion, the effect of performance for (A) space velocity: 96,000 mL/(g·h) and 192,000
mL/(g·h). (B) ethanol concentration: 600 ppm and 1200 ppm. (C) steam: 6 vol.% H2O. (D) T10,
T50, and T90: the temperature over the α-Mn2O3-C catalyst with different conditions where ethanol
conversion approaches 10%, 50%, and 90%, respectively.
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patterns of used and fresh α-Mn2O3-C catalysts, FE-SEM image of used α-Mn2O3-C catalyst. Reaction
conditions: reaction temperature 230 ◦C, 6 vol.% H2O, ethanol concentration 600 ppm, 20 vol.% O2,
N2 balance, SV = 192,000 mL/(g·h).
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Table 3. The catalytic performances of the α-Mn2O3-C catalyst under different reaction conditions of
ethanol oxidation.

Ethanol Con. Tem
(◦C)

600 ppm Ethanol
SV of 96,000 mL/(g·h)

600 ppm Ethanol
SV of 192,000 mL/(g·h)

1200 ppm Ethanol
SV of 192,000 mL/(g·h)

600 ppm Ethanol, 6 vol.% H2O,
SV of 192,000 mL/(g·h)

T10 79 90 99 150
T50 136 140 156 195
T90 172 178 203 218

3. Materials and Methods
3.1. Catalyst Synthesis

Three types of morphology-tuned α-Mn2O3 catalysts, including morphology of cubic,
truncated octahedra and octahedra, were synthesized via a low-temperature hydrother-
mal method according to the literatures earlier [32,41,44,45]. For truncated octahedra and
octahedra α-Mn2O3 catalysts was prepared by solvothermal method with different sol-
vents. The first catalyst α-Mn2O3-octahedra (refer as α-Mn2O3-O), for a typical synthesis,
Mn(NO3)2·4H2O (16 mmol) was dissolved in ethanol (52 mL) at room temperature (RT)
under vigorous magnetic stirring for 20 min to form a homogeneous solution, which then
then transferred to a 60 mL Teflon-lined stainless-steel autoclave. The autoclave was tightly
sealed and heated for 10 h at 383 K. After hydrothermal reaction, the autoclave was cooled
down to RT naturally. The resulting solid product was centrifuged, washed three times in
distilled water and ethanol to eliminate impurity ions, and then placed into an oven at 373 K
overnight to obtain the α-Mn2O3-O catalyst. Similarly, the synthetic method of the second
catalyst, α-Mn2O3-truncated octahedra (referred to as α-Mn2O3-TO), merely changed the
solvent replaced by 2-butanol. All catalysts should be calcined in air atmosphere for 2 h
at 873 K. The third catalyst, α-Mn2O3-cubic (refer as α-Mn2O3-C), glucose (6 mmol) was
added into a KMnO4 solution (6 mmol of KMnO4 was dissolved in 60 mL of distilled water)
at RT under vigorous magnetic stirring for another 20 min to form a homogeneous solution,
which then was transferred to a 100 mL autoclave, which was tightly sealed and heated for
10 h at 433 K, after natural cooling to RT, immediately followed via centrifugation, washing,
and final drying to obtain the precursor MnCO3. Prior to yielding cubic α-Mn2O3 catalyst,
the precursor MnCO3 should be calcined in air atmosphere for 2 h at 873 K with a ramp rate
of 5 K/min. Finally, a series of α-Mn2O3 catalysts were crushed and sieved to 40–60 mesh
for catalytic activity tests.

3.2. Catalyst Characterization

The crystalline structure of catalysts was recorded by the powder X-ray diffraction
(XRD) on a Bruker D2 Phaser (Bruker Axs Gmbh, Karlsruhe, Germany) using Cu-Kα

radiation. The 2θ of the XRD range from 15o to 80◦ with the scan speed during analysis
was 0.5 s/step. Field emission-scanning electron microscopy (FE-SEM) surface morphology
of the catalyst on Hitachi S-4800 instrument (Hitachi, Ibaraki, Japan). High-resolution
transmission electron microscopy (HR-TEM) images of the catalysts were taken on Hitachi
JMF-2100 instrument (Hitachi, Japan). The Fourier transform infrared (FT-IR) spectrum
of the catalyst was collected by using a Nicolet 380 spectrometer (Nicolet, Madison, WI,
USA) in the range of 400–4000 cm−1. The nitrogen adsorption−desorption isotherms were
performed on a Micromeritics ASAP 2460 (Micromeritics, Norcross, GA, USA) analyzer at
77 K. By using Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) models,
specific surface areas (SBET), pore diameter (DP) and pore volume (VP) of the catalysts
were calculated from the adsorption branches of the isotherms. Prior to measurement
it was degassed at least for 5 h at 393 K. The X-ray photoelectron spectroscopy (XPS)
measurements of the catalyst was examined on ESCALAB 250 Xi (Thermo Fisher Scientific,
Waltham, MA, USA) using Al-Kα X-ray source. The binding energy scale was corrected for
surface charging by use of the C 1s peak of contaminant carbon as reference at 284.6 eV.

Hydrogen temperature-programmed reduction (H2-TPR) measurements were carried
out on a chemisorption analyzer (Micromeritics, Auto Chem II2920, Norcross, GA, USA)
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instrument, which was equipped with a thermal conductivity detector (TCD) to calibrate
the H2 consumption of metal valence reduction. Before H2-TPR experiments started,
the catalysts (50 mg, 40–60 mesh) were loaded into a U-shaped fixed-bed quartz micro-
reactor and pretreated in an Ar atmosphere of 50 mL/min for 1 h at 573 K, and then
cooled down to 373 K. The pretreated catalysts were reduced under a mixture-gas of
10 vol.% H2–90 vol.% Ar flow with 30 mL/min and heated in the range of 373 K to 1173 K
with a ramp rate of 10 k/min. Ethanol temperature-programmed desorption (Ethanol-TPD)
measurements were carried out via using a Micromeritics AutoChem II2920 instrument
connected to mass spectrometry (MS) (Hiden, HPR20, Warrington, UK) instrument. The
catalysts (50 mg, 40–60 mesh) were loaded into a U-shaped fixed-bed quartz micro-reactor
and previously treated for 0.5 h at 373 K in pure He flow with 30 mL/min, cooling down to
313 K. The adsorption experiment of ethanol was carried out with a He flow of 30 mL/min.
After saturation, the temperature was increased from 313 K to 873 K with a ramping rate of
10 K/min. The desorption substances coming from α-Mn2O3 catalysts were monitored by
means of online MS apparatus.

3.3. Temperature-Programmed Surface Reactions (TPSR) and Mixed-Gas without Oxygen

The CO-TPSR measurements(Micromeritics, Auto Chem II2920, America ) to charac-
terize the nature of the active sites of catalysts on α-Mn2O3 catalysts were performed in a
fixed-bed tubular quartz system (Φ = 6.0 mm) via using MS, where masses (m/e: CO = 28,
CO2 = 44) were monitored. 50 mg of each catalyst were previously treated for 0.5 h at
773 K in a pure Ar flow of 50 mL/min, in order to remove physical adsorption oxygen,
cooling down to 373 K. The mixture-gas of 5 vol.% CO-95 vol.% He with a total flow rate
of 30 mL/min increasing the temperature from 373 K to 1173 K, and a ramping rate of
5 K/min.

3.4. Catalytic Performance Evaluation

The morphology-dependent catalytic performance of three α-Mn2O3 catalysts for
ethanol total combustion were evaluated in a flow-through quartz micro-reactor (Φ = 6.0 mm),
which was positioned in the center of the tube furnace at atmospheric pressure. The catalytic
combustion temperature was monitored via a thermocouple, which was placed in a few
millimeters above the bottom of the catalyst fixed-bed. 100 mg (40–60 mesh) of catalyst was
held in place by using quartz wool at upper and lower ends [70,71]. The total flow rate of the
uniformity mixed-gas (600 ppm ethanol/20 vol.% O2/N2 balance gas) passed through the
catalyst fixed-bed remained at 320 mL/min, which was detected by using mass flow-meter.
The space velocity (SV) of catalytic ethanol combustion was 192,000 mL/(g × h). Prior to
catalytic evaluation, to exclude the effect of impurities, the catalysts should be pretreated
for 30 min at 333 K in air atmosphere. The outflow gases of the oxidation reaction from the
reactor were quantitatively analyzed online via a Gas Chromatograph (Shimadzu, GC-2014C,
Kyoto, Japan) which was equipped with two detectors of a thermal conductivity detector
(TCD) and a flame ionization detector (FID). And TCD was only responsible for the detection
of CO2, FID responsible for the detection of ethanol and acetaldehyde due to it can respond to
almost all organic matter. In the present work, the final products of ethanol total combustion
were CO2 and H2O. During the ethanol oxidation, the main products were acetaldehyde,
CO2 and other remaining trace products which can be ignored. The effect of performance for
SV, ethanol and water vapor concentration were explored. The thermal stability of α-Mn2O3
catalyst was tested for 50 h under the condition of 6.5 mg catalyst was diluted with 100 mg
of SiO2, 600 ppm ethanol, 6vol.% H2O, 20 vol.% O2, N2 as the equilibrium gas, and SV was
192,000 mL/(g × h). The conversion of ethanol was calculated based on the participation of
ethanol as follows (1):
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X =
(
(C acetaldehyde out +

Cco2 out
2 )

/
(Cacetaldehyde out +

Cco2 out
2 + Cethanol out )

)
×100%

Sco2 =
(

Cco2 out
2 /(Cacetaldehyde out +

Cco2 out
2 + Cethanol out)

)
× 100%

Sacetaldehyde = Cacetaldehyde out/
(

Cacetaldehyde out+(
Cco2 out

2 )
)
× 100%

Yyield = conversion× selectivity× 100%, (1)

where X, ethanol conversion rate; C, concentration; S, selectivity of products; Y, yield of
products.

3.5. Kinetic Analysis for Ethanol Total Oxidation

To obtain kinetics data, the kinetic research was performed under ethanol conversion
below 15% with the condition of 600 ppm ethanol, 20 vol.%O2, N2 as the equilibrium
gas, and SV was 192,000 mL/(g·h) for three α-Mn2O3 catalysts in the range of 333 K to
383 K. The catalytic activation energy (Ea) of the catalysts were calculated according to the
Arrhenius Equation (2):

lnR = −A exp(− Ea

RT
), (2)

where Ea, apparent activation energy (kJ/mol); R, the reaction rate (mol·min−1·m−2); T,
the value of the reaction temperature (K).

4. Conclusions

In summary, a series of α-Mn2O3 catalysts with different morphologies, including
cubic, truncated octahedra and octahedra, were controllably synthesized by using a facile
hydrothermal process and systematically investigated for their morphology-dependent
catalytic performance in ethanol total combustion. The catalytic activity according to each
manganese oxide catalyst was in the order of α-Mn2O3-C > α-Mn2O3-TO > α-Mn2O3-
O. The present study indicated that this morphology-dependent reactivity of α-Mn2O3
nanocrystal was originated from the chemical nature of the exposed (001) facets. As revealed
by characterization results of HR-TEM, H2-TPR, XPS, CO-TPSR, ethanol-TPD, the superior
activity of α-Mn2O3-C sample can be well correlated with its enhanced low temperature
reducibility, abundant surface Mn4+ species and surface reactive oxygen species governed
by the specially exposed (001) facets. Moerover, the effect of space velocity and feed
compsotion (ethanol and steam) were also investigated on α-Mn2O3-C catalyst under
different reaction conditions. Furthermore, the α-Mn2O3-C catalyst exhibited good stability
for 50 h at 230 ◦C in the presence of 6 vol.% H2O, demonstrating that α-Mn2O3-C catalyst
could be used as promising catalyst for efficent practical total oxidation of ethanol. This
study presents a new strategy to design and develop the catalyst for efficient combustion
of ethanol by morphological control of earth-abundant inexpensive Mn-based catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13050865/s1, Figure S1: FT-IR spectra of α-Mn2O3 catalysts
with different morphologies; Figure S2: N2 adsorption-desorption isotherms (A), and the pore size
distributions (B) of three α-Mn2O3 catalysts; Figure S3: XPS patterns of the survey (A) and C 1s
(B) of different morphologies α-Mn2O3 catalysts; Figure S4: Ethanol conversion, acetaldehyde and
CO2 selectivity profiles of ethanol catalytic performance over α-Mn2O3 catalysts with different
morphologies. α-Mn2O3-C (A), α-Mn2O3-TO (B), α-Mn2O3-O (C) under normal conditions.
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