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Abstract: Mesoporous carbon nitride (mpg-C3N4) was prepared by using cyanamide as a precursor
and colloidal nanosilica as a template. Then, the mpg-C3N4 was used as a catalytic support to
load CoOx. The physicochemical properties of the synthesized CoOx/mpg-C3N4 materials were
elucidated by multiple characterization methods, and the catalytic activities were examined in the
selective oxidation of ethylbenzene (EB) under atmospheric pressure by using tert-butyl hydrogen
peroxide (TBHP) as an oxidant. It was found that mpg-C3N4 possessed a higher specific surface area
than other carbon nitride materials, and its abundant Nb species were able to interact with Co (II)
species. When the dosages of EB and TBHP were 10 mmol and 30 mmol, respectively, the reaction
temperature was 100 ◦C, and the reaction time was 10 h, the conversion rate of ethylbenzene was
62%, and the selectivity of AP was 84.7%.

Keywords: carbon nitride (C3N4); mesoporous material; cobalt oxide; selective oxidation; ethylbenzene

1. Introduction

Liquid-phase selective oxidation of arenes is one of the most significant strategies for
the synthesis of aromatic compounding, including aromatic alcohols, aldehydes, ketones,
acids, etc. [1]. From the viewpoints of both fundamental research and industrial application,
it is of great interest to develop an efficient and highly selective route for selective oxidation
reactions [2]. Among these products, acetophenone (AP) is the simplest aromatic ketone
and is widely used to manufacture pharmaceuticals, resins, drugs, perfumes, aldehydes,
flavoring agents, etc. Conventionally, AP is produced as a byproduct in the decomposition
of cumene hydroperoxide. The Friedel–Crafts acylation reaction, using acid halides or
anhydrides in the presence of Lewis acids, is also a well-established process for the pro-
duction of AP. However, these two processes are environmentally harmful because of the
generation of a large amount of corrosive waste [3].

Alternatively, liquid-phase direct oxidation of ethylbenzene (EB) is a practical ap-
proach for the synthesis of AP. By now, the most widely reported oxidants include molecular
oxygen (O2), hydrogen peroxide (H2O2), and tert-butyl hydroperoxide (TBHP). Although
O2 is widely available and inexpensive, the oxidative reaction in the use of O2 always
demands high temperatures and pressures. The use of H2O2 can enable the reaction to
proceed under atmospheric pressure. However, the low conversion of EB is still a practical
issue [4,5]. By comparison, adopting TBHP as an oxidant is a preferable method for the
synthesis of AP as the process can be conducted under milder reaction conditions and also
offer relatively higher productivity of AP [5].

Until now, the catalysts reported for the TBHP-involved oxidation in the synthesis
of AP are mainly supported by Cu (II) [2], Co (II) [1], Cr (III) [6], Ag (I) [7], Pd (II) [8]
compounds, etc. Despite their convenience in catalyst separation and product purification,
the catalyst supports are mainly silica (or mesoporous silica) and pure carbon materials.
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Due to the low interaction, the supported metal species might separate from the catalyst
support, and thus, leach out into the liquid phase [9,10]. In this sense, it is of interest to
explore a new material as catalyst support, which not only has a large surface area but can
also anchor the active metal components in the catalytic reactions.

Graphitic carbon nitride (g-C3N4) is a novel inorganic material, which because of its
combination of multiple unique physicochemical properties, is widely used in photocataly-
sis [11,12], fuel cell [13], gas storage [14], etc. In the field of thermal catalysis, owing to its
abundant nitrogen-containing groups, g-C3N4, especially mesoporous g-C3N4 with a large
surface area, has been widely reported to be capable of dispersing and anchoring many
metal species including K [15,16], Zn [17,18], Co [19,20], Au [21], Pd [22,23], etc. Therefore,
g-C3N4 material has been regarded as a promising catalytic support in metal-catalyzed
heterogeneous reactions [8]. Given the shortcomings in the use of the traditional catalyst
supports, in this work, mesoporous carbon nitride (mpg-C3N4) was prepared by a hard-
templating method, and then, utilized as a support to load cobalt oxide. The synthesized
CoOx/mpg-C3N4 materials as heterogeneous catalysts showed good and stable catalytic
activity in the selective oxidation of EB to AP by TBHP. The characterization results revealed
that there was a possible interaction between Co (II) and the nitrogen-containing species of
mpg-C3N4.

2. Results and Discussions
2.1. Materials Characterization

Figure 1 shows XRD patterns of mpg-C3N4 and 3CoOx/mpg-C3N4-T materials. The
mpg-C3N4 support has two obvious diffraction peaks at 2 θ of 12.7◦ and 27.6◦, indexed
as the intralayer and interlayer structure of graphite-like material, i.e., the (100) and (002)
planes [24]. The positions of the two peaks show no obvious change from mpg-C3N4 and
3CoOx/mpg-C3N4-T, while the intensities of the two peaks become weaker because the
mpg-C3N4 material was prepared by thermal condensation of cyanamide and contains
a certain amount of incomplete condensed nitrogen-containing species [25,26]. During
the preparation procedure of CoOx/mpg-C3N4, the mpg-C3N4 support suffered a sec-
ond heating treatment, in which the incomplete condensed nitrogen-containing species
would decompose into small-molecule gases, such as NH3. The generated gas inevitably
deteriorated the graphic structure of mpg-C3N4, thus, leading to the decline of peak in-
tensity in XRD patterns. Nevertheless, the comparison of XRD patterns of mpg-C3N4 and
3CoOx/mpg-C3N4-T materials suggests that the incorporation of CoOx has not altered the
overall graphitic structures of the mpg-C3N4 support. Furthermore, no additional peaks
were detected, implying that the supported CoOx species might disperse better on the
surface of mpg-C3N4.

The N2 adsorption–desorption isothermal curves of mpg-C3N4 and 3CoOx/mpg-
C3N4-T materials are described in Figure 2A. The mpg-C3N4 material exhibited a typical
type-IV isothermal curve, along with an H3 hysteresis loop in the range of relative pressure
(p/p0) = 0.6–0.95, indicating that the mpg-C3N4 material possesses mesoporous structures.
Similar to mpg-C3N4, the supported 3CoOx/mpg-C3N4-T materials also have type-IV
isothermal curves. The adsorption quantity of such 3CoOx/mpg-C3N4-0.6-T materials is as-
sociated with the preparation temperature. Among them, 3CoOx/mpg-C3N4-400 possesses
the highest adsorption quantity, i.e., the largest total pore volume. The corresponding
pore size distributions (Figure 2B) indicate that the pore sizes of both mpg-C3N4 and
3CoOx/mpg-C3N4-T materials are centered at ca. 12 nm, which is in agreement with the
mean particle size (~12 nm) of the Ludox silica template. This suggests that by using
the hard-templating procedure, the mpg-C3N4-0.6 material has successfully negatively
replicated the structure of the silica nanoparticles.
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Figure 1. XRD patterns of mpg-C3N4 and 3CoOx/mpg-C3N4-T materials. 
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Figure 2. N2 adsorption–desorption isotherms (A) of mpg-C3N4 and 3CoOx/mpg-C3N4-T materials 
and the corresponding pore size distributions (B). 
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support also suffers second calcination. Wherein, a slightly higher temperature could 
induce the decomposition of the skeleton of C3N4 of mpg-C3N4, which is responsible for 
the larger surface area and pore volume of 3CoOx/mpg-C3N4-400 than 3CoOx/mpg-C3N4-
300. However, an extra high heating temperature might induce the partial collapse of the 
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The microscopic morphology of the materials was analyzed by SEM (Figure 3). The 
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SEM image also exhibited a coral-like structure, whereas directly judging the image 
images, the particles of 3CoOx/mpg-C3N4 look much smaller than those of mpg-C3N4. The 
energy dispersive X-ray spectroscopy (EDX) mapping (Figure 4) of 3CoOx/mpg-C3N4 
indicates that carbon, nitrogen, oxygen, and cobalt elements are evenly distributed in this 
material. 

Figure 2. N2 adsorption–desorption isotherms (A) of mpg-C3N4 and 3CoOx/mpg-C3N4-T materials
and the corresponding pore size distributions (B).

Table 1 lists the specific surface area and porous properties of the above materials. The
surface area (SBET) of mpg-C3N4 is 84 m2·g−1, and the pore volume is 0.30 cm3·g−1. For
the 3CoOx/mpg-C3N4-T materials, which were prepared by heating treatment of mpg-
C3N4 and Co(NO3)2, in addition to the generation of CoOx from Co(NO3)2, the mpg-C3N4
support also suffers second calcination. Wherein, a slightly higher temperature could
induce the decomposition of the skeleton of C3N4 of mpg-C3N4, which is responsible for
the larger surface area and pore volume of 3CoOx/mpg-C3N4-400 than 3CoOx/mpg-C3N4-
300. However, an extra high heating temperature might induce the partial collapse of the
mesoporous structures.
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Table 1. Specific surface areas and porous properties of mpg-C3N4 and 3CoOx/mpg-C3N4-T materials.

Sample SBET (m2·g−1) Pore Size (nm) a Pore Volume (cm3·g−1) Mass (g) b

mpg-C3N4 84 13.2 0.30 2.44
3CoOx/mpg-C3N4-300 44 8.8 0.15 0.57
3CoOx/mpg-C3N4-350 32 10.2 0.15 0.53
3CoOx/mpg-C3N4-400 70 10.2 0.26 0.45
3CoOx/mpg-C3N4-450 56 10.5 0.87 0.35
3CoOx/mpg-C3N4-500 60 12.5 0.32 0.24

3CoOx/mpg-C3N4-400-R 77 12.1 0.28 –
a Determined by the adsorption branches. b Mass of the synthesized materials.

The microscopic morphology of the materials was analyzed by SEM (Figure 3). The
image of mpg-C3N4 revealed coral-like morphology. In the case of 3CoOx/mpg-C3N4, the
SEM image also exhibited a coral-like structure, whereas directly judging the image images,
the particles of 3CoOx/mpg-C3N4 look much smaller than those of mpg-C3N4. The energy
dispersive X-ray spectroscopy (EDX) mapping (Figure 4) of 3CoOx/mpg-C3N4 indicates
that carbon, nitrogen, oxygen, and cobalt elements are evenly distributed in this material.
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TEM was used to further analyze the microscopic morphology of the mpg-C3N4
and 3CoOx/mpg-C3N4 materials. As displayed in Figure 5, mpg-C3N4 features disor-
dered foam-like pores (especially at the edge of the particles) with diameters in a range of
10–15 nm, similar to the reported mesoporous g-C3N4 samples prepared using nanoparti-
cles as hard templates [26,27]. These TEM images, in conjunction with the results of the
N2 adsorption–desorption (Table 1), provide evidence that the disordered mesoporous
structure of mpg-C3N4 is the negative replica of the silica templates. The image of the
3CoOx/mpg-C3N4 also reveals a disordered foam-like porous structure, some of which,
however, seem to be blocked and aggregated. As described above, this is due to the collapse
of the mesostructures of mpg-C3N4 during its second calcination. The CoOx particles are
found on the surface of mpg-C3N4. Rough statistics show that the mean size of these CoOx
particles is ca. 15 nm (Figure S1).
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The chemical functionalities of mpg-C3N4 and the supported materials were analyzed
by FT-IR spectroscopy (Figure S2). The spectra of all the materials exhibit sharp and strong
transmittance peaks centered ca. 812 cm−1, characteristic bands corresponding to the
breathing mode of conjugated heptazine units [26]. The multiple bands in the range of
1200–1600 cm−1 are attributed to the stretching vibration of the C–N and C=N groups in
the heterocyclic compounds. In addition, a broad band is detected at ca. 3152 cm−1 in each
material. This transmittance signal is ascribed to the O–H groups in the adsorbed water
and the amino group in mpg-C3N4. The above bands in the three regions are characteristic
of g-C3N4. Comparing all the spectra from the 3CoOx/mpg-C3N4 materials with various
preparation temperatures and loading amounts (Figure S3) of CoOx, no additional bands
were observed, suggesting that the loading of CoOx has not changed the overall chemical
functionalities of mpg-C3N4.

The surface chemical bonding state was probed by XPS analysis. Figure 6 is the
survey spectra of mpg-C3N4 and 3CoOx/mpg-C3N4-T materials. Three peaks appear at the
binding energies of ca. 288, 398, and 531 eV, which signify the carbon, nitrogen, and oxygen
elements, respectively. In the cases of the 3CoOx/mpg-C3N4-T materials, in addition to
the three peaks, peaks were detected at ca. 781 eV, indexed as Co 2p orbits. Based on
the peak areas, the molar ratios of carbon to nitrogen in the materials were calculated.
As listed in Table S1, the molar ratio obtained from mpg-C3N4 was 0.85:1, much higher
than the theoretical value of ideal g-C3N4 (0.75:1) [24]. Compared to the bulk g-C3N4,
prepared without templating procedure, the C3N4 wall of mpg-C3N4 was much thinner;
thus, resulting in an easier decomposition of the nitrogen-containing groups during the
heating step of mpg-C3N4 [27]. As for the 3CoOx/mpg-C3N4-T materials, the molar ratios
of carbon to nitrogen are close to the value of mpg-C3N4.
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Figure 6. XPS survey of mpg-C3N4 and 3CoOx/mpg-C3N4-T materials.

As described above, supported Co materials have recently been widely studied as
heterogeneous catalysts in the selective oxidation of EB, and therein, the chemical bonding
state of cobalt species is an important factor in deciding the catalytic performance [28].
Given this point, the fine Co 2p3/2 spectra of 3CoOx/mpg-C3N4-T were deconvoluted
(note: the deconvolution of Co 2p1/2 spectra was not performed as the corresponding peaks
were very weak). As illustrated in Figure 7, the Co 2p3/2 signals can be separated into four
peaks. The peaks with binding energies of ca. 780.4 and 785.2 eV are assigned to Co (III)
and Co (II), respectively [9,29,30]. The weak peaks centered at ca. 788.2 eV are attributed to
shake-up (satellite) signals in the Co 2p3/2 orbit [31,32], and the low-intensity signals in the
range of 774–778 eV are attributed to Co0. Such metallic cobalt species could come from
the reduction of cobalt cations by some nitrogen-containing species of mpg-C3N4 during
the preparation procedure (i.e., heating treatment), which has also been reported in cobalt
supported by nitrogen-doped carbon materials [33,34].
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On the other hand, g-C3N4 and its derived materials contain abundant nitrogen-
containing groups and particular nitrogen pots surrounded by nonbonding sp2 orbitals of
nitrogen atoms [35]. Comparable to porphyrin and phthalocyanine, such unique structures
enable g-C3N4 and its related materials to be able to include metal species [18]. In view
of this point, the fine N 1s spectra of various materials were analyzed and presented
in Figure 8. The spectra of mpg-C3N4 and 3CoOx/mpg-C3N4-T are deconvoluted into
three independent peaks. The major peaks with the lowest binding energies of 397.8 eV
are attributed to sp2-hybridized nitrogen atoms (Na) in the conjugated heptazine units.
This type of nitrogen accounts for over 65% of the total nitrogen species. The peaks
at 398.9 and 400.2 eV correspond to bridging nitrogen atoms (Nb) that connect several
adjacent heptazine units, and incomplete uncondensed amino groups (–NH2 and –NH–,
Nc), respectively [26,36]. Accordingly, the distributions of various nitrogen species in the
materials were calculated (Table 2). It can be found that the introduction of CoOx affects
the distribution of the nitrogen groups, leading to the transformation of a small number
of Na to Nb species. The variation is probably derived from the partial destruction of the
heptazine rings (Na) in mpg-C3N4, which occurs in the preparation steps of 3CoOx/mpg-
C3N4-T and has actually been reported in previous literature about metal-included g-C3N4
materials [37,38]. Moreover, among the three 3CoOx/mpg-C3N4-T materials, 3CoOx/mpg-
C3N4-400 owns the highest percentage of Nb (25.5%). It should be noted that such a type
of nitrogen has a superior capacity to Na and Nc when interacting with a transition-metal
cation [39]; thus, probably facilitating the dispersion of Co species in the mpg-C3N4 support.
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The interaction between Co and mpg-C3N4 has also been evidenced by the UV–vis
spectra. As depicted in Figure S4, the spectrum of the mpg-C3N4 material displays photo-
absorption in the UV region, ascribed to the bandgap between HOMO and LUMO in the
polymeric heptazine units of g-C3N4. The spectra of 3CoOx/mpg-C3N4-T materials show
similar absorption intensities in the UV region to the support. Notwithstanding, compared
with mpg-C3N4, the supported materials demonstrate enhanced absorption in the visible
light region. Such a variation in the electronic structure of mpg-C3N4 is attributed to the
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inclusion of the metal cation in the framework of g-C3N4, i.e., d–p repulsion between N 2p
and Co 3d orbits, which has also been found in metal-doped g-C3N4 materials [18,40–42].
Moreover, in the cases of CoOx/mpg-C3N4 materials with various loading amounts of
CoOx, it can be found that as the loading amount is increased, the increase in the absorption
intensity in the visible region becomes more obvious. In fact, the change in the electronic
structure has also been reflected by the apparent colors of the materials. The color of
mpg-C3N4 is pale yellow, whereas the 3CoOx/mpg-C3N4 materials are green. Combining
the analytic results of UV–vis and XPS spectra, it can be further induced that the Co species
could interact with the mpg-C3N4 materials. Namely, the loading of CoOx onto mpg-C3N4
is not merely via physical dispersion.

Table 2. Molar percentages of various cobalt and nitrogen species a.

Material Co (II) Co (III) Co0 Na Nb Nc

mpg-C3N4 – – – 74.1 14.0 11.9
3CoOx/mpg-C3N4-350 32.7 62.0 5.3 70.1 20.1 9.8
3CoOx/mpg-C3N4-400 41.5 56.0 2.4 64.8 25.5 9.7
3CoOx/mpg-C3N4-450 35.3 61.6 3.1 68.0 22.9 9.1

3CoOx/mpg-C3N4-400R 37.6 59.2 3.2 66.0 24.9 9.1
a Calculated by deconvoluted Co 2p3/2 and N 1s spectra.

2.2. Catalyst Activity

The above materials were evaluated in the selective oxidation of EB using TBHP as an
oxidant and acetonitrile as a solvent (Table 3). In the blank test without any catalysts, only
1.6% of EB is converted. The major product, BA accounting for 55.9%, originated from the
deep oxidation of AP. After the addition of 100 mg of 3CoOx/g-C3N4, the conversion of EB
is drastically improved, and the AP becomes the main product. Compared with 3CoOx/g-
C3N4, 3CoOx/eg-C3N4 exhibits higher catalytic activity. Obviously, the supported CoOx is
the key site in this selective oxidation and the eg-C3N4 support with the large surface area
could facilitate the exposure of more catalytic sites. Besides g-C3N4 and eg-C3N4, the CoOx
catalysts supported on carbon nanotube (CNT) and ordered mesoporous silica FDU-12
have also been prepared and examined under the same reaction conditions. Unfortunately,
the corresponding conversions of EB and selectivity to AP are all less than the values gained
in 3CoOx/eg-C3N4.

Table 3. Catalytic performances of various catalysts in the selective oxidation of EB a.

Catalyst Con. (%)
Sel. (%)

AP PE BA

/ 1.6 26.6 17.5 55.9
3CoOx/g-C3N4 27.6 75.2 14.5 10.3
3CoOx/eg-C3N4 32.9 74.6 9.5 15.9

3CoOx/CNT 19.6 63.5 18.8 17.7
3CoOx/FDU-12 8.6 71.9 11.2 16.9

3CoOx/mpg-C3N4-0.4 37.8 79.4 6.8 13.8
3CoOx/mpg-C3N4-0.6 62.0 84.7 4.8 10.6
3CoOx/mpg-C3N4-0.8 57.4 83.6 5.2 11.8
3CoOx/mpg-C3N4-1.2 35.9 75.5 15.2 9.3

3CoOx/mpg-C3N4-0.6 b 10.7 67.8 27.1 5.1
3CoOx/mpg-C3N4-0.6-R 60.3 81.2 5.9 12.9

a Reaction conditions: 10 mmol of EB, 30 mmol of TBHP, Wcatal. = 100 mg, 4 mL of acetonitrile, T = 100 ◦C,
and t = 10 h. b Reaction conditions: 10 mmol of EB, O2 (10 mL·min−1), Wcatal. = 100 mg, 4 mL of acetonitrile,
T = 120 ◦C, and t = 10 h.

By contrast, the use of mpg-C3N4 supports the results of higher catalytic activity than
eg-C3N4. Moreover, in the cases of 3CoOx/mpg-C3N4 catalysts, the EB conversions are
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found to be related to the supports. Among them, 3CoOx/mpg-C3N4-0.6 and 3CoOx/mpg-
C3N4-0.8 demonstrate superior activity to 3CoOx/mpg-C3N4-0.4 and 3CoOx/mpg-C3N4-
1.2. The obtained maximum conversion of EB is 62.0%, together with 84.7% of AP. The
difference between various mpg-C3N4 supports is derived by adding the amounts of the
siliceous templates (i.e., Ludox HS40). The N2 adsorption–desorption characterization
results (Figure S5) confirm that all the 3CoOx/mpg-C3N4 catalysts are mesoporous ma-
terials, along with the relatively concentrated pore size distributions of ca. 10 nm. As
listed in Table S2, both the surface areas and pore volumes of 3CoOx/mpg-C3N4-0.6 and
3CoOx/mpg-C3N4-0.8 are larger than those of the other two materials, probably responsi-
ble for their higher catalytic activities. Additionally, we evaluated the catalytic activity of
3CoOx/mpg-C3N4-0.6 using molecular oxygen as an oxidant instead of TBHP. As shown
in Table 3, a small amount of EB (10.7%) can be also converted.

In addition to the preparation conditions of the mpg-C3N4 support, we have also
prepared a series of 3CoOx/mpg-C3N4 with various heating temperatures (300–500 ◦C),
and the corresponding catalytic performances are summarized in Table 4. It can be seen
that the EB conversion and the selectivity to AP increase alongside the elevation of the
heating temperature. As revealed in the above XPS analytical results (Table 2), among
the several 3CoOx/mpg-C3N4-T (350–450 ◦C) materials, 3CoOx/mpg-C3N4-400 has the
highest percentage of Co (II) cation and largest surface area. As reported by Jie and Yang
et al. [29,43], Co (II) instead of Co (III) is proposed as the crucial catalytic active site in
the oxidation of EB. Alongside Co (II), the abundant Nb species are able to anchor Co (II)
and restrain its further oxidation. For the 3CoOx/mpg-C3N4 materials prepared in higher
temperatures, the obtained EB conversions are much higher than the values gained by
3CoOx/mpg-C3N4-400. Nevertheless, it should be noted that due to the high preparation
temperature, the masses of the two catalysts were indeed very low (Table 1).

Table 4. Catalytic performances of various 3CoOx/mpg-C3N4-T catalysts in the selective oxidation
of EB a.

Catalyst Con. (%)
Sel. (%)

AP PE BA

3CoOx/mpg-C3N4-300 11.7 69.2 7.6 23.3
3CoOx/mpg-C3N4-350 23.8 69.0 9.1 21.9
3CoOx/mpg-C3N4-400 62.0 84.7 4.8 10.6
3CoOx/mpg-C3N4-450 71.1 90.0 2.8 7.2
3CoOx/mpg-C3N4-500 76.6 91.4 1.8 6.8

a Reaction conditions: 10 mmol of EB, 30 mmol of TBHP, Wcatal. = 100 mg, 4 mL of acetonitrile, T = 100 ◦C, and
t = 10 h.

Table S3 shows the catalytic performances of CoOx/mpg-C3N4 catalysts with various
loading amounts of CoOx. Adopting a high loading amount results in an obvious increase
in EB conversion along with selectivity to AP. However, as the loading amount is greater
than 5 wt%, no significant improvement in catalytic conversion was received. This might
be due to the possible agglomeration of the CoOx species on the mpg-C3N4 support.

The 3CoOx/mpg-C3N4 catalyst was chosen as a representative to further explore the
effect of the reaction conditions on the catalytic performance. As shown in Figure 9A, under
a reaction temperature of 80 ◦C, the EB conversion is only 28.8% and the selectivity to AP
is 73.7%. At 120 ◦C, the conversion could reach 98.6% but the selectivity levels off. As
mentioned above, using molecular oxygen instead of TBHP, the corresponding conversion
of EB could also reach up to 10.7% (Table 3). The much higher conversion acquired at
120 ◦C could be due to the corporative oxidation of EB by TBHP and oxygen. The influence
of reaction time on the catalytic performance is plotted in Figure 9B. It can be seen that
prolonging the reaction could achieve higher catalytic conversions of EB. However, after
a reaction of 10 h, the conversion exhibits an equilibrium. That is, as time increases, the
conversion does not increase progressively. Figure S6 describes the catalytic performances
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with various feeding doses of 3CoOx/mpg-C3N4. As the weight of the catalyst is greater
than 100 mg, the conversion shows no obvious improvement.
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reaction time (B). Reaction conditions: 10 mmol of EB, 30 mmol of TBHP, Wcatal. = 100 mg, 4 mL of
acetonitrile, t = 10 h (A), and T = 100 ◦C (B).

The recycling test has also been conducted to test the recyclability of the 3CoOx/mpg-
C3N4. After four consecutive runs, the EB conversion and selectivity to AP are 60.3% and
81.2%, respectively (Table 3). Namely, there is only a slight loss in catalytic activity after
several runs. The physicochemical properties of the recycled catalyst were analyzed by N2
adsorption–desorption and XPS, and the corresponding results confirm that the surface
areas (Table 1) and surface chemical compositions (Tables S1 and 2) of the catalyst have not
undergone apparent change after the recycling experiments, suggesting good recyclability
and stability of the catalyst in the selective oxidation of EB.

Table 5 lists the recently reported catalytic performances of the supported metal
catalysts (heterogeneous system) in the selective oxidation of EB to AP by TBHP. The
catalytic active metals mainly include Pd, Co, Cu, and Mn. From the viewpoint of reaction
conditions, the reaction temperatures are basically in the range of 80–100 ◦C. Overall, the
most efficient catalysts are the supported precious catalysts, which can convert EB smoothly
under 80 ◦C. However, the major shortcoming in the use of such catalysts might be their
high cost. For the other metal catalysts, their catalyst supports are mainly functionalized
mesoporous materials, including SBA-15 [2], SBA-1 [44], TUD-1 [45], and organometallic-
SiO2/Al2O3 [46], where the preparation of these materials requires expensive organic
surfactants as soft templates and the whole processes for the final supported catalysts are
relatively complicated. In terms of catalytic performance, the 3CoOx/mpg-C3N4 catalyst in
this work demonstrates moderate catalytic activity under relatively mild reaction conditions.
In this sense, the present work provides a convenient and low-cost heterogeneous catalyst
for atmospheric and efficient selective oxidation of EB to AP.
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Table 5. Comparison of catalytic performances of supported metal catalysts in selective oxidation of
EB by TBHP.

Catalyst nTBHP
(mmol)

nEB
(mmol)

Wcatal.
(mg)

T
(◦C)

t
(h)

Conv.
(%)

Sel.
(%)

Pd/g-C3N4–rGO [8] 4 1 10 80 24 67 97
Pd/CeO2 [47] 1 1 20 80 4 100 79

Co-Cu/SAPS-15 [2] 30 10 30 100 6 97 100
MnSBA-1 [44] 10 100 80 8 20 57
CoTUD-1 [45] 10 10 100 80 8 38 74

SiO2/Al2O3-APTMS [46] 9 9 50 50 24 27 74
LDH-[NAPABA–Cu(II)] 39 13 100 120 7 81 100

3CoOx/mpg-C3N4 30 10 100 100 10 62 85

3. Experimental Section
3.1. Catalyst Preparation
3.1.1. Synthesis of Mpg-C3N4

Mesoporous C3N4 materials were prepared according to the previous hard-templating
approach reported by Goettmann et al. [48]. In brief, 4 g of cyanamide was added to 4–12 g
of a colloidal silica particle (~12 nm) dispersion (Ludox HS40, 40 wt%, Sigma-Aldrich,
Shanghai, China), stirred for 2 h, and ultrasonicated for 20 min. The mixture was heated at
60 ◦C until completely dried. Next, the white solid was ground, transferred into a crucible
with a lid, heated with a ramping rate of 2.5 ◦C·min−1 to reach 550 ◦C, and tempered
for this temperature for another 3 h. The obtained pale-yellow powder was labeled as
mpg-C3N4-SiO2.

Mpg-C3N4-SiO2 was added to 200 mL of NH4HF2 (Aladdin, Shanghai, China) aqueous
solution (4 mol·L−1) and stirred at room temperature for 24 h to remove the silica template.
After that, the suspension was filtrated and rinsed with water several times until the pH
value of the supernatant was close to 7. The obtained yellow solid was further rinsed with
ethanol two times, and dried overnight at 60 ◦C. The resultant solid was designated as
mpg-C3N4-r, where r indicated the ratio of silica in Ludox to cyanamide.

3.1.2. Preparation of CoOx/Mpg-C3N4

Mpg-C3N4 (600 mg) was added to 20 mL of cobalt nitrate aqueous solution containing
30–207 mg of Co(NO3)2·6H2O (Aladdin, Shanghai, China). The suspension was ultra-
sonicated for 30 min, stirred for 3 h, and heated with stirring to 80 ◦C, until completely
dried. The obtained, orange-colored solid was ground, transferred into a silica boat in a
tubular furnace with N2 flow (ca. 20 mL·min−1), and heated at a rate of 3 ◦C·min−1 to
a desired temperature (300–500 ◦C), and then, tempered at the temperature for another
3 h. The resultant dark green powder was labeled as mCoOx/mpg-C3N4-r-T, where r
and T indicated the loading amount of Co and heating temperature, respectively. Unless
otherwise specified, r and T were 0.6 and 400, respectively.

3.1.3. Preparation of Other Supported CoOx Catalysts

Similar to the preparation procedure of CoOx/mpg-C3N4, other supported CoOx
catalysts were prepared by using exfoliated g-C3N4 (eg-C3N4), carbon nanotube, and
ordered mesoporous FDU-12 as catalytic supports. The preparation methods of eg-C3N4
and FDU-12 are described in the supplementary material.

3.2. Material Characterization

The specific surface areas and porous properties of the materials were analyzed by N2
adsorption–desorption isotherms at −196 ◦C using an ASAP 2020 (Micromeritics, Norcross,
GA, US) instrument. Before the analysis, the samples were pretreated in a vacuum at 150 ◦C
for 6 h. The surface areas were calculated using the Brunauer–Emmet–Teller (BET) method.
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X-ray diffraction (XRD) patterns were recorded on a D/max 2500 X-ray diffractometer
(Rigaku, Tokyo, Japan) using a graphite monochromator (40 kV, 40 mA) equipped with
Ni-filtered Cu-Kα radiation.

Fourier-transform infrared (FT-IR) spectra were tested in a Tensor 27 (Bruker, Billerica,
MA, US) spectrometer based on the transmission mode with a resolution of 4 cm−1. Each
spectrum was based on 32 scans (4000–400 cm−1).

UV–vis diffuse reflectance spectra were carried out on a UV-3600 spectrophotometer
(Shimadzu, Tokyo, Japan) using BaSO4 as a standard reference.

X-ray photoelectron spectroscopy (XPS) measurements were performed using an
ESCALAB 250 XI spectrometer (Thermo–Fisher, Waltham, MA, US) working in a constant
energy mode with Mg Kα radiation as the excitation source.

Scanning electron microscopy (SEM) images were obtained on a Gemini SEM 300
(ZEISS, Oberkochen, Germany) microscope.

Transmission electron microscopy (TEM) experiments were conducted with a Talos
F200X G2 (FEI, Hillsboro, OR, USA) electron microscope.

3.3. Catalytic Evaluation

The atmospheric selective oxidation of EB was carried out in a three-necked round-
bottom flask equipped with a condenser. EB (10 mmol) and acetonitrile (4 mL) were mixed
well, followed by the addition of 100 mg of catalyst. After the mixture was heated up to
100 ◦C, under continuous stirring (500 rpm), 30 mmol of TBHP (70 wt%, a.q.) was added
into the flask through a peristaltic pump (the feeding time lasted for ca. 30 min). The
reaction proceeded for 1–12 h. During the process, a small amount of reaction mixture
(ca. 0.1 mL) was collected periodically and centrifuged. The liquid phase was analyzed
by a gas chromatograph (Shangdong Rainbow Chemical Co., Ltd., Zaozhuang, China)
equipped with a capillary column (FFAP). The conversion (conv.) of EB and selectivity (sel.)
to AP were calculated using an area-normalization method, and the detailed calculation
equations were as follows:

Conv.(%) =
AAP × fAP + APE × fPE + ABA × fBA

AEB × fEB + AAP × fAP + APE × fPE + ABA × fBA

Sel.(%) =
AAP × fAP

AAP × fAP + APE × fPE + ABA × fBA

where A and f were the peak area and response factor, respectively, for each component
analyzed by GC. BA and PE stood for benzaldehyde and phenethyl alcohol, respectively.

4. Conclusions

In summary, mpg-C3N4 material was prepared using cyanamide as a precursor and
colloidal silica as the template, which was then used as catalyst support to load cobalt oxide
(CoOx). The characterization results show that the mesoporous structures of mpg-C3N4
remained after the incorporation of CoOx. Co (II) species disperse on the surface of the
support and there is a probable interaction between Co (II) and the nitrogen species in mpg-
C3N4. The heating temperatures during the catalyst preparation can adjust the distributions
of the Co cations and nitrogen species. In the selective oxidation of EB by TBHP, the
3CoOx/mpg-C3N4-400 catalyst exhibited higher catalytic activity than other catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13050828/s1, Preparation of eg-C3N4 and FDU-12; Figure S1:
Particle size histogram of CoOx in 3CoOx/mpg-C3N4-400; Figure S2: FT-IR spectra of mpg-C3N4
(a), 3CoOx/mpg-C3N4-300 (b), 3CoOx/mpg-C3N4-350 (c), 3CoOx/mpg-C3N4-400 (d), 3CoOx/mpg-
C3N4-450 (e), and 3CoOx/mpg-C3N4-500 (f) materials; Figure S3: FT-IR spectra of mCoOx/mpg-C3N4
materials; Figure S4: UV–vis spectra of mpg-C3N4 and CoOx/mpg-C3N4 materials; Figure S5: N2
adsorption–desorption isotherms (A) of 3CoOx/mpg-C3N4-r materials and the corresponding pore
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size distributions (B); Figure S6: Catalytic performances with various feeding doses of 3CoOx/mpg-
C3N4. Reaction conditions:10 mmol of EB, 30 mmol of TBHP, 4 mL of acetonitrile, T = 100 ◦C,
and t = 10 h; Table S1: Molar ratios of C/N of mpg-C3N4 and 3CoOx/mpg-C3N4-T materials;
Table S2: Surface areas and porous properties of 3CoOx/mpg-C3N4-r materials; Table S3: Catalytic
performances of various mCoOx/mpg-C3N4 catalysts in the selective oxidation of EB.
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