
Citation: Elhaj, E.; Wang, H.;

Al-Harthi, E.A.; Wani, W.A.; Sallam,

S.; Zouli, N.; Imran, M. Sodium

Methoxide Catalysed One-Pot

Glycidol Synthesis via

Trans-Esterification between Glycerol

and Dimethyl Carbonate. Catalysts

2023, 13, 809. https://doi.org/

10.3390/catal13050809

Academic Editors: Enrico Catizzone,
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Abstract: In this work we demonstrate one-pot glycidol synthesis, via trans-esterification between
glycerol and dimethyl carbonate, by making use of commercially available sodium methoxide as a
catalyst. An excellent glycerol conversion (99%) and remarkable glycidol yield (75%) was obtained
using dimethyl carbonate/glycerol (molar ratio 2:1) in the presence of 3 wt% catalyst amount (with
respect to glycerol weight) at 85 ◦C for a reaction time of 120 min. Sodium methoxide was recycled
and reused twice with only a slight decrease in glycerol conversion. The water content of the glycerol
reached 2.5 wt%; this did not reduce the glycerol conversion efficiency of the catalyst. A plausible
mechanism for the trans-esterification involved in the preparation of glycidol was proposed.

Keywords: glycerol carbonate; one-pot glycidol synthesis; sodium methoxide-catalysed; stability of
sodium methoxide catalyst; trans-esterification of glycerol

1. Introduction

Over the past few decades, there has been huge pressure on producers of biofuels,
particularly biodiesel, due to the exceptionally high consumption of fossil fuels and major
environmental degradation. Glycerol (GL) is formed as a co-product during biodiesel pro-
duction and has thus been recently produced in huge quantities during the desired biodiesel
production [1–3]. Therefore, the transformation of GL into a synthetically important prod-
uct is one of the key approaches for the sustainable development of biodiesel industry [4–7].
Glycidol (GD) is one of the most important derivatives of GL. GD is used in the prepara-
tion and manufacture of polyurethanes, polyglycerols, glycidyl ethers, pharmaceuticals,
surfactants, plastics, elastomers, paints, dye-levelling agents, etc. Furthermore, GD is also
used as an important intermediate for the preparation of functional epoxides [8,9].

The industrial production of GD is ensured in two important ways. One of the proce-
dures involves reacting 3-chloro-1,2-propanediol with bases, and the other one involves
epoxidation of allyl alcohol using tungsten-based catalysts [10,11]. It is noteworthy that
both the two procedures have quite a few drawbacks, such as high production costs, serious
equipment corrosion, high liquid waste and chloride salt production, and consumption of
starting materials derived from petrochemicals. The literature also describes GD synthesis
by decarboxylation of glycerol carbonate (GC) [12–16]. In fact, GC has also been synthe-
sized through the reaction of GL with dimethyl carbonate (DMC) or urea, and thus, this
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route is basically a two-step synthetic procedure for the preparation of GD from GL and
DMC [17,18]. In addition, the decarboxylation of GC is performed under harsh reaction
conditions, viz., reduced pressure (~2.7 kPa) and high temperature range of 150–250 ◦C [19].
Since GD is highly reactive and readily polymerizes at high temperatures, this method
may not be appropriate for the production of GD at industrial scale. Recently, GD has
been prepared from GL and DMC by employing one-pot synthetic protocols [19–21]. In
comparison to the above-mentioned methods for the preparation of GD, one-pot synthesis
methods can be regarded as environmentally benign routes with numerous advantages
such as mild operation conditions, high GD yields, and low toxicity of the raw materi-
als. Up to now, certain catalysts such as tetramethylammonium hydroxide ionic liquid,
tetraethylammonium amino acid ionic liquid, KF/sepiolite, and NaAlO2, etc., have been
successfully utilized for the synthesis of GD from GL and DMC using one-pot synthetic
procedures [20]. Algoufi et al. investigated the one-pot preparation of GD by reacting GL
with DMC using KF/sepiolite as catalyst. At optimum reaction conditions (4% catalyst
weight loading, 2:1 DMC/GL molar ratio, 85 ◦C temperature, and 101.3 kPa pressure), 99%
of GL conversion with 82.3% GD selectivity was reported [22]. Unfortunately, KF/sepiolite
is a serious environmental pollutant since the fluoride ion (F-) is easily lost; this can lead to
the corrosion of equipment, along with serious environmental pollution. In addition, the
ionic liquids are highly expensive and hence are not suitable for industrial applications.
Moreover, NaAlO2 easily undergoes hydrolysis, which greatly limits its industrial appli-
cations. Therefore, the search for developing new and effective catalysts for one-pot GD
synthesis continues.

Sodium methoxide (CH3ONa) is a base catalyst with high activity. It is successfully em-
ployed in the homogeneous catalytic production of biodiesel at an industrial scale [23–25].
We predicted that if sodium methoxide can be used for catalyzing one-pot GD synthe-
sis by trans-esterification between GL and DMC, then both the industrial production of
biodiesel and the conversion of GL can take place using the same catalyst. The overall
process may greatly improve the industrial development of the one-pot synthetic protocols
of GD. Until now, there have been no research reports on GD synthesis using sodium
methoxide as catalyst. Therefore, in this paper, we demonstrate the one-pot GD synthesis
by trans-esterification of GL with DMC using commercially available sodium methoxide
as a base catalyst. All the parameters that affected GD yield were studied and a plausible
reaction mechanism was also proposed.

2. Results and Discussion
2.1. Effect of Reaction Temperature

For GD synthesis, reaction temperature is an important factor affecting the rate of
reaction. Generally, a high reaction temperature can reduce viscosity of the reaction mixture
(especially for GL) and improve the diffusion process of reactants, thereby increasing the
number of effective collisions among the reacting molecules; this consequently enhances
the rate of reaction. However, GD polymerizes at high temperatures [22] so there must
be an optimum temperature for trans-esterification between GL and DMC. Therefore, the
temperature of the reaction was set in the temperature range of 75–90 ◦C at atmospheric
pressure by keeping other variables constant. Figure 1 shows that GL conversion almost
keeps constant (99%) upon increasing temperature from 75 ◦C to 90 ◦C. It indicated high
activity of sodium methoxide for reacting GL with DMC. Upon increasing the reaction
temperature from 75 ◦C to 85 ◦C, the yield of GD increased from 56–75% while the yield
of GC decreased from 48–24%. With further increase in the reaction temperature to 90 ◦C,
both the GD yield and GC yield were unaffected. Thus, 85 ◦C was selected as the optimum
reaction temperature.
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Figure 1. Effect of temperature on GL conversion and yields of GD and GC (Reaction conditions:
DMC/GL molar ratio: 2:1; catalyst amount: 3 wt% (based on the weight of GL); time: 120 min).

2.2. Effect of Molar Ratio of DMC/GL

Since trans-esterification is a reversible reaction, the effect of the molar ratio of
DMC/GL was studied in the range of 1:1 to 3:1 [26]. The results are shown in Figure 2.
As the molar ratio of DMC/GL increased from 1:1 to 2:1, GL conversion and GD yield
increased from 63% and 58% to 99% and 75%, respectively. However, further increase of
molar ratio of DMC/GL could not significantly increase the conversion of GL. In addition,
upon increasing the molar ratio to 3:1, the yield of GD decreased to 62% and an undesired
product (glycerol dicarbonate) was detected. This meant that the excess of DMC shifted the
equilibrium towards the formation of an undesired product. Thus, the optimum DMC/GL
molar ratio was established to be 2:1.
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2.3. Effect of Catalyst Amount

The effect of catalyst amount on the reaction rate was studied by using an amount of
catalyst in the range of 1–4 wt% of GL weight (Figure 3). The results showed that when the
amount of catalyst increased from 1–3 wt%, the conversion of GL increased from 90–99%
while the yield of GD increased from 38–75%. Further increase in the catalyst amount to
4 wt% led to a slim decrease in the yield of GD. In addition, when the catalyst amount
increased from 1–4 wt%, the GC yield decreased from 52–24% firstly and then slightly
increased to 29%. Therefore, the optimum catalyst amount was 3 wt% of the weight of GL.
The data on effect of catalyst amount on GL conversion and yields of GD and GC has been
provided in Table S1. Moreover, the calibration curves for Methanol, DMC, GC and GD
can be found in Figure S2.
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2.4. Effect of Reaction Time

For trans-esterification between GL and DMC, the effect of time was investigated
under conditions in which molar ratio of DMC/GL was 2:1, catalyst amount was 3 wt% (of
GL weight), and temperature was 85 ◦C (Figure 4). The reaction time was first increased
to 40 min, and as a result, GL conversion and GD yield increased dramatically. As the
reaction time was subsequently extended to 120 min, GL conversion and GD yield climbed
gradually and steadily. The high GL concentration and high rate of reaction during the
initial phases of the reaction were demonstrated by the rapid increase in GL conversion
with increasing reaction time. However, over 40 min of reaction time, the reaction rate
reduced because of diminished concentration of GL and as a result, the conversion of GL
increased slowly. In addition, GC yield increased to a high value as the reaction time was
increased to 20 min and then it gradually decreased to an almost stable value with a further
increase in reaction time. This trend indicated that GD should have been generated by the
decarboxylation of GC. Hence, the suitable reaction time for GD synthesis was found to be
90 min.
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2.5. Effect of Water Content in GL on Catalytic Performance of Sodium Methoxide

GL from the synthesis of biodiesel is used for GD synthesis. The so-obtained GL
contains some water, hence its impact on the catalytic activity of sodium methoxide was
investigated. The results are shown in Table 1. According to the results, the GL conversion
and GD yield still reached 91 percent and 70 percent, respectively, even after increasing the
water content in GL by up to 2.5 wt%. This indicated that the sodium methoxide catalyst
had a stronger water-resistance performance than the CaO-based catalyst, for which GL
conversion only reached about 55% when water content in GL was 2.0 wt% [27]. However,
upon increasing water content in GL to over 5.0 wt%, the GL conversion and GD yield
decreased rapidly; this meant that a large water content in GL is not suitable for the use of
sodium methoxide as a catalyst.

Table 1. Effect of water content in GL on catalytic performance of sodium methoxide for the transes-
terification between GL and DMC.

Water Content in GL (wt%) XGL (%) YGD (%) YGC (%)

0.0 99 75 22
2.5 91 70 21
5.0 76 60 16
7.5 69 57 12

11.0 61 41 20
Reaction conditions: DMC/GL molar ratio, 2:1; catalyst amount, 3 wt% (to GL weight); reaction temperature,
85 ◦C; reaction time, 120 min.

2.6. The Stability of Sodium Methoxide Catalyst

The stability of sodium methoxide catalyst was investigated under the following
conditions: molar ratio of DMC/GL, 2:1; time, 120 min; temperature, 85 ◦C; and catalyst
amount, 3 wt% (based on GL weight). In the first run, 2.0 g of GL, 3.91 g of DMC, and
0.06 g of fresh catalyst were charged. After reaction, the sample was collected from the
reaction mixture and analyzed by gas chromatography. In the second run, 2.0 g of GL
and 3.91 g of DMC were directly charged to the reaction mixture without separating the
catalyst (which meant that in the second run, DMC/GL molar ratio had become 3:1).
After reaction, a sample was also taken from the reaction mixture for analysis by gas
chromatography and the results are depicted in Table 2. The chromatogram of the reaction
mixture has been provided in Figure S1. Although the reaction in the second run faced
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some opposing factors such as the dilution of reaction mixture and high concentration
of product (produced in the first run), the GL conversion and GD yield still reached 95%
and 73%, respectively. This shows that the catalyst has a high stability and can be reused.
The GL conversion efficiency was lost by a very small amount (2%) for sodium methoxide
catalyst in the second run; this is very small loss compared to the 11% loss in GL conversion
efficiency for tetramethylammonium hydroxide used as catalyst for one-pot synthesis of
GD by Gade et al. [28]. This indicates that sodium methoxide has a higher stability than
tetramethylammonium hydroxide ionic liquid.

Table 2. The stability of sodium methoxide catalyst during the trans-esterification of GL with DMC.

Recycle Number XGL (%) YGD (%) YGC (%)

1 (First Use) 97 75 22
2 (Reuse) 95 73 22

Reaction conditions: DMC/GL molar ratio, 2:1; catalyst amount, 3 wt% (to GL weight); reaction temperature,
85 ◦C; Reaction time, 120 min.

2.7. Comparison of Different Catalysts Used for GD Synthesis

One-pot GD synthesis from GL and DMC has been successfully achieved by using
homogeneous, heterogeneous, and ionic-liquid based catalysts [19–23]. As shown in Table 3,
sodium methoxide catalyst yielded the highest GL conversion (99%), which is the same
as KF/sepiolite and is higher than the remaining three catalysts. Meanwhile, sodium
methoxide yielded a moderate GD yield (75%), which is less than KF/sepiolite catalyst and
is similar to the remaining catalysts. Thus, among the catalysts listed in Table 3, the activity
of sodium methoxide is only slightly lower than KF/sepiolite. However, considering
the potential corrosive effects of KF/sepiolite and its infancy as far as its development
is concerned, sodium methoxide should perhaps be considered as more suitable for GD
synthesis, as it has already been used at an industrial scale in biodiesel production.

Table 3. An analysis of catalytic efficiency of sodium methoxide with some other reported catalysts
for the trans-esterification between GL and DMC.

Catalyst Reaction
Type

Reaction
Time (min)

XGL
(%)

YGD
(%) Reference

a NaAlO2 heterogeneous 90 94.7 80.7 [20]
b KF/sepiolite heterogeneous 90 99 82.3 [22]

c Tetramethylammonium
hydroxide homogeneous 90 95 78 [28]

d Tetraethylammonium
amino acid

homogeneous 120 96 79 [29]
e Sodium methoxide homogeneous 120 99 75 Present work

a DMC/GL molar ratio: 2:1; temperature: 80~90 ◦C; catalyst amount: 3 wt% based on GL weight. b DMC/GL
molar ratio: 2:1; temperature: 83 ◦C; catalyst amount: 4 wt% based on GL weight. c DMC/GL molar ratio: 2:1;
temperature: 80 ◦C; catalyst amount: 4 wt% based on GL weight. d DMC/GL molar ratio: 2:1; temperature:
130 ◦C; catalyst amount: 3 wt% based on GL weight. e DMC/GL molar ratio: 2:1; temperature: 85 ◦C; catalyst
amount: 3 wt% based on GL weight.

2.8. Proposed Reaction Mechanism

Sodium methoxide is a typical homogeneous basic catalyst that has been used for
catalyzing the trans-esterification of GL with DMC for GC and GD synthesis. A plausi-
ble mechanism for the trans-esterification can be proposed based on the reaction results
and analysis of the published literature [6,23] (Scheme 1). The initial step involves the
dissociation of sodium methoxide into methoxide anion (CH3O−) and Na+ cation within
the reaction mixture. In the second step, the primary O-H bond of GL gets activated by
interaction with the methoxide anion that leads to the development of an activated state of
GL along with formation of (O–H . . . O) hydrogen bond. In the third step the activated
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GL attacks the carbonyl carbon of DMC to produce the intermediate methyl glyceryl car-
bonate and methanol. In the fourth step, methyl glyceryl carbonate further interacts with
methoxide anion and ensures an intramolecular nucleophilic attack to generate GC and
with the elimination of another methanol molecule. In the fifth step, a methoxide anion
reacts with alkylene carbon of GC to form a ring-opening intermediate. In the final step of
the reaction, decarboxylation of the ring-opened intermediate occurs via an intramolecular
nucleophilic substitution reaction, forming GD and CO2. In the meantime, the catalyst is
also regenerated (see Scheme 1).

Catalysts 2023, 13, x FOR PEER REVIEW 7 of 10 
 

 

ation of sodium methoxide into methoxide anion (CH3O−) and Na+ cation within the reac-
tion mixture. In the second step, the primary O-H bond of GL gets activated by interaction 
with the methoxide anion that leads to the development of an activated state of GL along 
with formation of (O–H…O) hydrogen bond. In the third step the activated GL attacks the 
carbonyl carbon of DMC to produce the intermediate methyl glyceryl carbonate and 
methanol. In the fourth step, methyl glyceryl carbonate further interacts with methoxide 
anion and ensures an intramolecular nucleophilic attack to generate GC and with the elim-
ination of another methanol molecule. In the fifth step, a methoxide anion reacts with al-
kylene carbon of GC to form a ring-opening intermediate. In the final step of the reaction, 
decarboxylation of the ring-opened intermediate occurs via an intramolecular nucleo-
philic substitution reaction, forming GD and CO2. In the meantime, the catalyst is also 
regenerated (see Scheme 1). 

 

Scheme 1. The proposed plausible mechanism of trans-esterification between GL and DMC over 
sodium methoxide as catalyst. S1, S2, S3, S4, S5 and S6 represent first, second, third, fourth, fifth, 
and sixth steps of the reaction, respectively. 

3. Materials and Methods 
3.1. Chemicals 

We used GC with a purity of over 90%, purchased from Tokyo Chemical Industrial 
Co., Ltd. Tokyo, Japan. GD with a purity of 97% was purchased from Shanghai SaEn 
Chemical Technology Co., Ltd., Shanghai, China. We purchased sodium methoxide (97%) 
from Aladdin Industrial Corporation in Shanghai, China. We obtained DMC and tetra-
ethylene glycol (99%) from Tianjin Guangfu Fine Chemical Research Institute, Tianjin, 
China. We purchased GL and methanol, both 99%, from Sinopharm Chemical Reagent 
Co., Ltd., Beijing, China. We used 99% n-butanol that was procured from Shanghai 
Zhanyun Chemical Co., Ltd., Shanghai, China. The nitrogen was supplied by Sichuan 
Tianyi Science & Technology Co., Ltd., Sichuan, China. The nitrogen was 99.999 percent 
pure. All of the chemicals and reagents were used as they were received. 

  

Scheme 1. The proposed plausible mechanism of trans-esterification between GL and DMC over
sodium methoxide as catalyst. S1, S2, S3, S4, S5 and S6 represent first, second, third, fourth, fifth, and
sixth steps of the reaction, respectively.

3. Materials and Methods
3.1. Chemicals

We used GC with a purity of over 90%, purchased from Tokyo Chemical Industrial
Co., Ltd. Tokyo, Japan. GD with a purity of 97% was purchased from Shanghai SaEn
Chemical Technology Co., Ltd., Shanghai, China. We purchased sodium methoxide (97%)
from Aladdin Industrial Corporation in Shanghai, China. We obtained DMC and tetraethy-
lene glycol (99%) from Tianjin Guangfu Fine Chemical Research Institute, Tianjin, China.
We purchased GL and methanol, both 99%, from Sinopharm Chemical Reagent Co., Ltd.,
Beijing, China. We used 99% n-butanol that was procured from Shanghai Zhanyun Chem-
ical Co., Ltd., Shanghai, China. The nitrogen was supplied by Sichuan Tianyi Science &
Technology Co., Ltd., Sichuan, China. The nitrogen was 99.999 percent pure. All of the
chemicals and reagents were used as they were received.

3.2. Reaction Procedure

Scheme 2 shows a schematic representation of the trans-esterification between GL and
DMC that results in the production of GD that is catalyzed by sodium methoxide. A 50 mL
3-necked round bottom flask with a magnetic stirrer, a sampling device, a reflux condenser,
and a thermocouple served as the experimental apparatus for the synthesis of GD. An oil
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bath with a consistent temperature was used to warm the glass flask. GL and DMC were
combined in exact ratios in each experiment run. Amounts of 2 g of GL and 3.91 g of DMC
were added to the flask and heated to the desired temperature in a unique experimental
run. The reaction was then started by adding a specified amount of sodium methoxide
catalyst to the combination of GL and DMC (in a typical run, 0.06 g of sodium methoxide
was used). In 120 min, the reaction took place. The magnetic stirrer’s stirring speed was
set to 600 rpm. The final reaction mixture was sampled for examination once the reaction
was finished.
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3.3. Product Analysis

All the components were analyzed using a gas chromatograph (Fuli 9790-II) equipped
with a flame ionization detector (FID) and capillary column KB-WAX (30 m long, 0.25 mm
i.d.). n-Butanol (internal standard) was used for determining DMC, methanol, and GD.
Tetraethylene glycol was employed for determination of GL and GC. Nitrogen was used as
a carrier. The pressure was adjusted to 0.3 MPa and the flow rate was set at 30 mL/min.
The injector and detector were designed to operate at temperatures of 250 ◦C and 270 ◦C,
respectively. The column temperature was held at 70 ◦C for 2 min before ramping up
to 250 ◦C for 15 min. Each component of the reaction mixture has a respectable peak
separation. GL conversion (XGL), GD yield (YGD), and GC yield (YGC) were calculated from
the following equations:

XGL =
m0

GL − mt · ct
GL

m0
GL

× 100% (1)

YGD =
mt · ct

GD/MGD

m0
GL/MGL

× 100% (2)

YGC =
mt · ct

GC/MGC

m0
GL/MGL

× 100% (3)

where m0
GL is the initial mass (in grams) of GL and mt is the total mass (in grams) of the

residual reaction mixture after reaction. ct
GL, ct

GD, and ct
GC is the GL concentration (wt%),

GD concentration (wt%), and GC concentration (wt%) in the residual reaction mixture,
respectively, while MGL, MGD, and MGC are the molar masses in grams/mol of GL, GD
and GC, respectively.

4. Conclusions

Sodium methoxide is used at industrial scale in the production of biodiesel. The
worth of the catalyst is further amplified in this experiment as it efficiently catalyzes the
one-pot GD synthesis via the trans-esterification between GL and DMC. The optimum
reaction conditions for the trans-esterification between GL and DMC are (molar ratio of
DMC/GL: 2:1, 3 wt% catalyst amount, temperature: 85 ◦C, and time: 120 min). Sodium
methoxide efficiently catalyzed the reaction and ensured a GL conversion of 99% and
GD yield of 75%. In addition, the catalyst was reused twice with only a slightly decrease
in GL conversion and GD yield. Furthermore, a 2.5 wt% water content in GL did not
show any noticeable effect on the efficiency of GL conversion of sodium methoxide. The
catalysis of the reaction is initiated by dipole-dipole interaction (hydrogen bonding) of
the catalyst with GL followed by a series of nucleophilic, elimination, and ring-opening
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events of the intermediates. Overall, the reported sodium methoxide catalyzed one-pot
trans-esterification between GL and DMC for GD synthesis is a facile approach for the
production of GD and may be a quite useful procedure at industrial scale.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/catal13050809/s1, Figure S1: The gas chromatogram of the
reaction mixture for synthesis of GD from GL and DMC using CH3ONa as catalyst: (1) methanol;
(2) DMC; (3) n-Butanol; (4) GD; (5) GL; (6) tetraethylene glycol; (7) GC.; Figure S2: Calibration Curve
(a) Methanol, (b) DMC, (c) GC and (d) GD; Table S1: Data for the effect of catalyst amount on the GL
conversion and yields of GD and GC.
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