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Heterogeneous photocatalysis, due to its high efficiency, safety and profitability, has be-
come an effective technology for solving environmental problems, for example, in wastew-
ater treatment, for the removal of organic pollutants [1,2]. Despite the many advantages
of semiconductor photocatalysts (e.g., TiO2, ZnO, Fe2O3, CdS and ZnS), there are also
disadvantages, for example, the fast recombination rate of photogenerated electron–hole
pairs, low quantum yield and high band gap value. The rapid recombination of the pho-
togenerated pairs (e−/h+), following energy activation of the catalyst, inhibits the redox
process, and thus, this results in reduced photocatalytic activity [3–5]. It is necessary to
study a method for optimizing the semiconductor structure in order to improve separation
efficiency and to inhibit recombination efficiency toward enhancing the photocatalytic
properties of the semiconductor. The recombination process decreases when the surface of
the semiconductor is modified by transition/noble metals. Hence, photocatalysts modified
with transition/noble metal oxides can enhance the photocatalytic decomposition of or-
ganic pollutants in wastewater. Therefore, it is important to continue the search for new and
more efficient photocatalysts that offer an improved performance. Key accomplishments to
date are compiled in this Special Issue, as summarized below.

A nanomaterials composite with graphitic carbon nitride was studied for the pho-
todegradation of organic compounds because they help to optimize the degradation process
of organic pollutants. In this way, Lai et al. [6] prepared a g-C3N4/porphyrin nanocom-
posite by the self-assembly of monomeric Tetrakis (4-carboxyphenyl) porphyrin (TCPP)
molecules with g-C3N4 nanomaterials. The band gap energies of the hybrid materials are
estimated to be 2.38 and 2.7 eV, which could indicate that the hybrid material is an efficient
photocatalyst. The authors concluded that the hybrid C3N4/TCPP material exhibited
enhanced photodegradation activity toward Rhodamine B at a degradation speed of up to
3.3 × 10−2 min−1, which was superior to other porphyrin photocatalysts. Sert et al. [7] also
synthesized a graphitic carbon nitride composite, but they implemented a facile calcination
method utilizing urea and zinc nitrate hexahydrate as initiators. The authors investigated
several effects—molar ratio of ZnO, amount of catalyst, concentration of organic pollutant
and concentration of H2O2—in the photocatalytic degradation of crystal violet dye. Their
experimental results show that the molar ratio of ZnO in g-C3N4 (0.05 mmol ZnO and
0.10 g/L catalyst) has an important role, because in 2 h, the photocatalytic degradation
reaches 95.9% in the presence of UV irradiation. Photocatalysis compared to adsorption
(32.3%) has a dominant role in crystal violet decolorization. Finally, the results showed
no significant decrease in the degradation efficiency of crystal violet in the presence of the
g-C3N4/ZnO photocatalyst after five consecutive cycles.

Musielak et al. [8] report a new, different method, which is a promising alternative
to classical AOP methods—photodynamic therapy (PDT), using curcumin. Curcumin has
low solubility in water and high photosensitivity. Therefore, the authors chose a suitable
carrier—a suitably processed commercial zeolite of the FAU type. Studies related to the
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release of curcumin from zeolites were carried out in simulated gastrointestinal conditions
using two methods: the first is the classical method of releasing the active substance in the
open circulation, and the second is photodynamic release. Musielak et al. found that the
photodynamic release of curcumin from zeolites proved to be a more cost-effective and
efficient method. The reason for this is that curcumin is very sensitive to light.

The exceptional properties of modified semiconductor nanomaterials (i.e., TiO2 and
ZnO) have attracted attention in the field of environmental remediation and water treat-
ment. Gervasi et al. [9] investigated the optical, structural and photocatalytic properties
of pure and iron-doped (0.05, 1.0 and 2.5 wt%) anatase/brookite TiO2 using sol–gel syn-
thesis. The specific surface area increases with increasing amount of iron—from 236 m2/g
(undoped TiO2) to 263 m2/g (2.5 wt% Fe)—while the band gap energy decreases from
3.10 eV (undoped TiO2) to 2.85 eV (2.5 wt% Fe). All of these results, established by Gervasi
et al., have an impact on the photocatalytic properties—the sample with 0.05 wt% iron has
the highest efficiency and fastest degradation of simazine (77%). The sol–gel method was
also used for the preparation of titanium dioxide by another research group—Bachvarova-
Nedelcheva et al. [10]—but they doped the semiconductor with TeO2. The nanopowders
TiO2/TeO2 were obtained and annealed in the temperature range of 200–700 ◦C. The photo-
catalytic properties of the as-prepared samples were tested for the degradation of Malachite
Green in the presence of UV light—pure titanium dioxide degrades the dye about 35%,
while the powder doped with TeO2 about 60%. The authors also investigated antimicrobial
properties of sol–gel powders. The doped powders exhibited good antimicrobial activity
against E. coli K12, as the samples heated at higher temperature (400 ◦C) showed better
antibacterial activity (68%) compared to those heated at 200 ◦C (50%).

The results obtained by Sisay et al. [11] using photocatalytic membranes—multiple
nanoparticles (TiO2, carbon nanotubes, BiVO4) into polyvinylidene fluoride—demonstrates
real dairy wastewater treatment. These membranes exhibited lower filtration resistance,
better flux and higher FRR than the pristine membrane. The authors found that the factors
that affect the filtration resistance are salinity, pH and concentration of lactose. The presence
of lactose and higher pH values increased the irreversible resistance and severely reduced
chemical oxygen demand rejection. The TiO2-carbon nanotubes-BiVO4-polyvinylidene
fluoride membrane containing all constituents showed the best regeneration performance,
exceeding that of the pristine membrane by 30%.

Salomatina et al. [12] studied photocatalytic efficiencies of poly(titanium oxide) dis-
persed in optically transparent polymeric matrices of different natures under UV and visible
light on aqueous solutions of azo dyes and phenols. During the photocatalytic process in
poly(titanium oxide) material, a one-electron transition to Ti4+ + e−→ Ti3+ was established,
as well as the formation of electron–hole pairs and active oxygen species. Doping with
gold and silver nanoparticles reduces the poly(titanium oxide) band gap from 3.11–3.35 to
2.11 eV. Therefore, doping with noble metals leads to the improvement of the photocatalytic
properties of the nanocomposites under UV irradiation, and this is the reason for their high
activity under the influence of visible light. In this case, azo dyes and phenol were found to
be degraded by 90%.

Jaison et al. [13] report the current developments in the degradation of pollutants in the
two types of photocatalytic oxidation, using TiO2—namely, the influence of environmental
conditions and catalyst deactivation—and possible solutions. The authors investigated the
potential effects of the nature of the reactant, catalyst support, light intensity and relative
humidity. The mechanisms of deactivation of photocatalysts and the possibility of reducing
catalyst deactivation were also discussed.

Heterogeneous photocatalysts to generate sulfate radicals (SO4
•−) from peroxydisul-

fate ion (S2O8
2−) were successfully prepared by a solvothermal method. Alapi et al. [14]

reported the preparation of BiOX (X = Cl, Br, and I) to increase the activity of the perox-
ydisulfate ion and faster degradation of organic substances in the presence of ultraviolet
and visible light illumination. The BiOI efficiency highly exceeds that of BiOBr and BiOCl
for PDS activation, even under visible irradiation.
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In conclusion, this Special Issue on “Advances in the Synthesis and Applications
of Transition/Noble Metal Oxide Photocatalysts” presents research related to the latest
advances in the preparation and characterization of photocatalytic materials, with the aim
of improving their performance in the removal of organic pollutants from water. We believe
that our Special Issue will serve to inspire researchers in this field.

We thank all of the authors for their valuable contributions, and we also thank the
editorial team of Catalysts for their kind support in making this Special Issue possible.
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