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Abstract: Cu-exchanged SSZ-16 zeolite catalysts exhibit outstanding NH3-SCR activity, but their cat-
alytic performance after hydrothermal treatments is not ideal. In order to improve the hydrothermal
stability of Cu-SSZ-16, CuCex-SSZ-16 series catalysts were prepared via an ion exchange process, and
the effect of Ce modification on the hydrothermal stability was investigated. In addition, increasing
Ce contents significantly improved the hydrothermal stability, and CuCe0.87-SSZ-16 showed the
best hydrothermal stability. The effects of adding Ce to active species and the AFX framework
were studied by various characterization measurements. The 27Al MAS NMR results reveal that Ce
modification can strengthen the structural stability of the CuCex-SSZ-16 catalysts. Furthermore, the
combined results of XPS, H2-TPR, and in situ DRIFTS confirm that the introduction of Ce markedly
increases the active Cu2+-2Z species, contributing to the remarkable hydrothermal stability.

Keywords: Cu-SSZ-16; Ce content; NH3-SCR; low temperature; hydrothermal stability

1. Introduction

Nitrogen oxides (NOx) have been identified as a significant air pollutant that causes a
large number of environmental issues and harms human health [1,2]. The primary sources of
NOx in cities are emissions from power plants and automobile engines, of which diesel engines
account for a large proportion [3]. Consequently, the control of NOx emitted from diesel
engines is essential. Ammonia-selective catalytic reduction (NH3-SCR) is regarded as a highly
efficient denitration technique because of its excellent deNOx performance [4]. Nowadays,
many Cu-exchanged zeolites have been widely considered due to their outstanding deNOx
activity and hydrothermal stability. Among them, Cu-exchanged CHA, AEI, SFW, and AFX
catalysts have been extensively investigated in previous studies [5–10]. However, severe
high-temperature hydrothermal treatments destroy the skeleton of zeolite and reduce the
active species, causing the loss of NH3-SCR activity.

The effect of Cu species in Cu-exchanged zeolites has been extensively studied [11–13].
It is universally acknowledged that Cu2+ species, including Cu2+-2Z and [Cu(OH)]+-Z (where
Z stands for a framework negative charge), provide active sites for the NH3-SCR reaction [14].
Cu2+-2Z species refer to Cu2+ located in the 6-ring, while the Cu2+ sites residing in the 8-ring
are recorded as [Cu(OH)]+-Z [15,16]. The two kinds of Cu2+ species behave differently under
hydrothermal treatments. Cu2+-2Z species are considered relatively stable active sites with
higher hydrothermal stability, contributing to NOx removal [4,17–20]. However, [Cu(OH)]+-Z
is more beneficial to low-temperature (<300 ◦C) deNOx reactions, though it may transform to
Cu2+-2Z or CuOx clusters with increasing temperature [21,22]. The CuOx clusters might block
the pores of zeolites, leading to a reduction in NH3-SCR activity [23].
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The Cu-SSZ-16 with an AFX structure exhibits remarkable NH3-SCR performance, but
its low-temperature activity is reduced to varying degrees after hydrothermal treatments
at different temperatures [10]. Since hydrothermal stability is vital to the application
of catalysts, the improvement of zeolite catalysts should also focus on hydrothermal
stability. According to the literature, hydrothermal deactivation is mainly caused by a
decrease in the active Cu2+ species and the structural instability resulting from skeleton
dealumination, which can be alleviated by some means, for example, by introducing
some elements [24–26]. Previous studies have demonstrated that introducing Ce to Cu-
exchanged zeolites could ameliorate their hydrothermal stability. Wang et al. proposed that
the addition of Ce could greatly promote the catalytic activity and hydrothermal stability
of Cu-SSZ-39 catalysts [27]. Mao et al. perceived that the higher hydrothermal stability
of Cu-Ce/SAPO-34 might be obtained by increasing the additional content of Ce, for Ce
doping could prevent hydrothermal treatments from causing damage to the partial pore
structure and a reduction in the catalyst’s crystallinity [28]. Deng et al. found that Ce doping
could improve the hydrothermal stability of Cu/SSZ-13 catalysts, owing to the increased
framework aluminum and the more stable Cu sites [29]. Jiang and co-workers reported
that the introduction of Ce might stabilize the zeolite skeleton and increase the active Cu2+

species, leading to the excellent hydrothermal stability of CeCu-SSZ-52 [30]. However,
developing new catalysts with outstanding catalytic activity and hydrothermal stability
is still crucial. Cu-SSZ-16 catalysts show superior deNOx activity, but their hydrothermal
stability needs to be increased to allow commercial application.

In this study, CuCex-SSZ-16 series catalysts (x = 0.77 wt.% and 0.87 wt.%) were synthe-
sized to study their low-temperature NH3-SCR catalytic activity as well as their hydrother-
mal stability. Various characterization measurements such as XRD, 27Al MAS NMR, XPS,
H2-TPR, EPR, UV-vis, and in situ DRIFTS were used to probe the influence of adding Ce to
the catalysts, including the changes in the active species and zeolite framework.

2. Results and Discussion
2.1. NH3-SCR Activity and SO2 Resistance Test

The NOx conversion curves of the NH3-SCR reaction over Cu-SSZ-16-Fresh, CuCe0.77-
SSZ-16-Fresh, and CuCe0.87-SSZ-16-Fresh (where “Fresh” represents the samples tested
before the hydrothermal treatments) are displayed in Figure 1a. The NOx reduction
efficiency of Cu-SSZ-16-Fresh reaches 90% at about 215 ◦C and remains above 90% at
215–400 ◦C. Compared with Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh and CuCe0.87-SSZ-
16-Fresh exhibit better low-temperature catalytic activity with higher NOx conversion from
150 to 250 ◦C and the conversion is maintained at 95% from 250 to 400 ◦C. Additionally,
the N2 selectivity is slightly improved, and the selectivity of the NO2 and N2O byproducts
declines at low temperatures (<250 ◦C) with the incorporation of Ce (Figure S1a–c).

In order to inquire about the changes in the hydrothermal stability with the addition
of Ce, Cu-SSZ-16, CuCe0.77-SSZ-16, and CuCe0.87-SSZ-16 catalysts were treated at the
hydrothermal temperature of 750 ◦C (referred to as Cu-SSZ-16-750HT, CuCe0.77-SSZ-16-
750HT, and CuCe0.87-SSZ-16-750HT). The catalytic data in Figure 1b illustrate that the
NOx reduction efficiency of Cu-SSZ-16-750HT reaches 90% at around 265 ◦C, while CuCex-
SSZ-16-750HT series catalysts achieve 90% NOx conversion at about 240 ◦C. The results
reveal that the NH3-SCR activity is enhanced at low temperatures (<250 ◦C) after Ce is added.
The N2, NO2, and N2O selectivity of the Cu-SSZ-16-750HT and CuCex-SSZ-16-750HT series
catalysts is presented in Figure S1d–f. The N2 selectivity of Cu-SSZ-16-750HT decreases by
4%, while the CuCex-SSZ-16-750HT series catalysts have little change compared with CuCex-
SSZ-16-Fresh. The selectivity of NO2 byproducts is below 2% for CuCex-SSZ-16-750HT series
catalysts in the whole temperature range. As for N2O, the selectivity for Cu-SSZ-16-750HT is
6% at 150 ◦C, compared to 4% for the CuCex-SSZ-16-750HT series catalysts.
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Figure 1. NOx conversion before (a), after hydrothermal treatments at 750 ◦C (b) and 800 ◦C (c),
and in the presence of SO2 (d) over Cu-SSZ-16, CuCe0.77-SSZ-16, and CuCe0.87-SSZ-16. Reaction
conditions: 500 ppm NO, 500 ppm NH3, 50 ppm SO2 (when used), 5 vol% O2, 5 vol% H2O, balance
N2, and GHSV = 200,000 h−1.

Additionally, to further investigate the effect of incorporating Ce on the hydrothermal
stability of CuCex-SSZ-16, the catalysts were hydrothermally aged under more severe
conditions of 800 ◦C. As shown in Figure 1c, the NOx conversion of Cu-SSZ-16-800HT
is below 90% at 150–400 ◦C. After introducing Ce species, the NOx reduction efficiency
of CuCe0.77-SSZ-16-800HT and CuCe0.87-SSZ-16-800HT is above 90% at 285–400 ◦C and
245–400 ◦C, respectively. The corresponding N2 selectivity of the CuCex-SSZ-16-800HT
series catalysts shows a noticeable improvement below 250 ◦C (Figure S1g). The N2
selectivity of Cu-SSZ-16-800HT is only 85% at 150 ◦C, while that of the CuCe0.77-SSZ-16-
800HT and CuCe0.87-SSZ-16-800HT catalysts is 89% and 93% at the same temperature,
respectively. The three samples aged at 800 ◦C maintain similar low NO2 selectivity (Figure
S1h). Compared with Cu-SSZ-16-800HT, the N2O selectivity of CuCe0.77-SSZ-16-800HT and
CuCe0.87-SSZ-16-800HT significantly declines at low temperatures, decreasing from 10% to
7% and then to 4% at 150 ◦C (Figure S1i). It is suggested that the addition of Ce improves
the hydrothermal stability of the catalysts and enables the aged catalysts to maintain better
NH3-SCR performance.

The CuCe0.87-SSZ-16-Fresh catalyst was selected to explore the influence of SO2 in the
reaction mixture, and the experimental results are depicted in Figure 1d. In the presence of
SO2, the NH3-SCR performance of CuCe0.87-SSZ-16-Fresh-SO2 (where “SO2” represents
50 ppm SO2 in the feed gas) is well maintained at the low-temperature range (<300 ◦C). The
catalytic activity of Cu-SSZ-16 significantly decreases due to the toxicity of SO2, compared
with Cu-SSZ-16-Fresh, the NOx conversion decreases by 11% at 250 ◦C for Cu-SSZ-16-Fresh-
SO2. Meanwhile, CuCe0.87-SSZ-16-Fresh-SO2 shows 94% NOx conversion at 250 ◦C, which
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is virtually identical to that of CuCe0.87-SSZ-16-Fresh, suggesting that the introduction of
Ce improves the SO2 resistance of the catalysts.

According to the above results, it can be inferred that the incorporation of Ce posi-
tively impacts the low-temperature NH3-SCR performance and the SO2 resistance. More
importantly, it improves the hydrothermal stability of the CuCex-SSZ-16 series catalysts.
Moreover, with the increase in the Ce contents, the positive effect is enhanced, and CuCe0.87-
SSZ-16 exhibits the best hydrothermal stability.

2.2. Structural Characterization

The chemical compositions of the fresh and aged catalysts are exhibited in Table 1. The
fresh catalysts contain similar Si/Al ratios and Cu contents. In addition, the changes in Cu
and Ce contents after hydrothermal treatment at 800 ◦C may be due to the destruction of the
framework [29]. Figure 2a,b, shows the PXRD patterns of the fresh catalysts and the samples
aged at 800 ◦C. As presented in Figure 2a, the PXRD patterns of the fresh catalysts exhibit
the typical characteristic peaks of SSZ-16 (2θ = 7.4◦, 8.6◦, 11.6◦, and 12.8◦), implying that the
AFX structure is well maintained after Cu and Ce ion exchange [31]. After hydrothermally
aging at 800 ◦C, an amorphous structure forms in the three aged catalysts, possibly due to
structural damage caused by hydrothermal treatments. Among them, the characteristic
peaks of the AFX structure can be identified in the PXRD pattern of CuCe0.87-SSZ-16-800HT.
It is suggested that CuCe0.87-SSZ-16-800HT maintains a partial AFX structure, which is
important for CuCe0.87-SSZ-16-800HT to exhibit high deNOx activity still. However, the
characteristic peaks of SSZ-16 could barely be recognized for Cu-SSZ-16-800HT, indicating
that the structure has collapsed after hydrothermal treatment at 800 ◦C. Notably, although
the crystallinity decreases significantly, no characteristic peaks corresponding to CuOx and
CeO2 are found on all the fresh and aged catalyst samples [32,33], indicating that CuOx or
CeO2 particles have not formed and the Cu and Ce are distributed well in all catalysts.

Table 1. The chemical compositions and textural parameters of Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh,
CuCe0.87-SSZ-16-Fresh, Cu-SSZ-16-800HT, CuCe0.77-SSZ-16-800HT, and CuCe0.87-SSZ-16-800HT.

Catalysts
Component Content a SBET

b

(m2·g−1)
Pore Volume b

(cm3·g−1)Si/Al Cu (wt.%) Ce (wt.%)

Cu-SSZ-16-Fresh 3.4 2.2 - 523 0.247
CuCe0.77-SSZ-16-Fresh 3.4 2.2 0.77 577 0.251
CuCe0.87-SSZ-16-Fresh 3.3 2.1 0.87 605 0.261

Cu-SSZ-16-800HT 3.1 2.8 - 13 0.030
CuCe0.77-SSZ-16-800HT 3.1 2.8 1.0 30 0.035
CuCe0.87-SSZ-16-800HT 3.1 2.7 1.1 37 0.060

a Measured by ICP-OES. b Derived from N2 adsorption–desorption isotherms.
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The N2 adsorption–desorption analyses for Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh,
and CuCe0.87-SSZ-16-Fresh are demonstrated in Figure 3a,b. All three fresh catalysts show
type I isotherms related to typical microporous structures. Table 1 summarizes the BET
surface areas (SBET) and pore volumes of the fresh and aged catalysts. The table shows that
the SBET values are 523, 577, and 605 m2·g−1 for Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh, and
CuCe0.87-SSZ-16-Fresh, respectively. Correspondingly, the pore volumes gradually increase
from 0.247 cm3·g−1 to 0.251 cm3·g−1, then to 0.261 cm3·g−1. In general, both SBET and pore
volumes increase with an increase in the Ce mass fraction, and CuCe0.87-SSZ-16-Fresh has the
largest SBET and pore volumes. However, the SBET and pore volumes decline sharply after
hydrothermal treatment at 800 ◦C, which may be due to the collapse of the zeolite skeleton.
The SBET and pore volumes of Cu-SSZ-16-800HT are only 13 m2·g−1 and 0.030 cm3·g−1,
respectively, while they are 30 m2·g−1 and 0.035 cm3·g−1 for CuCe0.77-SSZ-16-800HT and
37 m2·g−1 and 0.060 cm3·g−1 for CuCe0.87-SSZ-16-800HT. The skeleton of Cu-SSZ-16-800HT
collapses more severely, which is consistent with the PXRD results. Pore structures are retained
in the aged catalysts, which may help the catalysts maintain catalytic activity.
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Figure 4 displays the SEM results of the fresh catalysts at different magnifications. All
the samples show similar morphologies of a double-cone prism with a similar average
length of 1–2 µm. It can be concluded that the incorporation of Ce does not affect the struc-
ture or morphology of the catalysts. However, the morphology changed after hydrothermal
treatment at 800 ◦C due to the damage to the zeolite framework (Figure S2). As shown in
Figure 5, the TEM in bright and dark fields and corresponding element mapping images
illustrate that both the Cu and Ce atoms are well dispersed in the catalyst samples, in
agreement with the PXRD results mentioned above. Moreover, CuOx or CeOx clusters are
not detected, leading to improved NH3-SCR performance.
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The 27Al MAS NMR spectra of SSZ-16-Fresh, Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-
Fresh, and CuCe0.87-SSZ-16-Fresh are depicted in Figure 6a. Four peaks are determined at
around 57, 51, 30, and −1 ppm in the spectra of Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh,
and CuCe0.87-SSZ-16-Fresh, respectively. For SSZ-16-Fresh, there are only three peaks,
leaving out the peak at 30 ppm. The 57 ppm and 51 ppm signals are associated with
two kinds of framework aluminum in zeolite; the former is attributed to tetrahedrally
coordinated aluminum, and the latter corresponds to distorted aluminum [22,34]. The peak
signals centered at 30 ppm and −1 ppm are characteristic of penta-coordinated and octahe-
dral aluminum, respectively [35]. The peaks are integrally calculated and represented in
Figure S3 and Table 2. The percentage of octahedral aluminum in SSZ-16-Fresh is 0.9%,
which increases to 11.8% for Cu-SSZ-16-Fresh. It may be due to the distortion of the zeolite
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skeleton caused by Cu ion exchange, leading to the dealumination of the catalyst [34]. After
Ce ion exchange, the relative content of octahedral aluminum decreases from 11.8% to 9.7%
and 6.8%. The amount of tetrahedrally coordinated aluminum is markedly enhanced from
19.9% to 25.1% and 27.2%, indicating that the incorporation of Ce increases the framework
Al over CuCex-SSZ-16-Fresh. The proportions of framework Al increase with an increase in
Ce. After hydrothermal treatment at 800 ◦C, the peaks at 52 ppm and 0 ppm occupy a dom-
inant position for Cu-SSZ-16-800HT (Figure 6b). Compared with the Cu-SSZ-16-Fresh, the
non-framework Al accounts for a larger proportion of aluminum in the Cu-SSZ-16-800HT.
Furthermore, the framework Al in Cu-SSZ-16-800HT is mainly composed of distorted
aluminum. However, the peak at 57 ppm remains in the 27Al MAS NMR spectra of CuCex-
SSZ-16-800HT, demonstrating that more tetrahedrally coordinated aluminum exists in the
CuCex-SSZ-16-800HT series catalysts [5]. Compared with CuCex-SSZ-16-Fresh, although
the non-framework Al increases in CuCex-SSZ-16-800HT, the framework Al still accounts
for the majority of aluminum in CuCex-SSZ-16-800HT. It may be one of the reasons why
the CuCex-SSZ-16-800HT series catalysts can still maintain high NH3-SCR catalytic activity.
It is concluded that introducing Ce into the Cu-SSZ-16 catalysts reduces the dealumination
reaction and improves the crystallinity, leading to outstanding hydrothermal stability.
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Table 2. Quantitative analysis of the 27Al NMR results of SSZ-16-Fresh, Cu-SSZ-16-Fresh, CuCe0.77-
SSZ-16-Fresh, and CuCe0.87-SSZ-16-Fresh.

Catalysts
27Al NMR Peak/ppm Relative Concentration (%)

57 51 30 −1

SSZ-16-Fresh 45.8 53.3 - 0.9
Cu-SSZ-16-Fresh 19.9 61.5 6.8 11.8

CuCe0.77-SSZ-16-Fresh 25.1 58.1 7.1 9.7
CuCe0.87-SSZ-16-Fresh 27.2 56.9 9.1 6.8

Furthermore, to investigate the change in the surface acidity, NH3-TPD measurements
were carried out on Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh, and CuCe0.87-SSZ-16-Fresh
(Figure 7a). All the catalysts exhibit three desorption peaks at around 197, 318, and 505 ◦C
(referred to as S1, S2, and S3, respectively). The signal at 197 ◦C is related to the weak acid
sites, including physically adsorbed NH3, NH3 adsorbed on weak Brønsted acid sites, and
NH3 adsorbed by the surface hydroxyl groups [22,27,36]. The 318 ◦C peak is associated
with moderate Lewis acid sites produced by ion exchange [30]. The peak at 505 ◦C is
attributed to the NH3 adsorbed on strong Brønsted acid sites [27]. It can be found that all the
samples display similar locations and amounts of acid sites. The deconvolution areas of the
fresh catalysts are shown in Figure 7b. With the incorporation of Ce, the amount of the weak
acid sites (S1) decreases slightly, which may be due to the introduced Ce occupying some
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Brønsted acid sites [37]. The number of moderate and strong acid sites (S2 and S3) increases
with the addition of Ce, which is beneficial for NH3 storage and NH3-SCR performance.
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2.3. Cu and Ce Species

XPS was performed to inquire about the chemical state of the two species introduced,
and the XPS results of the fresh samples are exhibited in Figure 8. The Cu 2p spectrum
(Figure 8a) is divided into two peaks at around 933.1 and 935.9 eV, which may correspond
to the presence of Cu+ and Cu2+ species [28,33,38,39]. The integral area fraction results
of Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh, and CuCe0.87-SSZ-16-Fresh are depicted in
Table 3. The relative amount of Cu2+ significantly increases from 32.8% to 40.4% and
then to 62.6%, while the proportion of Cu+ decreases as Ce increases, revealing that the
addition of Ce facilitates the formation of surface Cu2+. Moreover, the Ce 3d spectra of
CuCe0.77-SSZ-16-Fresh and CuCe0.87-SSZ-16-Fresh are obtained (Figure 8b). According to
the literature, the spectra can be recognized as having eight peaks, and the ones marked
u’ and v’ are related to Ce3+ species; the others, which are labeled u, v, u”, v”, u”’ and
v”’, are ascribed to Ce4+ species [40–43]. As generalized in Table 3, the Ce3+/(Ce3+ + Ce4+)
ratios increase from 44.4% to 54.4% over the surface with an increase in the Ce contents,
which is due to the formation of Cu2+ in the redox cycles Cu+ + Ce4+→ Cu2+ + Ce3+ [37,44].
Consequently, the addition of Ce leads to the electron transfer of Cu+, forming more Cu2+

and contributing to the high NH3-SCR activity. The XPS results of the catalysts aged at
800 ◦C are displayed in Figure S4, and the deconvolution areas are listed in Table 3. After
hydrothermal treatment at 800 ◦C, the percentage of Cu2+ decreases from 32.8% to 20.7%
in Cu-SSZ-16 because hydrothermal aging transfers some of the Cu2+ to CuOx [45]. The
proportion of Cu2+ in CuCe0.77-SSZ-16-800HT and CuCe0.87-SSZ-16-800HT is 33.5% and
35.8%, respectively. Although the proportion decreases compared with CuCe0.77-SSZ-16-
Fresh and CuCe0.87-SSZ-16-Fresh, it is still higher than that of Cu-SSZ-16-Fresh (32.8%).
Many active Cu2+ species are retained in the CuCex-SSZ-16-800HT samples, which is an
important reason for the low deactivation of CuCex-SSZ-16-800HT series catalysts. The
ratio of Ce3+/(Ce3+ + Ce4+) declines, meaning that the redox ability of the aged catalysts is
reduced by the hydrothermal treatment [46]. Even though the relative amounts of Cu2+ and
Ce3+ decrease for CuCex-SSZ-16-800HT, many remain in the aged catalysts, inhibiting a
sharp decline in catalytic activity. It is suggested that the introduction of Ce could increase
the active Cu2+ contents and improve the resistance to hydrothermal treatments [28].
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Table 3. The distribution of Cu and Ce species revealed by XPS.

Catalysts Cu2+ (%) Cu+ (%) Ce3+/(Ce3+ + Ce4+) (%)

Cu-SSZ-16-Fresh 32.8 67.2 -
CuCe0.77-SSZ-16-Fresh 40.4 59.6 44.4
CuCe0.87-SSZ-16-Fresh 62.6 37.4 54.4

Cu-SSZ-16-800HT 20.7 79.3 -
CuCe0.77-SSZ-16-800HT 33.5 66.5 37.8
CuCe0.87-SSZ-16-800HT 35.8 64.2 43.0

Figure S5 shows the UV-vis spectra of the fresh catalysts. All three catalysts display
two peaks at 202 and 733 nm, related to the charge transfer from the framework oxygen to
Cu2+ and the d-d transitions of Cu2+ in CuOx [12,47]. However, due to the good distribution
and relatively low content of CuOx, the peaks related to CuOx cannot be detected by PXRD.
Additionally, a new peak appears at 297 nm for CuCe0.77-SSZ-16-Fresh and CuCe0.87-SSZ-
16-Fresh, assigned to the charge transfer process of Ce3+ [48]. The intensity of the 202 nm
peak for CuCe0.77-SSZ-16-Fresh and CuCe0.87-SSZ-16-Fresh is significantly higher than
that of Cu-SSZ-16-Fresh, implying that more Cu2+ species exist in CuCe0.77-SSZ-16-Fresh
and CuCe0.87-SSZ-16-Fresh. Hence, it can be inferred that adding Ce contributes to the
rise in Cu2+ species in the catalysts, and the more pronounced effect is enhanced with an
increase in the Ce contents. The peak located at 297 nm suggests the existence of Ce3+ in the
CuCex-SSZ-16-Fresh series catalysts. Therefore, the incorporation of Ce might contribute to
the formation of Cu2+, which is also proven by the XPS results.

EPR was measured to evaluate the quantity and coordination environment of the Cu2+

species in zeolites because Cu+ and CuOx species could not be detected by EPR [49]. Figure
S6 depicts the EPR results of Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh, and CuCe0.87-SSZ-
16-Fresh. The three samples show similar peak features. The sharp peaks (g⊥ = 2.08) can be
observed in all the samples, which correspond to isolated Cu2+ coordinated with oxygen.
After the introduction of Ce, the intensities of the g⊥ = 2.08 peaks are significantly enhanced.
The enhancement is greater with an increase in the Ce content, suggesting that the quantity
of Cu2+ gradually increases with the addition of Ce. Furthermore, the hyperfine features
of EPR are g‖ = 2.37 for Cu-SSZ-16-Fresh and CuCe0.77-SSZ-16-Fresh, demonstrating that
the Cu2+ species are in the identical coordination environment in the two samples. For
CuCe0.87-SSZ-16-Fresh, the hyperfine feature has g‖ = 2.33 due to the different coordination
environments of Cu2+ after the incorporation of Ce.

Additionally, to explore the distribution and amount of Cu species in the catalysts,
H2-TPR was measured over the fresh catalysts (Figure 9a) and the samples aged at 800 ◦C
(Figure 9b). The H2-TPR spectrum of Cu-SSZ-16-Fresh is deconvolved into five reduction
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peaks at approximately 236 ◦C, 323 ◦C, 390 ◦C, 477 ◦C, and 519 ◦C, with each peak repre-
senting one kind of Cu species. Among these, the 236 ◦C peak corresponds to [Cu(OH)]+-Z,
while that at 390 ◦C is related to Cu2+-2Z. Notably, Cu2+-2Z species require a higher tem-
perature to be reduced since they are situated in the 6-ring and are more stable. The peak
at 323 ◦C is associated with CuOx, which exerts negative effects on NH3-SCR performance
by blocking the pores of the zeolite catalysts. The signal at 477 ◦C is assigned to Cu(AlO2)2
in the catalysts, which is indirectly caused by the dealumination of the zeolite framework.
Cu+ species in the catalysts are reduced to Cu0 at 519 ◦C [50–52]. Furthermore, the H2-
TPR curves of CuCe0.77-SSZ-16-Fresh and CuCe0.87-SSZ-16-Fresh show five deconvolution
regions similar to those of Cu-SSZ-16-Fresh. Table 4 lists the integral calculation of the
H2-TPR profiles in the range of 100–400 ◦C. As presented here, the CuOx species account for
26.2% of the Cu-SSZ-16-Fresh catalyst but 19.4% and 11.5% of the CuCe0.77-SSZ-16-Fresh
and CuCe0.87-SSZ-16-Fresh catalysts, indicating that the modification of Ce combats the
generation of CuOx. The percentage of [Cu(OH)]+-Z is 11.8%, while that of Cu2+-2Z is
62.0% in Cu-SSZ-16-Fresh. After adding Ce, the proportions of [Cu(OH)]+-Z and Cu2+-2Z
increase to 13.0% and 67.6% in the CuCe0.77-SSZ-16-Fresh catalyst, respectively. Moreover,
[Cu(OH)]+-Z accounts for 14.1%, and Cu2+-2Z accounts for 74.4% in the CuCe0.87-SSZ-
16-Fresh catalyst when the Ce contents increase further. The two Cu2+ species increase
with an increase in Ce. Different from the fresh catalysts, the curves are only determined
to have four peaks after hydrothermal treatment at 800 ◦C, namely, at 339 ◦C, 421 ◦C,
560 ◦C, and 698 ◦C, related to CuOx, Cu2+-2Z, Cu(AlO2)2, and Cu+, respectively [52]. The
peaks shift toward high temperatures, which suggests that these Cu species have become
more stable during the hydrothermal treatment at 800 ◦C [52,53]. It is observed that the
peak at about 230 ◦C disappears after hydrothermal aging because the [Cu(OH)]+-Z is
unstable and transforms to Cu2+-2Z or CuOx species at high temperatures [21]. This can
also explain why the low-temperature catalytic activity of the aged samples significantly
decreases. As presented in Table 4, compared with the fresh samples, the proportion of
CuOx increases and the proportion of Cu2+-2Z declines in the samples aged at 800 ◦C.
However, most Cu2+-2Z species are retained in the aged catalysts, preventing a significant
decrease in NH3-SCR performance. The percentages of Cu2+-2Z species in Cu-SSZ-16-
800HT, CuCe0.77-SSZ-16-800HT, and CuCe0.87-SSZ-16-800HT are 51.4%, 54.0%, and 56.0%,
respectively. Compared with Cu-SSZ-16-800HT, more active Cu2+-2Z species are main-
tained in CuCex-SSZ-16-800HT, which helps the CuCex-SSZ-16-800HT catalysts maintain
high deNOx catalytic activity. The proportion of CuOx is 48.6%, compared to 46.0% and
44.0% for CuCe0.77-SSZ-16-800HT and CuCe0.87-SSZ-16-800HT, respectively, confirming
that the introduction of Ce can effectively prevent the formation of CuOx. Therefore, it
can be deduced that the formation of Cu2+ is promoted while the generation of CuOx is
inhibited by introducing Ce, leading to higher hydrothermal stability.
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Table 4. The distribution of Cu species measured by H2-TPR.

Catalysts [Cu(OH)]+-Z (%) Cu2+-2Z (%) CuOx (%)

Cu-SSZ-16-Fresh 11.8 62.0 26.2
CuCe0.77-SSZ-16-Fresh 13.0 67.6 19.4
CuCe0.87-SSZ-16-Fresh 14.1 74.4 11.5

Cu-SSZ-16-800HT - 51.4 48.6
CuCe0.77-SSZ-16-800HT - 54.0 46.0
CuCe0.87-SSZ-16-800HT - 56.0 44.0

In situ DRIFTS measurements under NH3 adsorption are ideal for probing the rel-
ative contributions of the two Cu2+ species in the catalysts. The NH3-DRIFTS results
of Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh, and CuCe0.87-SSZ-16-Fresh are displayed in
Figure 10. Two negative peaks appear in 860–1000 cm−1 wave numbers, one corresponding
to [Cu(OH)]+-Z at 949 cm−1 and the other related to Cu2+-2Z at 895 cm−1 [13,54,55]. The
two peak intensities increase effectively, demonstrating that the amounts of the two Cu2+

species increase through the introduction of Ce. The relative integral areas are shown in
Figure S7, revealing that the relative content of the two Cu2+ species also changes with the
addition of Ce. The percentage of Cu2+-2Z in Cu-SSZ-16-Fresh is 48.7%, which increases to
51.5% and 54.3% for CuCe0.77-SSZ-16-Fresh and CuCe0.87-SSZ-16-Fresh, respectively. With
an increase in the Ce contents, the relative proportion of Cu2+-2Z increases gradually, and
the percentage of [Cu(OH)]+-Z decreases. It is indicated that Ce addition is conducive to
forming Cu2+ species, especially Cu2+-2Z species, which is beneficial to the hydrothermal
stability of the catalysts.

Catalysts 2023, 13, x  12 of 17 
 

 

 
Figure 10. In situ DRIFTS spectra of Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh, and CuCe0.87-SSZ-16-
Fresh. 

From the analysis results above, we can conclude that the incorporation of Ce can 
stabilize the skeleton of Cu-SSZ-16 and also promote the formation of [Cu(OH)]+-Z and 
Cu2+-2Z, especially Cu2+-2Z. The PXRD results show that the AFX structure is retained in 
the hydrothermally treated CuCex-SSZ-16, suggesting that adding Ce can improve the 
structural stability of the catalysts. The 27Al MAS NMR results also confirm this deduction, 
as the dealumination is reduced and the framework Al increases in fresh and aged cata-
lysts with Ce. Additionally, the framework Al is better maintained in CuCex-SSZ-16-
800HT, contributing to the excellent NH3-SCR performance of CuCex-SSZ-16-800HT. To 
further investigate the promotional effect of introducing Ce, XPS, EPR, UV-vis, H2-TPR, 
and in situ DRIFTS analyses were conducted. The XPS results show that the percentage of 
Cu2+ species is only 32.8% for Cu-SSZ-16-Fresh but rises to 40.4% and 62.6% for CuCe0.77-
SSZ-16-Fresh and CuCe0.87-SSZ-16-Fresh, respectively, after the introduction of Ce. Corre-
spondingly, the Ce and Cu species constitute a redox cycle: Cu+ + Ce4+ → Cu2+ + Ce3+, 
meaning that the incorporation of Ce is able to increase the Cu2+ species in catalysts. After 
hydrothermal treatment at 800 °C, although the amount of Cu2+ species decreases for 
CuCe0.77-SSZ-16-800HT and CuCe0.87-SSZ-16-800HT, it is still higher than that of Cu-SSZ-
16-Fresh. The majority of Cu2+ is still retained in the CuCex-SSZ-16-800HT series catalysts, 
accounting for high NH3-SCR activity. The EPR and UV-vis measurements exhibit similar 
results to those of XPS, namely that the amounts of Cu2+ increase obviously with the ad-
dition of Ce. For the H2-TPR analysis, the results suggest that the relative amount of CuOx 
reduces from 26.2% to 19.4% and then to 11.5% for the fresh samples. Meanwhile, the 
proportion of active Cu2+ rises after the incorporation of Ce. After hydrothermal aging at 
800 °C, even though Cu2+-2Z decreases in the aged catalysts, most active Cu2+-2Z species 
are retained in the aged catalysts, which is an important reason for the low deactivation 
of CuCex-SSZ-16-800HT series catalysts. It is confirmed that the incorporation of Ce can 
promote the formation of active Cu2+ but limit the increase in CuOx. Moreover, the in situ 
DRIFTS results reveal that adding Ce would significantly increase the relative content of 
Cu2+-2Z, contributing to remarkable hydrothermal stability. In summary, the introduction 
of Ce can improve the stability of the Cu-exchanged zeolite skeleton and increase the ac-
tive Cu2+ species in catalysts, thus improving hydrothermal stability. Furthermore, the ze-
olite skeleton structure and active Cu2+ species are better maintained in the samples hy-
drothermally aged at 800 °C, leading to low deactivation of the CuCex-SSZ-16-800HT se-
ries catalysts. 

3. Materials and Methods 
3.1. Synthesis and Hydrothermal Treatments 

Based on a previous report, the SSZ-16 catalyst was synthesized with a composition 
of SiO2: 0.045 Al2O3: 0.11 OSDA: 0.8 NaOH: 20 H2O at 150 °C for 9 days [10]. The detailed 

Figure 10. In situ DRIFTS spectra of Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh, and CuCe0.87-S
SZ-16-Fresh.

From the analysis results above, we can conclude that the incorporation of Ce can
stabilize the skeleton of Cu-SSZ-16 and also promote the formation of [Cu(OH)]+-Z and
Cu2+-2Z, especially Cu2+-2Z. The PXRD results show that the AFX structure is retained
in the hydrothermally treated CuCex-SSZ-16, suggesting that adding Ce can improve the
structural stability of the catalysts. The 27Al MAS NMR results also confirm this deduction,
as the dealumination is reduced and the framework Al increases in fresh and aged catalysts
with Ce. Additionally, the framework Al is better maintained in CuCex-SSZ-16-800HT,
contributing to the excellent NH3-SCR performance of CuCex-SSZ-16-800HT. To further
investigate the promotional effect of introducing Ce, XPS, EPR, UV-vis, H2-TPR, and in situ
DRIFTS analyses were conducted. The XPS results show that the percentage of Cu2+ species
is only 32.8% for Cu-SSZ-16-Fresh but rises to 40.4% and 62.6% for CuCe0.77-SSZ-16-Fresh
and CuCe0.87-SSZ-16-Fresh, respectively, after the introduction of Ce. Correspondingly, the
Ce and Cu species constitute a redox cycle: Cu+ + Ce4+ → Cu2+ + Ce3+, meaning that the
incorporation of Ce is able to increase the Cu2+ species in catalysts. After hydrothermal
treatment at 800 ◦C, although the amount of Cu2+ species decreases for CuCe0.77-SSZ-16-
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800HT and CuCe0.87-SSZ-16-800HT, it is still higher than that of Cu-SSZ-16-Fresh. The
majority of Cu2+ is still retained in the CuCex-SSZ-16-800HT series catalysts, accounting
for high NH3-SCR activity. The EPR and UV-vis measurements exhibit similar results to
those of XPS, namely that the amounts of Cu2+ increase obviously with the addition of
Ce. For the H2-TPR analysis, the results suggest that the relative amount of CuOx reduces
from 26.2% to 19.4% and then to 11.5% for the fresh samples. Meanwhile, the proportion
of active Cu2+ rises after the incorporation of Ce. After hydrothermal aging at 800 ◦C,
even though Cu2+-2Z decreases in the aged catalysts, most active Cu2+-2Z species are
retained in the aged catalysts, which is an important reason for the low deactivation of
CuCex-SSZ-16-800HT series catalysts. It is confirmed that the incorporation of Ce can
promote the formation of active Cu2+ but limit the increase in CuOx. Moreover, the in situ
DRIFTS results reveal that adding Ce would significantly increase the relative content of
Cu2+-2Z, contributing to remarkable hydrothermal stability. In summary, the introduction
of Ce can improve the stability of the Cu-exchanged zeolite skeleton and increase the
active Cu2+ species in catalysts, thus improving hydrothermal stability. Furthermore, the
zeolite skeleton structure and active Cu2+ species are better maintained in the samples
hydrothermally aged at 800 ◦C, leading to low deactivation of the CuCex-SSZ-16-800HT
series catalysts.

3. Materials and Methods
3.1. Synthesis and Hydrothermal Treatments

Based on a previous report, the SSZ-16 catalyst was synthesized with a composition of
SiO2: 0.045 Al2O3: 0.11 OSDA: 0.8 NaOH: 20 H2O at 150 ◦C for 9 days [10]. The detailed
procedures are available in the Electronic Supplementary Information (ESI). The Cu-SSZ-
16 catalyst was obtained by successively exchanging the prepared SSZ-16 with a 0.1 M
CH3COONH4 and a 0.01 M Cu(NO3)2 solution. Then, Cu-SSZ-16 was exchanged with
a Ce(NO3)3 solution of different concentrations at 80 ◦C overnight to obtain the CuCex-
SSZ-16 series catalysts. After drying at 100 ◦C, the catalyst products were calcined in air at
290 ◦C for 2 h and then at 550 ◦C for 6 h, thus producing the fresh catalysts. Then the fresh
samples were hydrothermally aged at different temperatures in air containing 10 vol% H2O
for 10 h to obtain the aged samples.

3.2. Characterization of the Catalysts

The powder X-ray diffraction (PXRD) was applied to analyze the zeolite products
with a Bruker D2 Phaser instrument at a scanning speed of 0.2◦ s−1. The N2 adsorption–
desorption analyses were performed on a Micrometrics ASAP 2020 Plus apparatus at the
temperature of liquid nitrogen. The scanning electron microscopy (SEM) images were
captured with a Hitachi SU8010 microscope at 4 kV. The transmission electron microscopy
(TEM) images were recorded on an FEI Tecnai G2 F30, which was operated at an accelerating
voltage of 300 kV. The element distributions of the catalysts were detected by energy
dispersive spectrometer (EDS) mapping. A PE Avio200 (America) inductively coupled
plasma optical emission spectroscope (ICP-OES) was used to determine the elemental
compositions. For ICP-OES analysis, a 20 mg sample was mixed with 2 mL concentrated
nitric acid, 2 mL HF, and 0.5 mL H2O2. Furthermore, the mixture was treated at 80 ◦C
in a graphite digestion apparatus under sealed conditions. After about 2 h, when the
mixture became clear and transparent, it was diluted to the required concentration with
H2O. The 27Al solid-state nuclear magnetic resonance (NMR) test was carried out on a
Bruker AVANCE III HD 600 MHz spectrometer. The X-ray photoelectron spectra (XPS) were
determined with a Thermo Fisher Scientific K-Alpha. The electron paramagnetic resonance
(EPR) was analyzed with a JEOL JES-FA200 instrument at −196 ◦C. The ultraviolet–visible
spectra (UV-vis) were determined with a Shimadzu UV 3600 spectrometer, and BaSO4 was
used as the reference sample.

The temperature-programmed desorption of NH3 (NH3-TPD) was measured by an
MFTP-3060 chemisorption analyzer. First of all, a 100 mg catalyst was pretreated at 400 ◦C



Catalysts 2023, 13, 742 13 of 16

in N2 atmosphere for 1 h. After cooling to 30 ◦C and holding for 10 min, 4000 ppm NH3
was injected into the sample for 30 min. Subsequently, the purging process was conducted
at 100 ◦C with He gas for 1 h to remove physically adsorbed NH3. After these steps were
complete, the TPD profiles of NH3 were obtained under a He atmosphere from 100 to
700 ◦C with a temperature ramp rate of 10 ◦C min−1.

Additionally, to explore the reducibility of zeolite products, temperature-programmed
reduction of hydrogen (H2-TPR) was performed on an MFTP-3060 apparatus. To start
with, a 100 mg catalyst was treated using the same purification method as NH3-TPD, as
described above. Then 5% H2/He was introduced at a 30 mL min−1 flow rate to establish
a baseline. Eventually, the H2-TPR profiles were obtained from 100 ◦C to 850 ◦C with a
10 ◦C min−1 temperature ramp rate.

The in situ diffuse reflection infrared Fourier spectroscopy (DRIFTS) adsorption analyses
under NH3 were carried out on a Thermo Scientific Nicolet iS20 spectrometer with an in situ
diffuse reflection cell equipped with KBr windows. Firstly, the catalysts were purified by N2
at 400 ◦C for 1 h with a 50 mL min−1 flow rate. Later, the catalysts were cooled to 100 ◦C to
record the background spectra. To complete the NH3 adsorption process, the catalysts were
treated with NH3 for 30 min. After that, the catalysts were purged for 1 h under N2 conditions.
The spectra were collected by accumulating 32 scans with a resolution of 4 cm−1.

3.3. Catalytic Performance Tests

The NH3-SCR catalytic experiments were performed in a fixed-bed reactor system
with 100 mg (60–100 mesh) catalyst pellets, and the testing range was 150–400 ◦C. The
catalysts were tested at a total flow rate of 400 mL min−1, and the GHSV was 200,000 h−1.
Furthermore, the simulated test gases comprised 500 ppm NH3, 500 ppm NO, 50 ppm SO2
(when used), 5 vol% O2, and 5 vol% H2O, with the balance being N2. The outlet gases were
analyzed with a Thermo Scientific Nicolet Antaris IGS. The equations for calculating NOx
conversion, N2, NO2, and N2O selectivity are as follows:

NOx conversion =
[NO]in − [NO]out − [NO2]out−2[N2O]out

[NO]in
× 100% (1)

N2 selectivity =
[NH3]in + [NO]in − [NH3]out − [NO]out − [NO2]out−2[N2O]out

[NH3]in + [NO]in − [NH3]out − [NO]out
× 100%

(2)

NO2 selectivity =
[NO2]out

[NH3]in + [NO]in − [NH3]out − [NO]out
× 100% (3)

N2O selectivity =
2[N2O]out

[NH3]in + [NO]in − [NH3]out − [NO]out
× 100% (4)

where [NO]in and [NH3]in indicate the concentrations of NO and NH3 in the inlet gases,
respectively, while [NH3]out, [NO]out, [NO2]out and [N2O]out represent the concentrations
of NH3, NO, NO2 and N2O in the outlet gases, respectively.

4. Conclusions

The CuCex-SSZ-16 series catalysts modified with different amounts of Ce were synthe-
sized via the ion-exchange process and measured under simulated NH3-SCR conditions.
The results reveal that the CuCe0.77-SSZ-16 and CuCe0.87-SSZ-16 catalysts have better low-
temperature (<250 ◦C) NH3-SCR performance and outstanding hydrothermal stability
compared with Cu-SSZ-16. Meanwhile, the positive effects increase with an increase in
the Ce contents, and the CuCe0.87-SSZ-16 catalyst shows the best hydrothermal stability.
In general, the introduction of 0.87 wt.% Ce effectively promotes the stability of the AFX
framework and facilitates the formation of Cu2+-2Z species, which are beneficial to hy-
drothermal stability. Through a combination of multiple characterization techniques, the
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effects of adding Ce were investigated. The PXRD results show that the AFX structure
is retained in the hydrothermally treated sample with Ce, suggesting that adding Ce can
stabilize the skeleton of the catalysts. The 27Al MAS NMR results indicate that adding Ce
may have increased the framework aluminum in the catalysts, resulting in better structural
stability in the fresh and aged samples. Furthermore, the analyses of Cu species by XPS,
EPR, H2-TPR, and in situ DRIFTS demonstrate that Ce ion exchange significantly increases
the amount of Cu2+-2Z species in the catalysts and reduces the formation of CuOx, leading
to good hydrothermal stability. Even after hydrothermal treatment at 800 ◦C, most of
the framework aluminum and the majority of active Cu2+-2Z species are retained in the
aged catalysts with Ce additives, preventing a significant decrease in NH3-SCR activity. In
conclusion, CuCe0.87-SSZ-16 shows remarkable NH3-SCR performance and outstanding
hydrothermal stability and has great application prospects for NOx removal.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/catal13040742/s1. The synthesis of the catalysts. Figure S1: N2,
NO2, and N2O selectivity over Cu-SSZ-16, CuCe0.77-SSZ-16, and CuCe0.87-SSZ-16 before (a–c) and
after hydrothermal treatment at 750 ◦C (d–f) and 800 ◦C (g–i). Figure S2: SEM images of Cu-
SSZ-16-800HT (a,d), CuCe0.77-SSZ-16-800HT (b,e), and CuCe0.87-SSZ-16-800HT (c,f). Figure S3:
Deconvolution of 27Al NMR spectra over SSZ-16-Fresh, Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh,
and CuCe0.87-SSZ-16-Fresh. Figure S4: XPS spectra of Cu 2p (a) and Ce 3d (b) over Cu-SSZ-16-800HT,
CuCe0.77-SSZ-16-800HT, and CuCe0.87-SSZ-16-800HT. Figure S5: UV-vis spectra of Cu-SSZ-16-Fresh,
CuCe0.77-SSZ-16-Fresh, and CuCe0.87-SSZ-16-Fresh. Figure S6: EPR spectra of Cu-SSZ-16-Fresh,
CuCe0.77-SSZ-16-Fresh, and CuCe0.87-SSZ-16-Fresh. Figure S7: Deconvolution of in situ DRIFTS
curves over Cu-SSZ-16-Fresh, CuCe0.77-SSZ-16-Fresh, and CuCe0.87-SSZ-16-Fresh.
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