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Abstract: A photocatalyst of iron–porphyrin tetra-carboxylate (FeTCPP)-sensitized g-C3N4 nanosheet
composites (FeTCPP@CNNS) based on g-C3N4 nanosheet (CNNS) and FeTCPP have been fabricated
by in situ hydrothermal self-assembly. FeTCPP is uniformly introduced to the surface of CNNS.
Only a small amount of FeTCPP is introduced, and the stacked lamellar structure is displayed in
the composite. As compared with pure CNNS, the FeTCPP@CNNS composites exhibit significantly
improved photocatalytic performance by the photodegradation of p-nitrophenol (4-NP). At the
optimum content of FeTCPP to CNNS (3 wt%), the photodegradation activity of the FeTCPP@CNNS
photocatalyst can reach 92.4% within 1 h. The degradation rate constant for the 3% FeTCPP@CNNS
composite is 0.037 min−1 (4-NP), which is five times that of CNNS (0.0064 min−1). The results
of recycling experiments show that 3% FeTCPP@CNNS photocatalyst has excellent photocatalytic
stability. A possible photocatalytic reaction mechanism of FeTCPP@CNNS composite for photocat-
alytic degradation of 4-NP has been proposed. It is shown that superoxide radical anions played
the major part in the degradation of 4-NP. The appropriate content of FeTCPP can enhance the
charge transfer efficiency. The FeTCPP@CNNS composites can provide more active sites and acceler-
ate the transport and separation efficiency of photogenerated carriers, thus further enhancing the
photocatalytic performance.

Keywords: FeTCPP@CNNS; g-C3N4 nanosheets; photocatalytic; visible light

1. Introduction

With the fast development of economy and industry, environmental deterioration—especially
water pollution by organic dyes, which result in a serious threat to human health—has
garnered wide attention from the government and society. At present, many effective
methods have been used to resolve water pollutant problems, including the membrane oxi-
dation method, adsorption method, separation method, and photocatalysis method [1–4].
Photocatalysis are proved to be a safe, economical, and renewable method to solve the
aforementioned pollution problems by photocatalysts at ambient pressure and room tem-
perature under solar light, which is considered one of the most promising wastewater
treatment methods [5]. Although the application of photocatalytic technology has been
wildly used, there is still a puzzle to develop photocatalysts with physicochemical stabil-
ity, photocatalytic activity, and enhancing visible light utilization efficiency for practice
application [6]. Photocatalytic reaction can be divided into three basic processes, including
light capture process, carrier separation and migration process, and photocatalytic redox
reaction [7–12].
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Metal-free polymeric semiconductor graphite-like carbon nitride (g-C3N4), with a
large amount of of pendant amine and unique two-dimensional structure, is a promising
candidate for solar energy conversion and organic pollutions degradation by solar irra-
diation due to its easy fabrication, good chemical and physical stability, nontoxicity, low
cost, and visible light activity. The g-C3N4 possesses a bandgap of approx. 2.7 eV, which
has presented good chemical stability in the removal of organic dyes and high visible
light absorption ability. However, the photocatalytic activity and the practical application
of g-C3N4 are restricted by the fast recombination of the photogenerated electron–hole
carriers [13]. To break these limitations, many studies have been adopted to depress the
rapid recombination of carriers, such as the morphology control of g-C3N4, doping, combi-
nation with other semiconductors, surface sensitization, and dye sensitization [14,15].

As one of the light-harvesting materials, porphyrins play an important role in pho-
tocatalysis. Porphyrin compounds act as excellent photosensitizers for photocatalysts
due to their wide absorption band, large conjugate structure, and good electron-donating
properties [14,16,17]. In general, under UV and visible light irradiation, metalloporphyrins
can catalyze a great many oxidative transformations. The metalloporphyrins can be com-
bined with photocatalysts in the outer of the porphyrin ring through covalent interaction
among the different functional groups (such as COOH and OH) [18,19]. The covalent bands
can be used as the electron transfer channels between metalloporphyrins and photocatalysts
and can further give rise to better selectivity and/or efficiency in catalytic processes [20–23].
Indeed, due to its two-dimensional flexible structure, g-C3N4 may be easily modified with
organic small molecules as a promising photocatalyst [24–33]. Accordingly, on the basis of
the latent characteristics of metalloporphyrins, it can be anticipated that the combination
between g-C3N4 and metalloporphyrins could be supported to provide a synergistic effect
of enhancing the photocatalytic activity with considerable visible light utilization efficiency.

In this work, tetra(4-carboxyphenyl)porphyrin (TCPP), FeTCPP, and CNNS were
successfully prepared firstly. Different mass contents of FeTCPP were introduced on the
surface of g-C3N4 nanosheets, forming FeTCPP@CNNS photocatalysts by π–π stacking in-
teractions and hydrogen bonding. Illustrated in Figure 1, the photocatalysts were fabricated
by integrating FeTCPP with g-C3N4 sheets via a mechanical mix method. The FeTCPP
acts as the light-harvesting part, and CNNS as the catalytic center, which can accelerate
the separation rate of the photogenerated electron and hole carriers. Under visible light
irradiation, the sensitized photocatalysts 3% FeTCPP@CNNS shows a high photocatalytic
activity for 4-NP degradation due to the efficient transfer to CNNS of the photogenerated
electrons of the excited FeTCPP. On the basis of the results of the active radical identification
experiments, the possible photocatalytic mechanism for the TCPP/CNNS composites was
also elucidated. This work shows that CNNS sensitized by FeTCPP could enhance the
photocatalytic degradation of 4-NP for more efficiently utilizing solar radiation.
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2. Results and Discussion

Figure 2a displays the X-ray diffraction pattern of the prepared materials. It can be
found from Figure 2a that the bulk g-C3N4 presents peaks at 12.8◦ and 27.7◦, corresponding
to the (100) crystal plane and (002) crystal plane of g-C3N4, respectively. The peak at
12.7◦ is weak, which reflects the regular arrangement of triazine rings in g-C3N4, and
the peak strength is strong at 27.5◦, which reflects the typical graphite interlayer stacking
structure [34,35]. Compared with bulk g-C3N4, the peak (002) of CNNS became wider
and slightly more weakened, indicating that the crystallinity of CNNS was not as good
as bulk g-C3N4. Meanwhile, the peak (100) of CNNS almost disappeared, indicating that
the nanosheet was successfully exfoliated [8]. FeTCPP has a very wide diffraction peak
at approximately 21.4◦, indicating that TCPP has an amorphous structure [16]. Figure 2b
shows the X-ray diffraction of FeTCPP@CNNS materials and CNNS. It can be found that
when CNNS is sensitized by a small amount of FeTCPP, the peak (002) generated by
interlamellar deposition of graphite is slightly larger than that of pure CNNS. It is caused
by the interaction between CNNS and FeTCPP through the triazine unit of porphyrin [36].
No obvious characteristic peak of FeTCPP was observed in FeTCPP@CNNS composites,
on the one hand, because of the low content of FeTCPP in the composites, and on the other
hand, because of the weak peak width of the diffraction characteristics of FeTCPP [37]. By
further comparison, it can be observed that the XRD spectra of composites are very similar
to those of the CNNS monomer, which also indicates that the addition of FeTCPP will not
damage the crystal structure of CNNS [38].

Figure 2c,d show FTIR spectra of TCPP, FeTCPP, CNNS, and FeTCPP@CNNS. FTIR
spectra of TCPP and FeTCPP are reflected in Figure 2c, where the characteristic peak at
963 cm−1 represents the N-H telescopic vibration pattern on the pyrrole ring of TCPP [39].
This feature peak disappears in the FTIR spectrogram of FeTCPP. In addition, a new
characteristic peak at 1001 cm−1 can be observed in the FTIR spectrum of FeTCPP, which
indicates that after the metal ions enter the porphyrin ring, the deformation vibration of
the ring is enhanced. In addition, the telescopic vibration characteristic peak of Fe-N is
generated, which demonstrates that the porphyrin ligand with the metal ion can form the
complex [38]. For FeTCPP materials, the characteristic peaks at 1276, 1405, and 1604 cm−1

belong to the -OH tensile vibration in -COOH, the C-N in-plane vibration of pyrrole. The
tensile vibration of C-C at 1710 cm−1 indicates the telescopic vibration absorption of the
-COOH and -NH2 functional groups in their molecular structures [39,40]. In Figure 2d, for
pure CNNS, the spike absorption peak at 809 cm−1 is attributed to the typical vibration
pattern of the graphite phase carbon nitride triazine ring, and the presence of four more
obvious characteristic absorption peaks in the range of 1700−1200 cm−1 is due to the
telescopic vibration of the surface C-N heterocyclic ring [41,42]. In the FTIR spectra of
the FeTCPP@CNNS, it can be observed that the characteristic peaks are almost consistent
with those of pure CNNS, which demonstrate that the structure of CNNS has not changed
during mechanical stirring. The -NH2 deformation vibration band at 1573 cm−1 in the
CNNS monomer disappeared in the FeTCPP@CNNS composite because of the covalent
formation of -N-O by the COOH of porphyrin and NH2 of g-C3N4 [39]. The characteristic
tensile bands of amide groups formed between metalloporphyrin and g-C3N4 at 1640 and
1260 cm−1 were not clearly observed, possibly because that the peaks were too small and
similar to the peaks of pure CNNS. The results confirm that the hybrid effect between
FeTCPP and CNNS molecules may come mainly from non-covalent interactions [14].

The UV-visible diffuse reflection spectra of CNNS, FeTCPP, and FeTCPP@CNNS
composites are exhibited in Figure 3a; it can be seen that pure CNNS has an absorption edge
at 450 nm, and the DRS spectra of FeTCPP@CNNS composites also exhibit the absorption
characteristic peaks of CNNS. As illustrated in the DRS spectrum of FeTCPP, there is an
absorption peak at 403 nm, related to the Soret band (B band) of the porphyrin compound,
and absorption peaks at 520 nm, 578 nm, and 693 nm, corresponding to the Q band of
the porphyrin compound [43,44]. With the increasing content of FeTCPP, the absorption
characteristic peak of the FeTCPP@CNNS composites is slightly enhanced. As shown in
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Figure 3a, there is a slight redshift phenomenon indicating that there was a π-π interaction
between CNNS and FeTCPP [38] and further illustrating the successful formation of
FeTCPP@CNNS composites. Figure 3b shows the band gap according to the Kubelka
Munk transform [45]: (αhv)2 = A(hv − Eg). The corresponding band gap of CNNS and
FeTCPP are, respectively, calculated to be approximately 2.74 eV and 2.01 eV. The band
gap of 3% FeTCPP@CNNS composite material is the smallest one at approximately 2.36 eV,
illustrating that the 3% FeTCPP@CNNS composite can mostly improve the utilization rate
of visible light.

Catalysts 2023, 13, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 2. XRD spectra of (a) g₋C3N4, CNNS, and FeTCPP and (b) FeTCPP@CNNS composites; FTIR 

spectra of (c) TCPP and FeTCPP and (d) CNNS and FeTCPP@CNNS composites. 

Figure 2c,d show FTIR spectra of TCPP, FeTCPP, CNNS, and FeTCPP@CNNS. FTIR 

spectra of TCPP and FeTCPP are reflected in Figure 2c, where the characteristic peak at 

963 cm−1 represents the N-H telescopic vibration pattern on the pyrrole ring of TCPP [39]. 

This feature peak disappears in the FTIR spectrogram of FeTCPP. In addition, a new char-

acteristic peak at 1001 cm−1 can be observed in the FTIR spectrum of FeTCPP, which indi-

cates that after the metal ions enter the porphyrin ring, the deformation vibration of the 

ring is enhanced. In addition, the telescopic vibration characteristic peak of Fe-N is gener-

ated, which demonstrates that the porphyrin ligand with the metal ion can form the com-

plex [38]. For FeTCPP materials, the characteristic peaks at 1276, 1405, and 1604 cm−1 be-

long to the -OH tensile vibration in -COOH, the C-N in-plane vibration of pyrrole. The 

tensile vibration of C-C at 1710 cm−1 indicates the telescopic vibration absorption of the -

COOH and -NH2 functional groups in their molecular structures [39,40]. In Figure 2d, for 

pure CNNS, the spike absorption peak at 809 cm−1 is attributed to the typical vibration 

pattern of the graphite phase carbon nitride triazine ring, and the presence of four more 

obvious characteristic absorption peaks in the range of 1700−1200 cm−1 is due to the tele-

scopic vibration of the surface C-N heterocyclic ring [41,42]. In the FTIR spectra of the 

FeTCPP@CNNS, it can be observed that the characteristic peaks are almost consistent with 

those of pure CNNS, which demonstrate that the structure of CNNS has not changed dur-

ing mechanical stirring. The -NH2 deformation vibration band at 1573 cm−1 in the CNNS 

Figure 2. XRD spectra of (a) g-C3N4, CNNS, and FeTCPP and (b) FeTCPP@CNNS composites; FTIR
spectra of (c) TCPP and FeTCPP and (d) CNNS and FeTCPP@CNNS composites.

The typical SEM images and EDS patterns of as-prepared samples are shown in
Figure 4. In Figure 4a, it can be seen that the FeTCPP presents an irregular small particle
shape. Figure 4b,c are SEM images of CNNS and 3% FeTCPP@CNNS. The CNNS sample
presents a thin sheet-shaped morphology with a wrinkle, facilitating the transport of
electrons. With only a small amount of FeTCPP introduced, as shown in Figure 4c, the
stacked lamellar structure is displayed. FeTCPP is deposited on the surface of CNNS.
In Figure 4d, the C:N atomic ratio is approximately 1:1, higher than that of g-C3N4 (3:4),
which indicates that FeTCPP has been successfully loaded onto CNNS [16]. The elemental
mapping of the 3% FeTCPP@CNNS composite shown in Figure 4e–h reveals a uniform
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distribution of C, N, O, and Fe elements in the 3% FeTCPP@CNNS framework, highlighting
the C, N, O, and Fe co-doped nature of the 3% FeTCPP@CNNS composite.
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In order to further investigate the chemical composition and surface element valence
states of FeTCPP@CNNS composite, X-ray photoelectron spectroscopy (XPS) analysis of
3% FeTCPP@CNNS composite is carried out. For comparison, the composition of CNNS
and FeTCPP are also determined by XPS measurement. As shown in Figure 5a, C, N, and
O signals are detected in the CNNS sample, while C, N, O, and Fe signals are detected in
the FeTCPP sample. In the 3% FeTCPP@CNNS composite, the corresponding C, N, O, and
Fe signals are found. The results show that the FeTCPP sample is successfully introduced
in the composite material. Figure 5b–e show the spectra of C 1s, N 1s, O 1s, and Fe 2p,
respectively. Figure 5b shows the C 1s spectra of CNNS and 3% FeTCPP@CNNS. There are
two primary peaks at 284.6 eV and 288.2 eV, corresponding to the C-C bond of graphite
and the Sp2 hybrid carbon in the N=C-N aromatic ring [46,47]. Figure 5c shows the N 1s
spectra of CNNS and 3% FeTCPP@CNNS materials. In the N 1s spectrum of CNNS, the
peaks at 398.2 eV, 399.3 eV, and 401 eV correspond to C-N=C bond, (N-(C)3) bond, and
secondary amino (C-N-H) bond, respectively [48,49]. The three peaks can also be observed
in 3% FeTCPP@CNNS; however, the peak of C-N=C bond shifted to higher binding energy
by 0.6 eV, and the peak of CN-H shifted to lower binding energy by 0.4 eV, which should
be caused by the formation of type-II heterojunction photocatalyst [50] FeTCPP@CNNS.
The O 1s spectra are shown in Figure 5d. The peak at 531.9 eV can be attributed to the -OH
group, which means that only -OH forms on the surface due to the combustion of g-C3N4
in air [16,41]. The Fe 2p spectra of FeTCPP materials are shown in Figure 5e. The two peaks
at 710.7 and 724.1 eV correspond to Fe 2p1/2 of Fe 2p3/2 and Fe3+ at octahedral positions,
respectively [51–53]. However, no obvious Fe 2p peak was detected in 3% FeTCPP@CNNS,
which may be because the low content of Fe doped in the composite and wrapped in
porphyrin molecules.
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Figure 6 shows that the N2 adsorption–desorption isotherms of CNNS and 3% FeTCPP@CNNS
composite materials are similar and belong to the type IV isotherm, which manifests that
both materials display mesoporous structures [54]. Additionally, the specific surface area
(SBET), average pore size, and pore volume of all samples are presented in Table 1. The
BET surface area of CNNS and 3% FeTCPP@CNNS composite are approximately 11.8 and
24.9 m2 g−1, respectively. Compared with CNNS, the 3% FeTCPP@CNNS composite has a
larger specific surface area, indicating that it can provide more active sites and promote the
transport and separation efficiency of photogenerated carriers [55], thus further improving
the utilization of light.
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Table 1. Specific surface, pore characteristics, and crystallite sizes of the as-prepared samples.

Samples SBET
(m2g−1)

Pore Volume
(cm3g−1)

Pore Size
(nm)

CNNS 11.8 0.064 21.8
3% FeTCPP@CNNS 24.9 0.100 16.1

The photoluminescence spectra of CNNS, FeTCPP, and FeTCPP@CNNS composites
are depicted in Figure 7a at an excitation wavelength of 320 nm. As reported [56], the weak
PL emission peak indicates that the separation efficiency of the photoexcitation electron-
hole pair is higher, resulting in higher photocatalytic performance. It can be found that
CNNS and FeTCPP@CNNS composites show emission peaks in the region from 420 nm
to 440 nm, while pure FeTCPP has no obvious emission peaks [36]. CNNS shows the
strongest emission peak in the region from 440 nm to 550 nm, demonstrating the highest
recombination rate of photogenerated photoelectrons and holes on the materials’ surface.
With a certain content of FeTCPP, it can inhibit the recombination of photogenerated carries
in CNNS. With the increasing content of FeTCPP, the PL intensity of FeTCPP@CNNS
composites decreases gradually. The 3% FeTCPP@CNNS exhibits the weakest PL intensity.
However, when the content of FeTCPP is further increased, the PL intensity becomes
slightly stronger, indicating that the appropriate content of FeTCPP can enhance the charge
transfer efficiency.



Catalysts 2023, 13, 732 8 of 17Catalysts 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 7. (a) PL spectra of CNNS, FeTCPP, and FeTCPP@CNNS composites, (b) photocurrent re-

sponse diagram, (c) EIS spectra of CNNS and FeTCPP@CNNS composites, and (d) Mott₋Schottky 

plot of FeTCPP. 

To further study the electron transfer process, the photocurrent response of CNNS 

and FeTCPP@CNNS composites are measured, as shown in Figure 7b. Obviously, the 

photocurrent intensity of all samples increases sharply after the light irradiation is turned 

on, and when the irradiation is interrupted, it drops sharply to zero. The results indicate 

that they all have photocatalytic capability. The higher photocurrent intensity indicates 

more efficient separation of photogenerated carries. Among them, the photocurrent inten-

sity of 3% FeTCPP@CNNS composite is the highest. In addition, the photocurrent inten-

sity of 3% FeTCPP@CNNS composite exhibits approximately 0.4 μA under simulated sun-

light, which is twice more than that of the pure CNNS photocatalyst. It indicates that the 

3% FeTCPP@CNNS composite could effectively improve the separation and transfer of 

photogenerated carries under visible light. The stability of the photocurrent response of 

all the prepared samples is determined by intermittent illumination for 20 s multiple cy-

cles. It shows that there is only a slight reduction in the photocurrent intensity after four 

cycle operations, resulting in prepared samples that have good stability. Figure 7c pre-

sents electrochemical impedance spectroscopy. The minimum arc radius of the 3% 

FeTCPP@CNNS composite indicates the lowest interfacial resistance. Meanwhile, spectral 

line of CNNS has the largest slope in the low frequency region, indicating the largest dif-

fusion resistance of CNNS [9,57]. The 3% FeTCPP@CNNS composite exhibits excellent 

charge separation, which is consistent with the above photocurrent results. In Figure 7d, 

Figure 7. (a) PL spectra of CNNS, FeTCPP, and FeTCPP@CNNS composites, (b) photocurrent
response diagram, (c) EIS spectra of CNNS and FeTCPP@CNNS composites, and (d) Mott-Schottky
plot of FeTCPP.

To further study the electron transfer process, the photocurrent response of CNNS
and FeTCPP@CNNS composites are measured, as shown in Figure 7b. Obviously, the
photocurrent intensity of all samples increases sharply after the light irradiation is turned
on, and when the irradiation is interrupted, it drops sharply to zero. The results indicate that
they all have photocatalytic capability. The higher photocurrent intensity indicates more
efficient separation of photogenerated carries. Among them, the photocurrent intensity of
3% FeTCPP@CNNS composite is the highest. In addition, the photocurrent intensity of
3% FeTCPP@CNNS composite exhibits approximately 0.4 µA under simulated sunlight,
which is twice more than that of the pure CNNS photocatalyst. It indicates that the
3% FeTCPP@CNNS composite could effectively improve the separation and transfer of
photogenerated carries under visible light. The stability of the photocurrent response
of all the prepared samples is determined by intermittent illumination for 20 s multiple
cycles. It shows that there is only a slight reduction in the photocurrent intensity after
four cycle operations, resulting in prepared samples that have good stability. Figure 7c
presents electrochemical impedance spectroscopy. The minimum arc radius of the 3%
FeTCPP@CNNS composite indicates the lowest interfacial resistance. Meanwhile, spectral
line of CNNS has the largest slope in the low frequency region, indicating the largest
diffusion resistance of CNNS [9,57]. The 3% FeTCPP@CNNS composite exhibits excellent
charge separation, which is consistent with the above photocurrent results. In Figure 7d,
the Mott–Schottky (MS) plot of FeTCPP is recorded by an electrochemical analyzer. The
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flat band potential (Efb) of FeTCPP is −0.39 eV (vs. SCE). The ECB of FeTCPP is −0.35 eVB
based on the formula [58]: ECB(NHE,pH=7) = Efb(SCE,pH=7) + 0.24 − 0.2.

In Figure 8a, the degradation of 4-NP was negligible without photocatalysts, showing
that 4-NP has almost no degradation by only direct visible light irradiation. A 50 mg
catalyst is added to the 4-NP solution (20 mg L−1) in the dark for 30 min to achieve
adsorption–desorption equilibrium. After 60 min of illumination, it can be observed
that the corresponding photodegradation efficiency of CNNS, 1% FeTCPP@CNNS, 2%
FeTCPP@CNNS, 3% FeTCPP@CNNS, and 4% FeTCPP@CNNS are 37.2%, 63.7%, 77.9%,
92.4%, and 76.3%, respectively, as shown in Figure 8c. Compared with other photocatalysts,
this shows that when the content of FeTCPP reaches 3%, the photodegradation efficiency
reaches a maximum of 92.4% in 60 min. After the first-order kinetic equation fitting, it
shows that the largest constant value of 3% FeTCPP@CNNS (k) is 0.037 min−1, which is
approximately 5 times that of CNNS. The results show that after being sensitized by FeTCPP,
the FeTCPP@CNNS can quickly capture the visible light source and more easily produce
photogenerated electrons under the illumination by visible light. Moreover, the separation
rate of photogenerated electrons and holes is improved, resulting in effectively improved
photocatalytic efficiency. As shown in Figure 8d, the absorbance of 4-NP significantly
decreased with the increased illumination time. For comparison, recent photocatalysis
performances of g-C3N4-based and TCPP-based materials under visible light irradiation
are shown in Table 2. This information reveals that the 3% FeTCPP@CNNS exhibits higher
photodegradation efficiency and higher degradation rate constants.
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Table 2. Some reported materials based on g-C3N4 or TCPP studied for photocatalysis under visible
light irradiation in recent years.

Composite Catalyst Dose Concentration Light Source Degradation and
Time (%)

Degradation Rate
Constant (k)

TCPP/ZnFeO4@ZnO [59] 50 mg 10 mg/L, 50 mL (4-NP) 5 W LED lamp 67% in 3 h –

g-C3N4@MoS2/TiO2(CMT10) [60] 50 mg 1 × 10−5 mol/L (4-NP) 500 W tungsten halogen
lamp 78% in 1 h –

g-C3N4/CoFe2O4 [61] 25 mg 20 mg/L (4-NP) Visible-light – 0.0156 min−1

g-C3N4-30%@Ti-MIL125 [62] – – Visible-light 75% in 4 h –

1 ZnFe2O4/g-C3N4 [63] 50 mg 20 mg/L, 100 mL (4-NP) Sunlight – 0.02876 min−1

0.4 S/Cl-g-C3N4 [64] 50 mg 5 mg/L, 100 mL (4-NP) Xenon lamp – 0.0095 min−1

30% ZrO2/g-C3N4 [65] 360 mg 30 mg/L, 100 mL (4-NP) 300 W Xe – 0.0167 min−1

0.75% CuTCPP/g-C3N4 [14] 25 mg 5 ppm, 50 mL (phenol) 500 W Xe – 0.024 h−1

3% FeTCPP@CNNS
in this work 20 mg 20 mg/L, 100 mL (4-NP) 150 W Xe 94.2% in 1 h 0.037 min−1

In order to evaluate the photocatalytic stability of the 3% FeTCPP@CNNS composite,
the cycle test of it is performed five times, as shown in Figure 9a. After five cycling
experiments, the photocatalytic activity remains the same. In addition, there is no obvious
difference in XRD patterns of the prepared 3% FeTCPP@CNNS and the used one after
five cycles. Therefore, the 3% FeTCPP@CNNS sample exhibits excellent degradation
performance and possesses high stability under visible light.
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To further explore the reaction mechanism of the 3% FeTCPP@CNNS composite,
the reactive species are determined in 1 mmol p-benzoquinone (BQ), isopropanol (IPA),
and disodium edetate (EDTA-2Na), which were treated as superoxide radicals (·O2−),
hydroxyl radicals (·OH), and an inhibitor of the photo-excited hole (h+), respectively [66].
From Figure 10a, the addition of IPA and EDTA-2Na inhibitors had little effect on the
photocatalytic activity of the 3% FeTCPP@CNNS photocatalyst, and the addition of BQ
significantly inhibited its photocatalytic activity. These results mean that ·O2− is the main
substance for photocatalytic degradation of 4-NP.
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The photocatalytic degradation capacity of pure CNNS and FeTCPP@CNNS compos-
ites are evaluated by using 4-NP as a contaminant according to the formula:

η = (1 − Ct/C0)× 100%

The photodegradation rate (η) is known. At the same time, the adsorption experimen-
tal data conform to the pseudo-first-order model:

ln(Ct/C0) = kt

where C0 and Ct signify initial concentration and instantaneous concentration within the
reaction time t, respectively. k is the first-order reaction rate constants [67].

To further account for the photocatalytic mechanism, the band gap potential of the
sample needs to be tested, and the conduction band (CB), the valence band (VB) position of
CNNS, and the valence band (VB) position of FeTCPP are estimated using the following
formulas [68]:

EVB = χ − Ee + 1/2Eg

ECB = EVB − Eg

where χ is electronegativity, EVB and ECB denote VB and CB marginal potentials, respec-
tively, Eg denotes the energy band gap, Ee represents the energy of free electrons at the
hydrogen scale (approximately 4.5 eV vs. NHE) [69], χ is the geometric mean of the con-
stituent atoms, and g-C3N4 is 4.64 eV [70]. According to the above analysis, the EVB and
ECB of CNNS are calculated, respectively, to be 1.51 eV and −1.23 eV. Through DRS and
MS tests, the FeTCPP Eg is 2.01 eV and the ECB is −0.35 eV, so that the EVB of FeTCPP is
1.66 eV. Relying on the above experimental results, a possible photocatalytic mechanism
is proposed and demonstrated in Figure 10b. Under visible light illumination, CNNS can
form a photogenerated electron–hole pair under the excitation of visible light. Because the
ECB edge and EVB edge charges of FeTCPP are smaller than those of CNNS, parts of the
photosensitive electrons (e−) at the CB position of CNNS can migrate to the CB of FeTCPP,
and parts of the photosensitive electrons (e−) at the CB position of CNNS can also be cap-
tured and generated by nearby O2. At the same time, ·O2− reacts with 4-NP to decompose
into CO2 and H2O [36], and photogenerated h+ can be transferred from the VB of FeTCPP
to the VB of CNNS, reducing the chance of recombination of photogenerated e−-h+ pairs,
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which can effectively improve photocatalytic activity. Furthermore, the improvement on
the photocatalytic performance is also related to the photo-Fenton effect, as reported in
previous reports [71,72].

3. Experimental Section
3.1. Materials

Melamine (C3H6N6), ethanol (C2H6O), ethylene glycol (C2H6O2), barium sulfate
(BaSO4), anhydrous sodium sulfate (Na2SO4), Carboxy benzaldehyde (C8H6O3), propi-
onic acid (CH3CH2COOH), pyrrole (Py), methanol (CH3OH), N-N dimethylformamide
(DMF)), ferric chloride hexahydrate (FeCl3·6H2O), isopropyl alcohol (IPA), and EDTA-2NA
were purchased from China, Shanghai Sinopharm Chemical Reagents Co., Ltd.; Nitric
acid (HNO3) was ordered from China, Shanghai Suyi Chemical Reagent Co., Ltd.; and
Para-benzoquinone (C6H4O2) was ordered from China, Shanghai Maclin Biochemical Tech-
nology Co., Ltd. All chemicals used in this experiment are reagent grade and were used
as received.

3.2. Synthesis of FeTCPP

Tetracarboxylic phenyl porphyrin was synthesized by the Adler method [73]. Firstly,
Carboxy benzaldehyde (2 g) and propionic acid (150 mL) were mixed, being stirred in a
three-neck flask equipped with reflux condenser at 135 ◦C. Pyrrole (1 mL) was dissolved
in 20 mL propionic acid, which was added drop by drop into the upper reaction solution
over 1 h. The reaction solution was refluxed for 2 h. The propionic acid was removed
under vacuum and then the residue was dispersed in CHCl3, filtered, and washed. The
remaining solid powder was dissolved in the mixture solvent (propionic acid/CHCl3
with 3:2 volume), and the insoluble portion was removed by filtration. Using propionic
acid/CHCl3 (3:2, v/v) as eluent, the mixture was separated by chromatography on silica
gel column. The first colored band was collected concentrated and dried. The resulting
product was tetracarboxylic phenyl porphyrin, labelled as TCPP.

TCPP (0.5 g) and FeCl3·6H2O (1 g) in 100 mL DMF were dissolved in DMF, and then
heated to 150 ◦C for 3 h with stirring. DMF was removed under vacuum after cooling to
room temperature. The remaining solid was dissolved in ethanol, and insoluble impurities
were removed via filtration. By rotary evaporation, the residue was dried. The obtained
composites were labelled as FeTCPP.

3.3. Synthesis of CNNS

Bulk g-C3N4 was prepared first. Then, 5 g melamine powder was mixed with ethylene
glycol (120 mL) by ultrasonication for 2 h, and then dilute nitric acid (120 mL, 0.36 mol L−1)
was added to the above mixture solution under stirring. The sediment was washed and
dried after stirring for 12 h. The obtained powder was heated to 550 ◦C for 4 h at a heating
rate of 5 ◦C/min in a muffle furnace. Then, the bulk g-C3N4 was obtained. As previously
reported, the g-C3N4 nanosheets were produced by thermal oxidation etching of bulk
g-C3N4 directly at 550 ◦C for 2 h [36]. The obtained light yellow powder was dried at 60 ◦C
for 12 h in a vacuum oven and was named CNNS.

3.4. Preparation of FeTCPP@CNNS

Typically, CNNS powder (1 g) was dispersed in 50 mL ethanol by ultrasonication.
Then, a certain amount of FeTCPP was added to ethanol (10 mL), and the mixture was
mixed into the above solution with magnetic stirring at 80 ◦C. Then, FeTCPP@CNNS
composite material was obtained. The preparation process of FeTCPP@CNNS materials
are shown in Figure 1. By this method, FeTCPP@CNNS composites with different FeTCPP
contents (10 mg, 20 mg, 30 mg, and 40 mg) were prepared, which were denoted as X%
FeTCPP@CNNS (X% = 1%, 2%, 3%, and 4%).
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3.5. Photocatalytic Assessment

The photocatalytic degradation of 4-NP was studied using xenon lamp (150 W) with
filter as visible light source. Here, 50 mg photocatalyst was dispersed by magnetic stir-
ring into 100 mL 4-NP aqueous solution (20 mg L−1). Firstly, the adsorption–desorption
equilibrium was obtained by ultrasound for 0.5 h in the dark, then under visible light, and
the reaction mixture was irradiated for 1 h. Then, 5 mL of the mixture was removed from
the reactor, and at the same time interval, the concentration of 4-NP was determined by
UV-Vis spectrophotometer.

During the photocatalytic degradation of 4-NP, the effect of reactive oxygen species
on the best-performing photocatalyst was tested for a scavengers, namely P-benzoquinone
(BQ), isopropanol (IPA), and ethylenediamine tetraacetic acid disodium salt (EDTA-2Na).
For this test, 1 mM scavenger was, respectively, added into 100 mL 4-NP solution (20 mg L−1),
then was added 20 mg of catalyst. An additional procedure was carried out, which was the
same as the process but without scavengers. Thus, all experiments were conducted under
the identical conditions.

3.6. Description of the Characteristics

XRD-600 (Rigaku, Japan) was used to determine the crystal phase of X-ray samples.
FTS2000 (Thermos, Waltham, MA, USA) Fourier infrared spectrometer was used for quali-
tative analysis of the chain structure of the samples. Using barium sulfate as blank samples,
the samples were detected by diffuse reflectivity spectroscopy (DRS) spectrophotometer
on UV-2550 (Shimadzu, Tokyo, Japan). Merlin Compact (Merlin, Forchtenberg, Germany)
was used for obtaining the field emission scanning electron microscope (FESEM) images.
The surface chemical composition of the samples was analyzed by X-ray photoelectron
spectroscopy (XPS, Thermos Fish Scientific, USA). Nitrogen adsorption and desorption tests
(BET) were measured at 77 k using the TA Instruments SDT Q600 analyzer (Quadrasorb,
WI, USA). Quantachrome Instrument nitrogen adsorption device was used to record the
adsorption and desorption isotherms. The photoluminescence spectrum was performed
via Spectro fluorometer FS5 (Picoquant, Berlin, Germany) with a slit of 10 nm and an
excitation wavelength of 320 nm. The prepared sample was considered to be the working
electrode, a platinum wire to be a counter electrode, and a saturated Ag/AgCl electrode to
be a reference electrode. Additionally, 0.5 mol L−1 aqueous solution of Na2SO4 was the
electrolyte. Under the disturbance signal of 8 mV, electrochemical impedance spectroscopy
(EIS) was measured in the frequency range of 1 MHz to 1000 MHz, and photocurrent test
and electrochemical impedance–potential test were measured on the material. In addition,
the MPC-3100 UV-NEAR infrared spectrophotometer (USA) was used for analyzing the
degradation concentration of the sample.

4. Conclusions

In summary, the FeTCPP@CNNS photocatalysts with stacked lamellar structure have
been successfully fabricated by an in situ hydrothermal self-assembly approach. The
FeTCPP@CNNS composites exhibit higher photocatalytic efficiency and stability than
CNNS by the photodegradation of 4-NP dyes. The photocatalytic degradation rate reached
the maximum value of approximately 92.4% of 3% FeTCPP@CNNS.

The degradation rate constant of the 3% FeTCPP@CNNS photocatalyst is 0.037 min−1

(4-NP), which is 5 times that of CNNS, indicating that proper FeTCPP introduced into
CNNS can effectively improve transformation of photoexcitation electrons and holes. In
addition, the results of the active species trapping experiments for the photodegradation of
4-NP show that ·O2− plays a major role in photocatalytic reactions. A possible photocat-
alytic reaction mechanism of FeTCPP@CNNS composite for photocatalytic degradation of
4-NP has been proposed. This work enables the application of CNNS-based photocatalysis
under sunlight irradiation in wastewater treatment.
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