
Citation: Yu, X.; Ji, Y.; Jiang, Y.; Lang,

R.; Fang, Y.; Qiao, B. Recent

Development of Single-Atom

Catalysis for the Functionalization of

Alkenes. Catalysts 2023, 13, 730.

https://doi.org/10.3390/catal

13040730

Academic Editors: Leiduan Hao

and Jilei Xu

Received: 22 March 2023

Revised: 9 April 2023

Accepted: 11 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Review

Recent Development of Single-Atom Catalysis for the
Functionalization of Alkenes
Xuetong Yu 1, Yuxia Ji 1, Yan Jiang 1, Rui Lang 1,2,3,*, Yanxiong Fang 1,2,3 and Botao Qiao 4,*

1 School of Chemical Engineering and Light Industry, Guangdong University of Technology,
Guangzhou 510006, China

2 Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
3 Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory),

Jieyang 515200, China
4 CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian 116023, China
* Correspondence: langrui@gdut.edu.cn (R.L.); bqiao@dicp.ac.cn (B.Q.)

Abstract: The functionalization of alkenes is one of the most important conversions in synthetic
chemistry to prepare numerous fine chemicals. Typical procedures, such as hydrosilylation and
hydroformylation, are traditionally catalyzed using homogeneous noble metal complexes, while
the highly reactive and stable heterogeneous single-atom catalysts (SACs) now provide alternative
approaches to fulfill these conversions by combining the advantages of both homogeneous catalysts
and heterogeneous nanoparticle catalysts. In this review, the recent achievement in single-atom
catalyzed hydrosilylation and hydroformylation reactions are introduced, and we highlight the
latest applications of SACs for additive reactions, constructing new C-Y (Y = B, P, S, N) bonds
on the terminal carbon atoms of alkenes, and then mention the applications in single-metal-atom
catalyzed hydrogenation and epoxidation reactions. We also note that some tandem reactions are
conveniently realized in one pot by the concisely fabricated SACs, facilitating the preparation of some
pharmaceutical compounds. Lastly, the challenges facing single-atom catalysis for alkene conversions
are briefly mentioned.

Keywords: single-atom catalysis; alkene; hydrosilylation; hydroformylation; tandem reaction

1. Introduction

The functionalization of alkenes has been a hot topic in synthetic organic chemistry
since numerous fine-chemicals, such as silanes [1] and aldehydes [2], can be facilely prepared
via versatile alkene intermediates through transition-metal-catalyzed addition reactions on
the unsaturated C=C bonds. In this field, some classic homogeneous catalysts, e.g., the
Wilkinson’s catalyst [2] and the Karstedt’s catalyst [3], are widely employed in industrial
processes since their high efficiencies could surpass most heterogeneous catalyst analogues
with metal nanoparticles (NPs) as active species. However, separating the soluble metal-
complex catalysts from reaction residue is quite troublesome; thus, fabricating a kind of highly
reactive heterogeneous catalysts is in urgent demand. The main reason for the divergent
catalytic reactivity between metal complexes and metal NPs lies in the different dispersion
states of active metal species. For the homogenous catalysts dissolved in a reaction solution,
nearly all the metal centers are liable to interactions with substrates, whereas only metal
species on the outermost surfaces of NPs can play the role of catalytic centers, resulting in
low overall reactivity. Therefore, increasing metal utilization efficiencies is indispensable for
heterogeneous catalysts to further improve catalytic performances.

Downsizing metal NPs to atomic scales would maximize metal utilization efficiency.
However, atomically dispersed metal species are thermodynamically unstable for high
surface free energies and thus tend to migrate on support materials and even automatically

Catalysts 2023, 13, 730. https://doi.org/10.3390/catal13040730 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal13040730
https://doi.org/10.3390/catal13040730
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://doi.org/10.3390/catal13040730
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal13040730?type=check_update&version=1


Catalysts 2023, 13, 730 2 of 19

integrate as NPs under preparation and/or working conditions. In this respect, suitable
support is essential to anchor the isolated metal species. In 2011, Zhang’s group found that
the FeOx support can stabilize single Pt atoms as a single-atom catalyst (SAC), achieving
good performance in CO oxidation [4]. Moreover, the atomic dispersion of Pt is well-
preserved after reaction, demonstrating that the isolated Pt species are the real active
centers. From then on, the field of single-atom catalysis has gradually turned into the
research frontier of heterogeneous catalysis [5] since numerous SACs are fabricated and
applied to various catalytic transformations [6]. SACs can integrate the advantages of
both homogeneous catalysts, for example, the maximized metal utilization efficiency, and
heterogeneous catalysts, such as stabilization effect and easy recycling, thus providing
an ideal solution for the heterogenization of homogeneous catalysts. After decades of
efforts, SACs have been successfully employed in the hydrosilylation and hydroformylation
reactions with reactivity comparable to the traditional homogeneous catalysts.

In this review, the latest reports regarding single-atom catalysis for the functional-
ization of alkenes are introduced, and we highlight the development in regulating the
electronic properties of metal species through modification of the support substrates. The
catalytic mechanisms of hydrosilylation and hydroformylation are proposed. Following
this, the effectiveness of SACs in constructing new C-Y (Y = B, P, S and N) bonds on the
terminal carbon atoms of alkenes is briefly discussed. Additionally, the hydrogenation and
epoxidation reactions are traditionally fulfilled by NP catalysts, while SACs can provide
simplified research models for theoretical calculations to investigate reaction mechanisms.
It is worth noting that tandem functionalization of alkenes can fulfill multi-steps in one pot,
and SACs have been successfully used for this purpose. Finally, we talk about some future
opportunities facing single-atom catalysis.

2. The Functionalization of Alkenes
2.1. Hydrosilylation

The hydrosilylation reaction is widely utilized in preparing silicone-based materials
such as aerogels and surfactants. Among various catalysts, homogeneous Pt catalysts are
frequently used in industrial processes. In general, the reaction mechanisms of alkene
hydrosilylation over Pt (0) catalysts include the Chalk–Harrod or modified Chalk–Harrod
mechanism [7]. As shown in Scheme 1, the Chalk–Harrod mechanism is divided into
three steps: (1) Si-H oxidative addition to Pt, (2) alkene insertion into the Pt-H bond, and
(3) Si-C reductive elimination. In the modified Chalk–Harrod mechanism, the second
step is replaced by alkene insertion into the Pt-Si bond, followed by the C-H reductive
elimination. Therefore, a typical Karstedt’s catalyst, with the zero oxidation state at the
Pt center, could exhibit superior catalytic performance for anti-Markovnikov addition
hydrosilylation reactions even under mild working temperatures [3]. However, certain
kinds of problems, especially concerning the separation and recycling of homogeneous
catalysts, will always persist. Therefore, Pt-based SACs are likely the alternatives to replace
traditional Pt-complex catalysts.

In this context, one of the most important issues lies in the fabrication of stable Pt
SACs (Figure 1a). In 2017, Beller’s group presented the first heterogeneous single-atom Pt
catalyst for hydrosilylation reactions [8]. They anchored isolated Pt species on alumina
nanorods and thus prepared Pt/NR-Al2O3-IP with high reactivity comparable to Karstedt’s
catalyst, demonstrating that SACs can be as effective as homogeneous catalysts. Moreover,
various functional groups on the alkenes can be tolerated by Pt/NR-Al2O3-IP SAC, which
can be separated and reused with good stability.
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Figure 1. (a) Representative Pt SACs for hydrosilylation reactions. (b–d) The structure models of
catalytic sites and the corresponding hydrosilylation reactivities of Pt-ISA/NG, Pt1@AHA_U_400,
and Pt1@CNP-600. Different elements are presented in different colors in the right column. Adapted
with permission from ref. [9] Copyright 2018 American Chemical Society, ref. [10] Copyright 2021
John Wiley and Sons, and ref. [11] Copyright 2023 John Wiley and Sons, respectively.

With the first successful case of single Pt atoms catalyzed hydrosilylation in hand,
more efforts have been devoted to further improve catalytic performance by regulating
the coordination structure of Pt active centers. Carbon-based supports are widely used
in industrial processes due to their low cost, high surface areas, and tunable surface
properties since the heteroatoms (O, N, P, and S) can be easily doped on/in the carbon
materials. Therefore, some carbon-supported Pt SACs are investigated here in detail
regarding their potential industrial applications. For example, up to 5.3 wt% loading of Pt
is atomically dispersed on the N-doped graphene (Pt-ISA/NG) with the Na2CO3-assisted
one-pot pyrolysis synthetic strategy [9]. In the benchmark reaction of hydrosilylation
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of 1-octene, Pt-ISA/NG with a stable Pt-N4 site (Figure 1b) exhibited high selectivity.
The reactivity of Pt-ISA/NG was 4 times higher than that of commercial Pt/C with the
same Pt loadings, suggesting that the completely exposed metal centers are pivotal for
achieving high catalytic performance [9]. In addition, P was added along with N to tune
the electronic state of Pt centers with a similar structure. The PN-doped carbon nanofibers
were fabricated based on the reaction between P2O5 and N-Methyl-2-pyrrolidone. Pt
single-atoms were anchored by the -PN- units on the support (Figure 1c) and denoted
as Pt1@CNP-600, which displayed high TOF for hydrosilylation (9.2 × 106 h−1) and 99%
selectivity [10]. Unlike the traditional (modified) Chalk–Harrod mechanism, the reaction
mechanism of Pt1@CNP-600 showed the in situ formation of cyclization of ketene oligomers
and subsequent polymerization at elevated temperatures, as evidenced by the FTIR and
NMR results. Moreover, doping of O and Cl with Pt atoms resulted in electron-deficient
Pt centers. For example, Pt SAC supported on humic matter (Pt1@AHA_U_400) showed
the best activity thus far in hydrosilylation of 1-octene (TOF = 3.0 × 107 h−1) with >99%
selectivity [11]. DFT calculations revealed that this high performance can be attributed to
the atomic dispersion and the electron-deficiency state of Pt species since Pt was connected
with two Cl and two O ions (Figure 1d). According to DFT calculations, Pt1@AHA_U_400
prefers to undergo the modified Chalk–Harrod mechanism regarding hydrosilylation
reactions, owing to its low energy barrier.

Besides heteroatom doping, the carbon support could also offer a versatile platform
to add another metal species alloying with Pt. In this case, Fe was added to form a PtFe3
catalytic center on N-doped carbon spheres (PtFe3/CN) [12]. The electrons could transfer
from neighboring Fe species to Pt single atoms in a PtFe3/CN catalyst. Consequently, the
electron-rich isolated PtFe3 sites showed higher catalytic performance (99% selectivity and ca.
740,000 of TON) than the Pt1/CN SAC and K2PtCl6 homogeneous catalysts. The hydrosilyla-
tion mechanism of the PtFe3/CN catalyst was investigated using DFT calculations, proposing
the Chalk–Harrod mechanism: Si-H bond oxidative addition to isolated Pt center and alkene
insertion into the Pt-H bond. These results show that the electron-rich catalytic centers may
further improve the hydrosilylation reactivity; however, these sites may be more vulnerable
to aggregate than the electron-deficient Pt sites. Therefore, a porous confinement strategy is
developed to locate the Pt sites within a nanocage and maintain the valance of Pt between
0 and +2. The confined Pt SAC (COP1-T-Pt) was ten times more active than the Karstedt’s
catalyst [13]. Besides, remarkable site-selectivity as well as good recyclability of COP1-T-Pt
was achieved. Both quantitative EXAFS fitting and FDMNES simulation supported that Pt
was anchored by the surrounding Pt-C and Pt-Si bonds, forming a familiar structure as the
key intermediate in the Chalk–Harrod mechanism.

The above cases illustrate that isolated Pt centers may be suitable replacements for
the conventional homogeneous catalysts in hydrosilylation reactions. Inspired by these
results, other noble metals have also been employed. A recent example showed that ZrO2-
supported Ru SAC was more reactive than the RuCl3 homogeneous catalyst in ethylene
hydrosilylation [14]. The reaction mechanism on the Ruδ+/ZrO2 SAC is proposed to follow
the Chalk–Harrod mechanism according to DFT simulation. Based on the mechanism
insights obtained from Pt-based SACs, we can anticipate that the electronic state of other
metal species may be further tuned by the coordinating species, such as heteroatoms, to
achieve better catalytic performance than homogeneous catalysts.

2.2. Hydroformylation

Currently, the hydroformylation reaction is homogeneously catalyzed in industrial
processes, producing aldehydes from olefins and syngas (CO/H2). Compared to the above
hydrosilylation reaction, achieving high chemo-selectivity in hydroformylation reactions
is quite difficult as the side-reaction of olefin hydrogenation simultaneously occurs under
H2 atmospheres. Consequently, the homogeneous Wilkinson’s catalyst (RhCl(PPh3)3) is
frequently used for its high reactivity and chemo-selectivity, while in the heterogenous
catalysts, compared with Rh NPs, the singly dispersed Rh species are more capable to
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prevent hydrogenation pathways due to the relatively weak bonding effect with H2 [15].
However, isolated metal ions may be reduced with CO and/or H2 gas, resulting in the
deactivation of catalysts via aggregation. Therefore, the active structure of SACs should
achieve a balance between strong stabilization effects to prevent sintering and flexible
coordination with substrates [16].

Regarding oxide supports, three synthetic strategies are developed to design stable
and reactive Rh SACs, including creating oxygen vacancies on the supports (Figure 2a),
fabricating dual-metal sites (Figure 2b), and forming metal alloy species (Figure 2c). A
systematic study on some representative oxide-supported Rh SACs was performed, cor-
relating the densities of oxygen vacancies with catalytic performances (Figure 2a) [17]. It
is obvious that the existence of oxygen vacancies on the oxide surface leads to the dom-
inant hydroformylation pathway rather than the hydrogenation reaction. Moreover, the
oxygen-defective SnO2-supported Rh SAC showed hundreds of times higher reactivity
than that on ZrO2 support in the gas-phase hydroformylation of ethylene. These results
revealed that the delicate design of the surface defects, such as vacancies and step sites,
are helpful for achieving excellent catalytic activity on the reducible-oxide-supported Rh
SACs. As shown in Scheme 2, the Heck–Breslow mechanism is proposed for the Rh cata-
lysts on the oxygen-defective support. After CO and H adsorption, insertion of ethylene
into the Rh-H bond provided an ethyl group. Following this, an additional CO molecule
inserted into the Rh-ethyl bond, and the subsequent reductive elimination formed the
final product. However, oxygen vacancies are rarely found on inert oxides such as Al2O3
and SiO2, so dual metal sites are concisely fabricated to increase reactivity. In the case
of Al2O3-supported Rh-WOx catalysts (Figure 2b), increasing the loading of WOx could
lead to different structures of catalytic sites, and the atomically dispersed Rh-W pair sites
achieved the highest rate of ethylene hydroformylation to propanal [18]. Unlike traditional
Rh SACs, the synergetic effects of Rh and W species was suggested by unique mechanism
calculations involving Rh-assisted WOx reduction, ethylene transfer from WOx to Rh atoms,
and H2 dissociation at the Rh-WOx interface (Scheme 3). In the above two cases, the Rh
centers are both in the positive valence state, while the electron-rich Rh single atoms are
seldom reported. We fabricated ZnO-nanowire-supported Rh SACs and used the in situ
EXANES and XPS techniques to verify that after mild H2 reduction at 200 ◦C, the isolated
Rh species were at the approximately Rh0 state (Figure 2c) [19]. A plausible explanation
for this is that Zn2+ was simultaneously reduced to Zn0, transforming electrons to lower
the oxidation state of the nearby Rh species. The Rh/ZnO SACs were even slightly more
reactive and chemo-selective than the homogeneous Wilkinson’s catalyst in styrene hy-
droformylation (Figure 2c), demonstrating that regulating the valence state of Rh sites is
pivotal for achieving excellent catalytic performance.
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Catalysts 2023, 13, 730 7 of 19

Catalysts 2023, 13, x FOR PEER REVIEW 6 of 20 
 

 

  
Scheme 2. The Heck–Breslow mechanism of hydroformylation. O* represents the lattice O. Re-
produced with permission from ref. [17] Copyright 2022 John Wiley and Sons. 

 
Scheme 3. Hydroformylation mechanism at the Rh-WOx interface. Reproduced with permission 
from ref. [18] Copyright 2022 Springer Nature. 
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Although very high reactivity is fulfilled by the oxide-supported Rh SACs, regio-
selectivity in hydroformylation is another concern. For the SACs on the open oxide
supports, a similar number of linear and branched aldehyde products always generate
at the same time [19]. Therefore, the spatial confinement strategy is thus developed
to precisely control the regioselectivity. In this context, the zeolite matrix [20] and the
porous polymer [21] are identified as suitable supports to locate single Rh atoms. The
Rh@Y zeolite catalyst was prepared with the in situ hydrothermal method, achieving 100%
chemo-selectivity and good regioselectivity toward heptanal (linear/branched = 2.2) in the
hydroformylation reaction of 1-hexene [20]. Inspired by the homogeneous catalytic systems,
wherein high regio-selectivity can be obtained by adding excess amount of phosphine
ligands, Rh@POP-PTBA-HA-50 was designed to encapsulate atomically dispersed Rh
species within porous monophosphine polymers (Figure 3), and the selectivity of linear
aldehyde was remarkably increased to 92% in 1-octene hydroformylation [21]. Detailed
mechanism studies revealed that abundant phosphine ligands within polymer substrates
endow the isolated Rh sites with high activity and stability. The similar coordinating effect
of N to the single metal centers might also promote regioselectivity. For example, a Ru@NC
SAC exhibited very good activity (TOF = 12,000 h−1) and remarkable regioselectivity
(linear/branched = 93:7) in the hydroformylation of 1-hexene, owing to the presence of
Ru(II)-Nx-active species on the N-doped carbon support [22].
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The heteroatom-doped strategy can even be applied to the non-noble metal SACs
on oxide materials. The ZrP-supported Co SAC showed 91.3% aldehyde selectivity in
1-octene hydroformylation [23]. The strong bonding effect between Co sites and the
phosphate groups on ZrP are the origins responsible for suppression of Co ions regarding
leaching, thus improving the catalytic performance and stability of the Co SAC. In situ FT-IR
analysis was used to clarify the reaction mechanism. As shown in Scheme 4, the proposed
reaction pathway involved the following steps such as alkene coordination, hydride and
CO migratory insertion forming the acyl-like species, and reductive elimination. Currently,
Co-based SACs attract much attention as next-generation hydroformylation catalysts, since
the reactivity of Co SAC is very similar to that of Rh catalysts, as evidenced by the case of
Co1/β-Mo2C in the hydroformylation of propene [24].
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2.3. Constructing C-Y (Y = B, P, S, N) Bonds

Besides the above C-Si and C-C bonds forming, SACs have also been used in con-
structing some interesting C-Y (Y = B, P, S, N) bonds through hydroboration, hydrophos-
phinylation, sulfonation, and aziridination of olefins, respectively. The regioselective
hydroboration of alkenes is a direct method to synthesize linear alkylboronic esters. In
this reaction, the isolated Pt species are frequently used as active sites, and the catalytic
activities are dramatically influenced by the coordination environment of Pt centers. For
example, three different coordination structures of single-atom Pt species, denoted as
SA Pt-O3, SA Pt-O2, and SA Pt-N4, respectively, have been thoroughly investigated in
the anti-Markovnikov hydroboration of 1-octene, and SA Pt-O3 (Figure 4a) exhibited the
highest activity (TON = 3288) along with good selectivity (97%) [25]. DFT calculations
suggested that the unique coordination structure of three O species with Pt could decrease
the active energy. Two possible pathways of alkene hydroboration for SA Pt-O3 were
shown in Figure 4b, while the mechanism involving the hydroboration of C8H17* (blue
line) was more favorable.
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The hydrophosphinylation of alkenes is regarded as a convenient method to pro-
duce valuable alkylphosphorus compounds. However, low catalytic efficiency was the
main obstacle for homogeneous catalysts, probably caused by the strong poisoning effect
of P with metal centers, while heterogeneous catalysts stabilizing on the solid supports
may overcome this issue with the aid of strong metal–support interactions. As shown in
Figure 5a, a Cu SAC on Al3+-doped MgO nanosheets (Cu1/MgO(Al)) showed 99% se-
lectivity and high durability in the anti-Markovnikov hydrophosphinylation of various
alkenes [26]. Moreover, single Cu atoms accelerated the initiating step of forming phosphi-
noyl radicals, achieving high TOF (1272 h−1), which was even better than that of traditional
homogeneous catalyst. According to the DFT study, the free-radical mechanism was
proposed (Figure 5b, black line).
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Carbon nitride (CN) and TiO2 are frequently used in photocatalysis as support ma-
terials for the capability to separate photogenerated electron pairs and holes. Recently,
single-atom photocatalysts have been attracting increasing attention because of their im-
proved photocatalytic performance. As shown in Figure 6a, Wen and co-workers reported
a biomimetic single Fe-atom photocatalyst CNH through coupling CN with hemin [27].
Under visible light irradiation, up to 94% yield of β-ketosulfone was obtained with the CNH-
catalyzed sulfonation reaction. Later, the same group prepared another SAC, Ni/TiO2,
which can be easily scaled up for photocatalytic site-selective sulfonation, transforming
enamide to α-amidosulfones and β-propionamidosulfones with TON levels as high as
18,963 under visible light (Figure 6b) [28].
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Recently, an unprecedented C-N bond formation of alkenes was revealed by a Co SAC,
namely CoSA-N/C, which was derived from a bimetal-organic framework. CoSA-N/C
showed good aziridination activity, transforming alkene to aziridine at 0 ◦C (Figure 7a)
and further achieved direct oxyamination (Figure 7b) by adding methanol into the reaction
system. The substrate scope can expand to a series of styrene derivatives and dienes, and
some drug-derived olefins could also smoothly undergo the aziridination process [29].
Based on previous reports and experimental results, the authors proposed a stepwise
mechanism shown in Figure 7c.
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2.4. Hydrogenation

Hydrogenation represents a powerful method to convert alkenes to alkanes, gen-
erating a wide range of synthetic intermediates [30]. The single-metal-atom-catalyzed
hydrogenation reactions have been previously summarized by many groups [31–35], so
in this short review, we only focus on the recent development regarding selectively trans-
forming butadiene to butene as an example, since single Pd/Pt atom-catalyzed selective
hydrogenation of 1,3-butadiene plays a crucial role in the purification of dienes in the
petrochemical industry, while NP analogues favor the complete hydrogenation process
instead [36]. Carbon-based materials are frequently used for their good thermal stability in
the hydrogenation reaction [37]. Graphene-supported Pd SAC showed excellent durability
against sintering and coking for the 100 h duration and maintained ~70% 1-butene selec-
tivity at 95% conversion, surpassing the Pd-NP catalysts (Figure 8a) [38]. Moreover, C3N4
can also be used as a photocatalyst, and thus protons can be in situ generated through
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photo splitting of water. For example, carbon-nitride-supported Pd SAC (Pd1-mpg-C3N4)
performed the hydrogenation reaction under visible-light irradiation using water as a
sustainable source of hydrogen [39]. Besides Pt and Pd, an Ir SAC supported on the
nitrogen-rich carbon substrate exhibited high activity to the hydrogenation of butadiene
with perfect selectivity (~100%) to butenes even at 200 ◦C while the selectivity on Ir-NC
gradually dropped to ~0% with increasing temperatures (Figure 8b). The operando XAS
demonstrated that Ir-X3 (X = C/N/O) was an active site with great stability under working
conditions [40].
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Figure 8. (a) Schematic illustration of improvement in butene selectivity on single-atom
Pd1/graphene catalyst. (b) Ir SAC showed the better selectivity at high temperatures. Adapted with
permission from ref. [38] Copyright 2015 American Chemical Society and ref. [40] Copyright 2022
Royal Society of Chemistry.

The oxide-supported single-atom alloy (SAA) is also capable of performing conver-
sions with good selectivity. Lucci et al. fabricated the γ-alumina-supported Pt-Cu SAA with
isolated Pt atoms located in the Cu(111) surface. The as-prepared Pt/Cu(111) SAA could
display high selectivity and excellent stability under working conditions (Figure 9) [41].
DFT calculations revealed that H2 was readily activated on the single Pt atoms, and the dis-
sociated H species could migrate to the Cu sites through the spillover effect. The selective
hydrogenation to butene was attributed to the weak binding of the butadiene substrate on
the Cu site.
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2.5. Epoxidation

SACs can provide simplified models of catalytic centers, and DFT calculations have
thus been frequently used to predict catalytic feasibility. Especially for some reactions utiliz-
ing explosive substrates, taking the epoxidation reaction as an example, the computational
screening of catalysts is of great help in facilitating the traditional optimizing process, since
the most-efficient catalyst can be conveniently selected from the catalyst library without
performing many reactions.

The electronic structures of single-metal atoms supported on a phosphotungstic acid
(PTA) cluster were systematically investigated with DFT calculations to predict the catalytic
performance in ethylene epoxidation. Among the non-noble transition metals (Fe, Co, Ni,
etc.), Fe preferred to anchor at the four hollow (4H) site of the PTA cluster [42]. Moreover,
the strong covalent metal-support interaction between Fe and PTA is the foundation for high
stability. Similarly, according to the literature [43–45], a mechanism for selective oxidation
of styrene is proposed in Figure 10a. DFT calculations predicted that the activity of Co-
N3 SAC in styrene epoxidation could be further improved by constructing unsaturated
defect sites, which underwent lower free energy compared to the Fe-N4, Cu-N4 and Co-N4
structures (Figure 10b) [46]. Using tert-butyl hydroperoxide (TBHP) as the oxidant, 99.9%
of the styrene conversion was achieved with 71% selectivity to styrene oxide.

In oxidation reactions, O2 is an environmental benign replacement to organic peroxides
such as TBHP. Therefore, Chen et al. constructed a vacancy-rich Co1/NC-h SAC from
a CoZn-ZIF precursor, aiming to use O2 as the oxygen source. The Co-Nx active site
showed high intrinsic activity in the epoxidation of cyclooctene at 140 ◦C, and the yield
of the target product (1,2-epoxycycloheptane) reached 95% [47]. Moreover, the oxide
materials are also capable of introducing a large number of vacancies in SACs [48]. For
example, Bi vacancies in Ru1/Bi2−xWO6 SACs can confine Ru species at an atomic scale
and provide exceptional efficiency in the epoxidation of trans-stilbene to trans-stilbene
oxide [49]. In addition, Ir1/α-MnO2 displayed a remarkable ~99% selectivity in ethylene
epoxidation [50]. In situ experiments and quantum-chemistry calculations indicated that
the π-coordination structure between isolated Ir sites and substrates, such as ethylene,
and molecular oxygen, can promote the formation of five-membered oxametallacycle
intermediates and then accelerate the formation of ethylene oxide. Electrocatalysis is also
applied in epoxidation, since Ir-MnOx SAC exhibited a Faradaic efficiency of 46 ± 4% in
cyclooctene epoxidation. Operando XAS characterizations suggested that the electron-
deficient Ir sites induced the formation of highly electrophilic oxygen atoms, leading to the
enhancement of electrocatalytic performance [51].
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3. Tandem Reactions

Tandem reactions perform two or more catalytic processes successively in one pot.
For example, Rh single-atom sites are active in both hydroformylation and hydrogenation
reactions, capable of directly transforming alkenes to amines for pharmaceutical synthesis.
In this context, fendiline, an anti-anginal agent for the treatment of coronary heart disease,
was prepared from easily available substrates, including arylethylene, phenylethylamine,
and syngas, via the single Rh atoms catalyzed tandem hydroformylation/reductive amina-
tion reactions in 87% overall yield (Figure 11a) [52]. The key to protecting Rh atoms from
sintering probably lies in the unique Rh-P coordinating effect and the good stability of nan-
odiamond support. A similar approach was realized with the Rh1/P25 SAC (Figure 11b),
which showed higher selectivity than [Rh(cod)2]BF4 in hydroaminoalkylation [53]. In situ
characterizations suggested that the Rh atoms were singly dispersed on the surface of TiO2,
and each Rh species was coordinated with four O atoms on average, fabricating the stable
reactive center under working conditions. Additionally, Rh is highly active in the water–gas
shift (WGS) reaction, producing H2 from CO and water. Li et al. coupled hydroformylation
with WGS reactions and found that the in situ generated H2 is key to the regioselective for-
mation of linear aldehydes (Figure 11c) [54]. Therefore, the linear/branched product ratio
reached 3.0 on Rh1/CeO2 SAC without any addition of phosphine ligands. By contrast, the
Rh NP catalyst could also produce H2 from the WGS reaction, but the hydrogenation of
aldehyde would occur at the same time, forming undesired alcohol products.

Furthermore, two active metal sites can be combined as tandem catalysts. Sarma et al.
reported an olefin isomerization-hydrosilylation reaction by adding two SACs, Ru1/CeO2
and Rh1/CeO2, in one pot, achieving 95% regioselectivity to the terminal organosilane [55].
In 2021, a biomimetic SAC (Pd1@Fe1) was fabricated, integrating two kinds of single-
metal atoms in the MOF-derived yolk and N-doped carbon shell structure, respectively
(Figure 12a) [56]. The single Fe and Pd sites could respectively catalyze nitrobenzene
hydrogenation and styrene epoxidation, leading to a cascade synthesis of amino alcohols
(Figure 12b). The detailed reaction mechanism was investigated by the control experiments
(Figure 12c) and DFT calculations (Figure 12d), providing a versatile strategy to integrate
different kinds of SACs within one reaction system.
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4. Conclusions and Perspective

In this review, we have summarized recent advances regarding the functionalization
of alkenes utilizing SACs. These catalytic transformations are not only widely used in
preparing pharmaceutical intermediates, but they are also of great value in the field of
material synthesis, including as aerogels and surfactants. From the above discussions,
single-atom catalysis has made much progress in the field over the last decade and has
gradually developed into a practical alternative approach, especially for reactions that
are industrially realized with homogeneous catalysts. For example, in 2020, the first
heterogeneous single-Rh-atom-catalyzed hydroformylation-hydrogenation reactions were
put into operation in Ningbo, China, with an annual capacity to produce 50,000 tons of
n-propanol from ethylene and syngas [57]. The superior reactivity and stability of Rh SACs
demonstrate that single-atom catalysis can be a bridge to connect both homogeneous and
heterogeneous catalysis, and more practical applications of SACs may soon appear. We
also note that SACs have been applied in the photocatalytic [39] and electrocatalytic [51]
conversion of alkenes, which could further meet the sustainable demand of using renewable
energy to reduce traditional fossil energy consumption.

Regarding catalyst design, singly dispersed metal sites can be regarded as simpli-
fied models in heterogeneous catalysts, thus facilitating DFT predictions concerning the
plausible reaction pathways on different kinds of metal centers. As a result, optimized
catalytic active structures can be intentionally fabricated without repeating time-consuming
test-error processes. Moreover, a basic understanding concerning single-atom catalytic sites
provides valuable mechanism insight in preparing multi-metal centers with good catalytic
performance, such as the yolk–shell Pd-Fe dual atoms [55] and synergetic sites involving
metal clusters/NPs along with single atoms.

Despite the above achievements, single-atom catalysis faces challenges as well. For
one thing, although some reaction pathways were proposed and accepted in principle, the
detailed reaction mechanisms in alkene transformations are still lacking. As a result, in
situ characterization techniques are needed to track the structure change in active metal
species, revealing the real active state under working conditions. For another thing, the
existing SAC systems could be further improved for potential industrial applications, and
more effort should be spent on exploring SACs with non-noble metal centers to reduce
catalyst costs. In addition, the deactivation of catalysts under harsh reaction conditions,
such as reducing atmospheres and elevating temperatures, is frequently caused by the
aggregation of isolated metal atoms. Therefore, the surface properties of supports should be
carefully tuned to anchor single-metal atoms in high loadings. Moreover, new regeneration
strategies need to be developed for recovering catalytic performance.
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