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Abstract: In the last twenty years, the application of microreactors in chemical and biochemical
industrial processes has increased significantly. The use of microreactor systems ensures efficient
process intensification due to the excellent heat and mass transfer within the microchannels. Moni-
toring the concentrations in the microchannels is critical for a better understanding of the physical
and chemical processes occurring in micromixers and microreactors. Therefore, there is a growing
interest in performing in-line and on-line analyses of chemical and/or biochemical processes. This
creates tremendous opportunities for the incorporation of spectroscopic detection techniques into
production and processing lines in various industries. In this work, an overview of current applica-
tions of ultraviolet–visible, infrared, Raman spectroscopy, NMR, MALDI-TOF-MS, and ESI-MS for
monitoring (bio)catalytic processes in continuously operated microreactor systems is presented. The
manuscript includes a description of the advantages and disadvantages of the analytical methods
listed, with particular emphasis on the chemometric methods used for spectroscopic data analysis.

Keywords: UV-Vis spectroscopy; NIR spectroscopy; Raman spectroscopy; microfluidic devices;
chemical and biochemical reactions

1. Flow Chemistry in Microreactors

Traditionally, most chemical and biochemical syntheses have been carried out in
batch reactors. The environmental and economic impact of the chemical, biochemical,
and pharmaceutical industries has led to a shift in emphasis to less expensive and more
environmentally friendly technologies [1]. One of today’s trends in industrial production
is the replacement of the batch process with continuously operated systems [2]. Flow
chemistry or continuous processing is based on two or more streams of separate reactants
fed at specified flow rates into a single chamber, tube, or microreactor. A reaction occurs
at the interface area, and the resulting product is gathered at the reactor system outlet.
As described by Hartman [3], flow chemistry has great potential for the research and
production of fine chemicals and pharmaceuticals, providing a reduction in research costs
of approximately 40% and a reduction in a drug development time of around 90%. The
main advantages of flow chemistry reported in the literature are: (i) higher reaction rates
due to enhanced mass and heat transfer, (ii) cleaner production due to reduced use of chem-
icals, (iii) safer reaction conditions due to reduced exposure to potentially toxic chemicals,
(iv) rapid and easy optimization of reaction conditions due to the ability to quickly test
different reaction conditions, and (v) easy scale-up by connecting the basic processing units
in series [4]. A key advantage of flow reactors is their ability to change residence times
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by changing flow rates while keeping the reactor volume constant. Residence times can
be precisely controlled by adjusting the flow rate without the requirement to manipulate
several parallel reactors. The thermodynamic properties remain unchanged, and sampling
has no effect on the remaining screening criteria [5]. The advantages of the continuously
operated reactor system in both chemical and biochemical industries have been extensively
reviewed by many authors in recent years [3,6–10].

Common components of flow chemistry equipment are pumps that deliver small
amounts of chemicals/reactants into reaction loops, where the reaction takes place and
products are generated. An example of a simple microfluidic setup is given in Figure 1.
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There has been significant interest in performing flow processes at the microscale [4].
Engineering progress has led to significant advances in small-scale reactors and application
models based on microreactors (1 mm) [11]. Microreactors are manufactured from a range of
materials including polymers, silicon, metals, stainless steel, glass, and ceramics [12]. When
selecting the material for the fabrication of microreactors, functionality, resistance to high
pressure and temperature, the selectivity of the reaction mixture, and physical properties
of the reaction mixture such as pH, viscosity, and phase should be considered [13–16].
Technological microfluidics advances have facilitated the manufacture of complicated
structures, so microreactors can be built as microcapillaries and chips. Microcapillary
reactors are fabricated from tubing of the necessary length and material, whereas chip-
based reactors are constructed through micromachining, wet etching, and soft lithography
techniques [12]. Depending on the manufacturing process, different surface roughnesses
can be achieved in a microchannel. The surface roughness of the channel walls is considered
to be one of the most important elements, because as the size of the channel decreases,
the influence of roughness on the reaction increases. Depending on the manufacturing
technique used, the typical channel roughness ranges from 0.8 to 2.5 µm. The flow in
microreactors is mostly laminar at low Reynolds numbers, and phase mixing is mostly
controlled by molecular diffusion [17]. Laminar flow conditions ensure a high surface-
to-volume ratio and also a large interfacial area, which is very important for multiphase
systems. Another important advantage of microreactor systems is simple scale-up, which
includes numbering-up (internal and external) of the basic operating units. Numbering-up
ensures an increase in throughput from g/h or g/min to kg/h [18], which corresponds
to industrial-scale demand. By running processes in a microfluidic device, mass transfer,
concentrations, and temperature may be better regulated, and much less reagents can be
used. A microfluidic device can screen reaction mechanisms, such as chemical ratios and
concentrations, at a faster rate than conventional batch processes. Furthermore, reduced
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amount of chemicals may be used, which is beneficial for commercial, environmental, and
safety purposes [19].

Sample processing, particularly sample digestion and chemical removal, is the longest
and most time-consuming step in many analytical techniques, requiring substantial use
of chemicals and demanding the highest attention and personal risk from technicians.
Therefore, in recent years, substantial attention has been given to eliminating these lim-
itations [20,21]. The downsizing of process equipment has led to the development of
micro-total analysis systems (µTAS), also known as lab-on-a-chip devices [22], as shown in
Figure 2.
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µTAS automate and include the reactant feed area, reaction area, and product sep-
aration and detection area on one chip [23]. According to Lee [24], these devices are
suitable for use in various scientific fields from chemistry and biotechnology to medicine,
because of their fast reaction time, low sample volume requirements, high disposability,
and lack of cross-contamination. It is also important to mention that the integration of
analytical technology has made microreactors a powerful laboratory tool for reaction and
kinetic studies.

The miniaturization trend in different fields of sciences has been driven by signifi-
cant improvements in material sciences, especially nanotechnology [25]. As described by
Gorjikhah et al. [26], nanotechnology is the development and utilization of nanomaterials,
nanodevices, and nanosystems by the manipulation of materials on the nanoscale, as well
as their application in life disciplines. Nanomaterials are frequently employed in numerous
elements of lab-on-a-chip devices. In addition, microfluidic devices are being intensively
used for nanoparticle synthesis [27–29] and for biotransformation processes with enzymes
immobilized on nanoparticles [30–33]. Because of the small dimensions of microfluidic
device channels, reaction conditions may be accurately regulated to ensure homogeneous
reaction volumes inside the channel [34]. Nanostructures can be thought of as the building
blocks required for innovative biosensing systems that detect DNA, proteins, cells, and so
on [25,35]. Furthermore, nanoparticles contribute significantly to precise fluid control and
are increasingly being employed in lab-on-a-chip systems. According to Khizar et al. [36],
the use of nanoparticle-based micro-systems improves analytical techniques and has a
huge impact on research [37] and clinical practice [38]. For the collection and monitoring
of biomolecules, nanomaterial-based microfluidic chips with nanopillar, nanowire, gold
nanoparticle, magnetic nanoparticle, graphene oxide, nanofibre, and nanoroughened struc-
ture are used [39]. The incorporation of various inorganic and organic nanoparticles inside
microfluidic devices opens up new possibilities for future sensing applications such as
clinical diagnosis, food quality control, and ecological monitoring [40]. Nanoparticles are
used as a building element in various microfluidic systems, particularly in new sensing
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systems [36,40,41]. They are used to change or combine the transducer materials of mi-
crofluidic systems, either individually or as matrix, in order to increase several elements of
performance such as detection limit, capability, and response stability [36,42].

2. Spectral Analysis Techniques and Chemometrics

Over the years, advanced spectral analysis techniques, such as ultraviolet–visible
spectroscopy (UV-Vis), mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR),
Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic
resonance spectroscopy (NMR), etc., have been rapidly developed and applied in vari-
ous industries such as agriculture, the food industry, pharmaceuticals, the petrochemical
industry, the chemical industry, environmental protection, and medicine. The most impor-
tant advantages and disadvantages of UV-Vis, NIR, and Raman spectroscopy are listed in
Table 1, while the following sections provide detailed information.

Table 1. The most important advantages and disadvantages of selected spectroscopy methods.

UV-Vis Spectroscopy NIR Spectroscopy Raman Spectroscopy

A
dv

an
ta

ge
s

• Non-destructive
• Cheap
• Small amounts of samples

needed
• Minimal data processing
• Identification and

quantification of molecules

• Fast
• Inexpensive
• Non-destructive analysis

• Provides real-time or near
real-time molecular information

• Non-destructive method
• No sample preparation

D
is

ad
va

nt
ag

es

• Occurrence of scattering
effects while working with
suspensions

• Interference from multiple
absorbing species and
formation of overlapping
spectra

• pH and temperature
dependence of the results

• Low sensitivity due to low absorption
indexes

• Indirect method, requires the
development of a multivariate
calibration model

• Low efficiency of inelastic light
scattering compared to elastic
scattering

• Unreliable detection of specific
biomolecules

• Quantitative analysis of Raman
spectra must be validated
against well-established
methods

The extraction of either physical or chemical information can be achieved through
chemometric methods. The aim of chemometrics is to improve the accuracy of the ob-
tained analytical results. Developments in artificial intelligence, big data, cloud computing,
and other technologies are making additional contributions to the application of chemo-
metrics [43]. Practical aspects of chemometrics or multivariate analysis include spectral
pre-processing, wavelength (variable) selection, data dimension reduction, quantitative
calibration, pattern recognition, calibration transfer, calibration maintenance, and multi-
spectral data fusion [44]. Spectral pre-processing helps to remove unnecessary information
by correcting the deviations caused by various factors such as interference, light scattering,
instrumental drift, etc., and converts the spectrum into the best possible conditions. The
choice of the pre-processing algorithm depends on the nature and characteristics of the
data [45]. Since spectral data are multivariate and high-dimensional, dimensionality reduc-
tion and the extraction of important information is a mandatory step before pre-processing.
For exploration and data reduction, principal component analysis (PCA) is one of the most
widely applied multivariate methods. A simple scheme on spectral data analysis is given
in Figure 3. PCA explores possible similarities and differences among samples to identify
clusters or patterns. It is also applied for the reduction in the dimensionality of the spectral
data to a smaller number of components, and to determine which variables are important
for representing the system [46]. Once the exploratory technique is applied, the spectral
data can be modelled using an appropriate pattern recognition technique in which samples
are grouped or classified into clusters based on their similarities or common spectral char-
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acteristics [45]. The most commonly used classification algorithms are partial least square
regression (PLS), partial least square–discriminant analysis (PLS-DA), linear discriminant
analysis (LDA), and soft independent modelling by class analogy (SIMCA) [45–48].
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Since the quantification of specific compounds contained in a sample is routine in
many laboratories and industries, spectroscopic techniques have also been applied for
quantitative purposes. Chemometric regression methods look for a relationship between
the spectral data (raw, pre-processed, or a group of selected wavelengths) and some
physical/chemical properties of the sample [49,50]. The relationship between the spectral
data (predictor or independent variables) and the sample (predicted or dependent variables)
is given by a mathematical function. The parameters of this function are estimated from
a calibration/training set of samples for which both spectra and the quality parameters
of interest have been measured using reference methods. Challenges encountered in this
stage include overcoming non-selectivity such as broad and overlapping absorption or
emission peaks.

Multivariate techniques can overcome this problem by extracting and combining
relevant information contained by multiple variables [51]. Most multivariate calibration
methods assume a linear relation between independent and dependent variables. The
reason for this could be that many works still use a specific wavelength to quantify a
compound. The most straightforward way to estimate model parameters is multiple linear
regression (MLR). However, due to multicolinearity problems, the prediction performance
may still be very poor [52] and the standard MLR is not appropriate for the creation of
regression models. To overcome this problem, principal component regression (PCR) has
been proposed. Although PCA scores are used as the predictor matrix to perform multiple
linear regression, the PCR algorithm faces many non-informative sources of data variability,
which means that the directions of the maximum explained variance may not be relevant for
predicting the dependent variables [53]. As an alternative approach to component-based
regression, the partial least squares (PLS) algorithm is presented as the most widely used
calibration method in chemometrics. PLS regression includes the extraction of a scores
set by projecting the data onto a subspace of latent variables that are relevant to solve the
calibration problem. In PLS, the covariance between the corresponding scores and the
responses is maximized, yielding scores that both describe a significant part of the variance
of the data and are correlated with the responses [44,53,54]. However, to achieve accurate
and reliable estimations using PCR or PLS models, the selection of an appropriate number
of latent variables for describing the data is the most important step. Problems such as
underfitting (selection of a low number of components) or overfitting (if too many are
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captured) could occur, resulting in a model that performs poorly or very well in predicting
the samples but with poor performance with the new ones. This risk can be reduced by
using an appropriate validation strategy (such as cross-validation), which means selecting
the optimal number of latent variables to minimize error during validation [44].

Although multivariate calibration methods assume a linear relationship between pre-
dictors and predicted variables, nonlinearity of the data can occur [55,56]. To overcome this
problem, nonlinear models, such as artificial neural networks (ANNs), which are defined
as self-adaptive and massively parallel machine learning systems, can be used [57]. ANNs
represent a model of biological network structures (neurons) with natural characteristics
of storing experiential knowledge and making it available for use. The abilities of ANNs
include recognizing and reproducing the cause–effect relationships through training for
multiple input–output systems, making them efficient to represent even the most complex
systems [49,58]. The advantages of using ANNs include universal approximation capability
to approximate almost all kinds of nonlinear functions, including quadratic functions. The
limitation of using ANNs is that no global optimal solution can be guaranteed [58].

In summary, spectral print represents great potential for qualitative and quantitative
analysis in all fields. Chemometric methods have proven to be a reliable technique for the
exploratory analysis of multivariate data, as well as for the construction of reliable cali-
bration models suitable for the prediction of quantitative responses and the development
of classification strategies for the prediction of qualitative responses, based on the experi-
mental results obtained from samples. Additionally, the implementation of sophisticated
computational softwares has brought numerous gains in terms of the use of spectroscopic
methods for the prediction of physical/chemical properties of a sample. This is the reason
why the application of multivariate calibration models has numerous advantages such as
measurement of the variables of interest and potential reduction in time and costs [44].

2.1. Ultraviolet–Visible Spectroscopy

Ultraviolet–visible spectroscopy (UV-Vis), along with NIR, is a spectroscopic tech-
nique used in various fields such as agriculture, the food industry, pharmaceuticals, and
environmental science [44]. UV-Vis spectroscopy allows to monitor and measure molecule
interactions in the specific range of 200–700 nm [59]. The principle of UV-Vis measurements
is shown in Figure 4.
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This technique investigates phenomena such as absorption, scattering, diffraction,
refraction, and reflection occurring between the light and the compound(s) within the sam-
ple. UV-Vis light absorption is particularly limited to certain chromophores with defined
molecular functional groups and is mainly influenced by their composition and concen-
tration. To correlate the amount of incident light absorbed by the absorbing compound or
molecule in a matrix with its concentration and the light path length, the Lambert–Beer law
is applied. Lambert–Beer’s law is strictly only valid if some fundamental conditions are
fulfilled, for example: the presence of strictly monochromatic measuring light is important;
a homogeneous distribution of molecules in the sample is required; the measuring beam
should completely pass through the sample; absence of light scattering and of photochemi-
cal reactions in the sample; no re-emission of the absorbed light by fluorescence; an ideal
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acquisition and processing of the intensity values I0 and I (intensity of the measuring beam
before (I0)/after (I) passing through the sample) [60].

The position of the maximum of the absorption bands and the intensity of the bands
are parameters that characterize the UV-Vis spectrum of a sample. That means that the
maxima and intensities of the absorption bands differ with regard to the molecular structure
of the compounds, which, in turn, depends on the sample. Furthermore, the amount of light
absorbed by the interacting molecules also depends on their concentration in the sample.
The full spectrum can then be used for quantitative or qualitative analyses or to determine
the physical and chemical characteristics of a sample, as this information is contained in the
positions, intensities, and shapes of the bands [59,61–63]. In contrast to pure component,
the identification and/or quantification of a compound in complex matrices (i.e., food)
containing mixtures of different compounds that can absorb in the UV-Vis region generally
reveals some broad absorption bands in the recorded spectra, which are often difficult to
assign to individual chromophores [44,64].

Most commercially available UV-Vis spectrophotometers are constructed in different
configurations and, thus, have different measurement capabilities and sample types and/or
different measurement conditions so that solids, liquids, and gases can be analysed. In addi-
tion to standard liquid-holding cells for the measurement of the sample absorbance, probes,
flow-through transmission cells, and diffuse reflection cells have been also developed for
the extension of the use of UV-Vis spectroscopy in quality monitoring and process control
as a real-time analytical sensor in biological, pharmaceutical, and food applications [65–69].

UV-Vis is a non-destructive, eco-friendly technique that allows reuse or further pro-
cessing of samples. It also requires only a small number of samples and simple data analysis
with minimal processing, compared to other spectroscopic techniques. Using UV-Vis, it
is possible to identify and determine the concentration of a particular molecule in a solid
or liquid sample, to measure the colour of a material, and to study chemical reactions
or biological processes [70]. There are some disadvantages with applying this technique.
Scattering effects, interference from multiple absorbing species, formation of overlapping
spectra, and saturation of the spectrum make the identification and quantification of specific
compounds difficult, leading to non-reproducible results. The selection of the most suitable
sample holder, cuvette material, solvent, and instrument parameters is also required to
avoid unnecessary optical interactions, which will, in turn, alter the absorbance value of
the sample, causing potentially serious measurement errors. Geometric parameters such as
alignment to the same orientation and placement in the same position for every component
in the instrument should be considered during measurement [60,70].

2.2. Infrared Spectroscopy

Infrared spectroscopy (IR) is a non-destructive, accessible, and rapid spectroscopic
technique, widely applied for the investigations of molecular structures. The term “infrared”
comprises three subregions: 770–2500 nm (near-infrared; NIR), 2500–25,000 nm (mid-
infrared; MIR), and 25,000–1,000,000 nm (far–IR; FIR). Since the term wavenumber is most
often used, the near-infrared region will correspond to 12,820 to 4000 cm−1, mid-infrared is
in the wavenumber range from 4000 to 400 cm−1, while far-infrared corresponds to 400 to
33 cm−1 [71].

An IR spectrum is generated by measuring the absorption of electromagnetic radiation
due to vibrations within a molecule. Absorption will occur due to the matching of the radi-
ant energy with the energy of a specific molecular vibration. Based on molecular vibrations,
the identification and study of the molecule structure can be performed. For instance, the
C=O groups of –C=C–C=O and –CH2–CH2–C=O will yield different frequencies, meaning
that IR can be used not only for identification but also for the exploring of the chemical
bond and environment of the functional group [72]. Due to the presence of fundamental
vibrations, the MIR region is mostly used for the molecular structure determination and
confirmation of organic compounds. The radiation frequency of this region matches in en-
ergy with the natural vibrational frequencies of the bonds in organic molecules. This means
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that highly specific information can be extracted from the obtained MIR spectrum [69,71,73].
Each molecule has unique levels of vibrational energy, hence MIR can ensure a “fingerprint”
of a particular molecule [74]. The characteristic band of a given bond is the bond’s absorp-
tion band [75]. Because the corresponding intensity of an absorption band is much lower
than that in the mid-infrared region, the limit of detection with NIR is significantly lower
(about 0.1% in concentration) compared to the MIR spectroscopy. On the other hand, FIR
spectroscopy presents technical difficulties, although it is capable of detecting stretching
vibrations of molecules containing heavy atoms, i.e., metalorganic complexes or inorganic
molecules [73].

The use of IR spectrometers started in the 1940s. The dispersive spectrometer con-
tained a light source, spectroscope, monochromator, and detector. In order to obtain
infrared spectra, the intensity of reference radiation and probing radiation were comparing.
The major drawbacks of this instrument were its slow speed and low resolution. These
instruments are rarely used nowadays. The introduction of the Fourier-transform infrared
(FTIR) technique represents an improvement of the IR instrument. Fourier-transform in-
frared spectroscopy uses the Fourier transform to convert the raw time domain signals into
an easily visualizable IR spectrum that maps the IR radiation absorbed/transmitted over
each frequency, creating a molecular fingerprint [76]. The commercial use of FTIR spec-
trometers started in the mid-1960s, while their wide use began after the mid-1970s [76,77].
The FTIR instrument consists of a light source, Michelson interferometer, detector, and
computer. The advantages of using FTIR instruments, in contrast to dispersive spectrome-
ters, include faster speed of analysis due to simultaneously measuring the radiation over a
wide range, higher wavenumber resolution, and accurate determination of wavenumbers,
which ensures high reproducibility and reliability [77]. In addition to the identification of
molecular structure, the advantages of using FTIR spectroscopy include: (i) universality for
many different sample types, (ii) sensitivity, with a minimum quantity of sample required,
(iii) easy and fast acquisition process, (iv) abundant information regarding spectrum, and
(v) relatively low work cost. There are some drawbacks of applying this technique: influ-
ences of the working environment such as atmosphere humidity and CO2 can significantly
affect the quality of the recorded spectrum and interfere with spectrum interpretation. The
difficulty of spectrum interpretation and band assignment increase with the complexity of
the sample composition [71,78].

2.3. Near-Infrared Spectroscopy

In recent decades, near-infrared spectroscopy (NIR) has been increasingly used as
a monitoring and analytical tool, especially in the food and agricultural industries, but
also in the polymer, textile, chemical, and pharmaceutical industries [79–81]. According
to the definition of The American Society of Testing and Materials (ASTM), the near-
infrared region of the electromagnetic spectrum comprises the wavelength range from 780
to 2526 nm [82]. It encompasses both vibrational and electronic spectroscopy, since the
absorption bands occurring in the NIR region arise from electronic transmissions as well
as those due to overtones and combinations of fundamental vibrations of the XH bonds
(X = C, N, O, S) [82–84]. Transitions from the fundamental state to higher excited states lead
to the emergence of NIR overtone bands. The simultaneous appearance of two or more
vibrational transitions leads to NIR combination bands [83]. Since vibrational transitions
have a lower probability of occurrence compared to the fundamental transitions, the NIR
absorption bands are very weak, which makes this region unique and significantly different
from the other regions. Since a number of bands overlap each other, due to overtones
and combination modes, the NIR absorption bands are typically broad and overlapping,
making the interpretation of NIR spectra difficult [85–87]. The overtones and combination
modes are also called “forbidden transitions” [84,85,88–90]. However, the NIR region is
significant because it serves as a highly transmitting window for radiation, making this
area unique for different types of applications [84].
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NIR analysis is a fast, reliable, cost-effective, and non-destructive multicomponent
analysis [91]. Within in-line analysis, no samples need to be collected, no waste is generated,
and no complex pre-treatments of samples with solvents or other chemicals is required.
All these make NIR a safe, clean, and energy-saving method that fully complies with the
principles of green chemistry [92]. The disadvantages of the NIR method include its low
sensitivity, which is due to low absorption indexes, resulting in a higher detection limit. As
an indirect method, NIR requires the development of a multivariate calibration model as
opposed to an appropriate reference method. This limits the accuracy of the NIR method.
Additionally, the development of a multivariate calibration model requires a large number
of samples in order to include all possible sources of variability in the NIR spectra [83].

Due to its wide range of applications, NIR technology has attracted a number of
instrument manufacturers who offer a range of instruments and accessories capable of
meeting the requirements for off-line and on/in-line process monitoring [93]. In general,
any NIR instrument built to perform reflectance or transmittance measurements includes
components such as a radiation source, sample–radiation interaction device, wavelength
selector, detector, and data acquisition, treatment, storage, and instrument control device
(microcomputer). An example of an experimental setup for NIR measurements is given in
Figure 5.
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The arrangement of these parts and their particular characteristics depend on the type
of measurement (off - or on/in-line) and on the properties, including physical state. In recent
years, the development of portable miniaturized bench tops and miniaturized instruments
has increased as different industries have different requirements for raw material quality
control, on-site quality control monitoring, and process-distributed monitoring. Further-
more, the development of image spectroscopy has led to the improvement of the NIR
technique by adding two spatial dimensions to the spectral dimension. Information about
a heterogeneous sample increases accordingly, giving access to several of its properties that
cannot otherwise be determined from (average) spectral data [94].

2.4. Raman Spectroscopy

Raman spectroscopy is one of the most versatile tools for the analysis of various
materials, both in the laboratory and under field conditions [95,96]. It can be used to
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measure the chemical composition of complex biological samples such as biofluids, cells,
and tissues [96]. Over the years, Raman analysis has evolved to reach several industries
such as food and textiles [97,98]. While Raman spectroscopy is now widely used in biology
and medicine, its first applications were in physics and chemistry, mainly to study the
vibrations and structure of molecules [99].

Raman is an optical technique based on the inelastic scattering of light by molecule
vibration [96,100]. When a given material is irradiated with monochromatic light, a large
fraction of the beam is scattered without changing the frequency of the photons, so the
energy before and after irradiation is the same. The energy of the incident photon interacts
with the molecule and creates an energy gap between the two electronic energy levels,
i.e., between the ground state and a virtual state [100,101]. The molecule emits a photon
and obtains a different vibrational or rotational state. As a result of the energy difference
between the final and ground states, there is a shift in the emitted photon frequency [102].
In contrast to inelastic light scattering, light scattering (called Rayleigh) occurs when the
energy of the scattered photon matches that of the incoming photon and the involved
electron returns to a state that has the same energy as the initial state. Regarding inelastic
scattering, the photon’s energy loss is equal to the energy difference between the original
and final electron levels. If the outgoing photon has a lower energy than the incoming one,
it becomes anti-Stokes scattering; in the opposite case, it is Stokes scattering. The difference
in energy between the incoming and the outgoing photon is called the Raman shift. The
principle of Raman spectroscopy is shown in Figure 6.
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Since the weak scattering signal was an early factor limiting the implementation
of Raman spectroscopy, the use of plasmonic effects induced by the presence of metal
nanoparticles can enhance the Raman signal. This is known as surface-enhanced Raman
spectroscopy (SERS), a technique used for the investigation of the molecular structure at
the single-molecular level based on Raman scattering. The use of SERS includes sensing
and imaging applications, and analytical and biological applications [100,103,104]. Tip-
enhanced Raman spectroscopy (TERS) is a technique also based on the amplification of
the Raman signal and often used for analyses of a wide range of biological and chemical
samples with a high spatial resolution of a few nanometres [105].

Raman analysis can provide real-time or near real-time molecular information and
high-resolution imaging at a relatively low cost. Raman uses light in the visible or near-
infrared spectral range, taking advantage of advanced optical microscopy technologies,
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optical fibres, miniaturized lasers, and photonic devices [96,100]. Additionally, Raman is
a non-destructive method based on light scattering, so measurements can be performed
with little or no sample preparation. It may be used for work with aqueous solutions since
water is weakly scattered and it does not interfere with spectral data [102].

The major drawback of Raman spectroscopy is the relatively low efficiency of inelastic
light scattering compared to elastic scattering, fluorescence emission, or absorption of
infrared light, leading to relatively long acquisition times (0.1–1 s per spectrum) [96,99].
Another problem is the detection of specific biomolecules; Raman spectra of complex bio-
logical samples contain overlapping bands, making it difficult to obtain the signal from only
specific molecules [96]. A rather general and neglected problem is the baseline correction
of spectra [106,107]. In addition, quantitative analysis of Raman spectra can be unreliable
if not compared and validated against well-established methods [108]. Nevertheless, Ra-
man spectroscopy could provide very good insight into the study of many materials, and
with the creation of large databases, qualitative Raman analysis will become increasingly
reliable [100].

2.5. Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a non-destructive technique that
uses magnetic fields in order to obtain qualitative and quantitative information on solid,
liquid, and gaseous samples [109]. NMR investigates the phenomena of magnetic reso-
nance of atomic nuclei to provide information about their local magnetic fields [110,111].
Since protons and neutrons are spinning nucleons, they are characterized by a nuclear
spin quantum number (m), with a range of values from −1/2 to 1/2, according to their
magnetic behaviour. Protons and neutrons together form atomic nuclei. The magnetic
characteristic of atomic nuclei is described by the nuclear spin (I). I represents the total
number of spin states. Each nucleus has its own spin quantum number (m), ranging from
−I, −I + 1, . . . , to I − 1, I. Nuclei are magnetically inactive when they have only one
spin state (I = 0); therefore, they cannot be directly detected by NMR experiments [110].
NMR spectrometers are used to perform NMR analysis. These instruments are used for
irradiation of the nuclei (with I 6= 0) of a sample immersed in a strong magnetic field,
for detection of the sample’s resonance frequencies, and for measuring the intensities of
the corresponding signals. NMR instruments should have the possibility to modify the
strong magnetic field B0 and/or the irradiation frequency B1. Conventional instruments
use a continuous-wave technique (continuous sample irradiation) while significant im-
provements are attributed to the development of the Fourier transform-NMR (FT-NMR)
technique. The FT-NMR technique means immersion of the sample in a strong, static mag-
netic field B0 with monochromatic irradiation B1. Consequently, the resulting irradiation
will be polychromatic, with frequencies in units kHz and the acquisition time reduced to
seconds. Recently, low-field benchtop (desktop) FT-NMR spectrometers have also been
developed; they are smaller and cheaper compared to the high-field ones, with the use of
permanent magnets instead of superconductive ones [110]. Regarding data analysis, NMR
spectroscopy enables the identification of chemical compounds, since NMR spectra contain
important aspects regarding the chemical structure. These aspects include composition,
constitution, configuration, and conformation, as well as nanostructural aspects of the
analyzed compounds. Recording 2D-NMR spectra has also become common in the last
30 years; 2D-NMR spectra are generated from a series of independent 1D-NMR spectra.
Although 2D-NMR techniques are commonly used for the determination of the structure,
their major drawbacks include longer acquisition time, since multiple 1D-NMR spectra are
required to create a 2D spectrum. To overcome this problem, ultrafast 2D (UF-2D) NMR
spectroscopy has been developed, reducing the series of experiments to a single experiment
only [112,113]. Similar to 2D-NMR, 3D-NMR techniques also show correlation between
three 1D NMR spectra. Therefore, with the evolution of multidimensional techniques,
parameters such as the sampling method and data processing are of practical importance
due to decreasing the overall time of analysis [114–117].
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NMR spectroscopy provides sufficient information on the local environment of the
nuclei, with atomic-level resolution. It could be used in different fields including organic
chemistry, catalysis, biology, medicine, and industry [111]. The application of low-field
benchtop NMR spectrometers may significantly broaden the number of users. It is a fast,
linear technique suitable for accurate quantification (below±1%), allowing complete molec-
ular structure elucidation. Sample preparation is relatively simple, and the obtained results
are highly reproducible. However, there are some disadvantages, such as rather low sensi-
tivity for any NMR active nucleus. Relatively large sample amounts are required to prevent
very long signal averaging for obtaining significant spectra. The interpretation of NMR
spectra can be difficult. The NMR technique is unsuitable for ultra-precise quantifications.
Equipment and operating costs are high. The applicability of NMR technology depends
on the nature of sample and the type of nuclei it contains. Despite some disadvantages,
development in NMR spectroscopy will make this technology accessible for future scientific
applications [110,118,119].

2.6. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

In order to identify the elemental composition and amount of chemical or biologically
active compounds, mass spectrometry (MS) is usually applied. This analytical technique
relies on measuring the mass-to-charge (m/z) ratios of the analysed samples. Despite the
variety of mass spectrometry techniques, the design of all the instruments is similar and
includes a source of ions (for ionization of the molecules), an analyser, which is needed
for the separation of ions according to the (m/z) ratios, a detector, and a recorder. The
signals are graphically displayed as a mass spectrum, which depicts the relative abundance
of the signals based on their (m/z) ratios [120–122] (Figure 7). During the application
of conventional MS techniques, the sample is bombarded with electron beams, resulting
in breaking the sample into thousands of charged fragments. The identification of the
molecules in the defragmented sample is conducted by correlating the known masses
with the resultant patterns of the fragments. This technique, commonly known as “hard
ionization”, does not allow preservation of the molecules during ionization [123,124].

Matrix-assisted laser desorption/ionization (MALDI), belongs to the group of “soft
ionization“ techniques, developed since the mid-1980s. MALDI is currently used in MS
techniques to generate ions by laser radiation, mostly in the UV range. MALDI is often used
together with a time-of-flight (TOF) analyzer, under high vacuum conditions and under
atmospheric pressure [122]. The basic principles of a TOF analyser include the dispersion
of ions of different (m/z) ratios in time, during their flight along a path of known length.
The ion detector can register the time of flight and the intensity of the individual ions that
reach the ion detector; the lighter ones will arrive earlier at the detector compared to the
heavier ions [123]. The molecules are protected from fragmentation during the ionization
process by the presence of the matrix, whose role is to mediate the energy transfer to the
sample and facilitate ionization and desorption of the molecules. Since molecules cannot
absorb laser radiation, the role of the matrix is to ionize the molecules. The matrices
are substances capable of absorbing UV radiation well and sublimating easily, and they
have a great ability to provide large amounts of ions required for the analyte ionization
after desorption [122]. During MALDI ionization, positive and negative ions are formed.
Depending on the sample type, various forms of adducts, ions stabilized with metal cations,
or ions containing matrix molecules may occur [125]. The intense molecular peak type
and a small number of multiply charged ions are the most frequent signals in the MALDI
spectra [126].

MALDI-ToF-MS has found application in different scientific fields such as chemistry,
biochemistry [127], microbiology [128], biomedicine [129,130], and nanotechnology. It
has the ability to concurrently detect thousands of ions such as proteins, peptides, gly-
cans/polysaccharides, lipids, metabolites, and pharmaceuticals [131]. The advantages
of MALDI technology include providing essential information about parameters such as
molecular weight and polydispersity of the compounds used for the investigation of the
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synthesis pathways, studying degradation mechanisms, measurement of the additives
and impurities, product formulations, and evaluation of the variations in chemical and
biological compounds [123,128]. Additionally, the introduction of multimodal imaging into
MALDI-MS, as one of the most interesting and promising techniques for the spatial charac-
terization of molecules, facilitates data analysis and provides more informative spectral
images [132].
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2.7. Electrospray Ionization Mass Spectrometry

Electrospray ionization mass spectrometry (ESI-MS) is a technique used for struc-
tural or quantitative studies of metabolites originating from biological samples. ESI-MS
is a sensitive, robust, and reliable tool, currently used in more than 95% of all liquid
chromatography–mass spectrometry (LC-MS) applications. ESI-MS is capable of analysing
small and large molecules of various polarities in complex biological samples. By introduc-
ing tandem mass spectrometry (MS/MS) into ESI, complicated sample purification and
procedures for derivative formation can be simplified, ensuring rapid analysis and high
sample throughput [121,133,134].

Electrospray ionization (ESI) is a soft ionization technique, which means that very
little residual energy is retained by the analyte, with the absence of sample fragmentation
during ionization by multiple charging [135]. ESI uses electrical energy in order to assist the
movement of ions from the solution into the gaseous phase before they are subjected to MS
analysis. The intact molecular ions are produced in an ionization chamber, and their transfer
from the solution to the gas phase includes the dispersal of charge droplets in a form of a
fine spray, solvent evaporation, and ion ejection from the highly charged droplets. Ions are
then transffered to the mass analyzer via several ion optics whose role is to focus the ion
stream in order to maintain a stable trajectory of the ions. The emitted ions are accelerated to
the mass analyzer for separation of the ions based on their m/z values [121,135]. There are
many mass analyzers, e.g., magnetic/electric sector mass analyzer, linear quadrupole ion
trap, three-dimensional quadrupole ion trap, orbitrap, time-of-flight mass analyzer, and ion
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cyclotron resonance mass analyzer [136]. They all use static or dynamic magnetic/electric
fields, and operate according to the Lorentz force law and Newton’s second law of motion.
After they pass through the mass analyzer, the ions arrive at different parts of detector, based
on their m/z ratios. After contact with the detector, signals are generated and recorded
by a computer. Unlike other mass spectrometers, the ions are detected by measuring
the current produced by ions cyclotroning in the presence of a magnetic field [135]. The
ESI-MS spectrum presents the relative abundance of ion signals against the m/z ratios.
The highest signal is taken as 100% abundance and all the other signals are expressed as a
percentage of this. Furthermore, ESI-MS can be applied for quantitative sample analysis,
keeping in mind that the selected internal standard should have a similar structure to the
investigated analyte [121,133,134]. Additionally, the introduction of mass spectrometry
imaging (MSI) enables the development of two-dimensional (2D) image data in order to
visualize the distribution information of atoms and molecules on a sample surface [137].
The use of ESI-MS opened up many new application areas for MS and LC–MS analysis.
The most important application area is perhaps the analysis of peptides and proteins. Other
application areas include drug development in the pharmaceutical industry, food and
environmental analysis, and in clinical studies for therapeutic drug monitoring, diagnostic
purposes, systematic toxicological analysis, etc. [138].

3. Microfluidic Devices Coupled with Spectroscopic Techniques

As mentioned before, microfluidic devices have significant benefits in terms of sample
process integration, reduced sample and reagent volumes, and increased analysis rate,
whereas spectroscopic methods have high information content, are sensitive, and can
be used in quantitative analyses. Therefore, the coupling of microfluidic devices and
spectroscopy methods is becoming more common. In recent years, an increasing num-
ber of studies have been published highlighting the evident importance of combining
spectroscopy methods and continuously operated microreactor systems. There are also
several review papers available in the literature that describes the advantages of on-line
measurements in microfluidic systems (Figure 8). For example, Yue et al. [69] studied
examples of fluorescence, ultraviolet–visible, infrared, Raman, X-ray, and nuclear mag-
netic resonance spectroscopy for on-line reaction monitoring and catalyst characterization.
Li et al. [139] discussed difficulties in the miniaturization of NMR, as well as the depen-
dence and sensitivity of infrared, Raman, and UV-Vis spectrometry, and emphasized the
importance of the development of on-line analytical methods for monitoring photocatalytic
reactions in continuously operated microfluidic systems. Furthermore, Rizkin et al. [140]
analysed the advantages and current challenges of spectroscopic methods for monitoring
heterogeneous catalysis processes. An overview of some efficient examples of coupling
microfluidic devices and spectroscopic methods for monitoring reactions in microreactors
can be found in Table 2.

Table 2. Examples of usage of spectroscopic methods for monitoring processes in microfluidic devices.

Method Microfluidic Device Process Reference

Glass microfluidic chip with three sections,
namely reaction zone, gas–liquid separator
zone, and collocation and UV-Vis
detection chamber

Gold nanoparticles (AuNP) synthesized
using atmospheric-pressure helium
plasma as the reducing agent followed by
on-site mercury ion detection

[141]

3D printed poly(lactic acid)/poly(methyl
methacrylate) hybrid microfluidic device

Silver nanoparticles were synthesized
using different concentrations of sodium
borohydride while gold nanoparticles
were synthesized varying the
concentration of trisodium citrate

[142]
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Table 2. Cont.

Method Microfluidic Device Process Reference

U
V

-V
is

Polydimethylsiloxane (PDMS) microfluidic
dielectrophoretic droplet sorter

High-throughput label-free chemical
identification and enzyme screening. The
platform is used to measure ergothionase
enzyme activity from monoclonal
microcolonies isolated in droplets

[143]

Polydimethylsiloxane microfluidic channel
coupled with UV-Vis fibre-optic spectrometer
and new synthesized colorimetric probe

Quantification of F-ions in flow streams [144]

Photonic lab-on-a-chip platform fabricated
from polydimethylsiloxane

Detection and quantification of U(IV)
concentrations in flow streams [145]

Paper microfluidic device. The device had a
total of eight circular reaction zones, 10 mm
diameter, printed with 0.7 mm line width in
green wax, and six coloured squares as
internal standard. This device would allow
the measurement of eight separate standard
concentrations of the drug on the same paper

Detection of decongestant phenylephrine
hydrochloride (PHP) in solution [146]

Catalytic microreactor cell

In situ characterization of the activity of
the silica-supported platinum (Pt)
catalyst toward the dehydrogenation of
1-methyl-1,4-cyclohexadiene

[147]

Hollow-core photonic crystal fibre (HC-PCF)
microreactor

Analysis of the relationship between
bimetallic nanoparticles and their activity
on the hydrogenation of azobenzene

[148]

Spiral-shaped tubular microreactors inserted
inside a channel carved in a flat aluminium
plate and wound in a spiral geometry

Kinetic parameters test of photochromic
system AB involving
1,3,3-trimethylindolino-6′-
nitrobenzopyrylospiran

[149]

N
IR

Micropillar array constructed on the surface
of a poly(ethylene-vinyl acetate) copolymer

Ascorbic acid detection using this digital
microfluidic platform [150]

Microfluidic reactor consisting of: (1) a
syringe pump, (2) a tubular microfluidic
reactor constructed with
polyetheretherketone (PEEK) or stainless
steel (SS), and (3) a sample collector

GdF3:Eu theranostic scintillating
nanoparticles synthesis [151]

Rectangular glass micro-capillaries in
borosilicate glass

Distinguish water, ethanol, isopropanol,
and ethylene glycol in flow regime [152]

Tubular microreactor
Quantification of the diffusion coefficient
of aqueous solutions of sodium
pentaborate

[153]

Microfluidic chip prepared by sandwiching a
Y-shaped cut-out silicone plate between two
glass plates

Simultaneous measurement of the
concentrations of acid (HCl and H2SO4),
base (NaOH), and produced salt (NaCl
and Na2SO4) during neutralization in a
microfluidic channel

[154]

M
ic

ro
N

IR

Tubular microreactor
In-line monitoring of the dehydration
reaction of D-Fructose into
-hydroxymethylfurfural

[155]

FT
IR

Plug-flow microreactor

NO oxidation reaction at high
temperatures (T > 423 K) catalysed by
three zeolite frameworks (high-silica
chabazites, MFI, and zeolite beta)

[156]

Microreactor setup consisting of coiled
1/16-inch stainless steel capillaries

Estimation and modelling of kinetics of
dataimine synthesis of benzaldehyde
with benzylamine and deprotonation
reaction with n-butyllithium

[157]
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Table 2. Cont.

Method Microfluidic Device Process Reference

Plate microreactor directly connected to a
capillary microreactor

Exothermic deprotonation reaction of a
CH-acidic compound in tetrahydrofuran
THF

[158]

Punched Y-shape microchannel of 3 cm by
5 mm in 100 µm thick LAMINAR® E9012
dry film photopolymer

Imaging of the heat and molar
concentration fields of all the species
included in exothermal chemical reaction
(NaOH + HCl→ NaCl + H2O) in a
microfluidic reactor

[159]

IR

Microfluidic device composed of sapphire
substrates, thin polyethylene terephthalate
(PET) film, a metal chassis, and a heater

Free radical polymerization of styrene in
the presence of 2,2′—azobis
(isobutyronitrile) (AIBN) as the initiator

[160]

Si
m

ul
ta

ne
ou

s
ap

pl
ic

at
io

n
of

U
V

-V
is

an
d

m
ic

ro
-R

am
an

sp
ec

tr
os

co
pi

es

Microfluidic chip fabricated from three fused
silica plates that are thermally fused. The
two outer plates form the chip channel depth

In-situ detection and quantification of
both the Nd3+ (UV-Vis active) and HNO3
(Raman active) concentrations in the
same sample

[161]

Photonic lab-on-a-chip platform
Actinide concentration monitoring along
the plutonium uranium refining
extraction

[162]

M
ic

ro
-R

am
an

te
ch

no
lo

gy

Microfluidic device with microchannel width
of 300 µm

Concentration measurements in organic
and aqueous segments in microfluidic
channel. The two-phase system was
comprised of HNO3 as the aqueous
phase and 30% (v/v) tributyl phosphate
in n-dodecane as the organic phase,
which simulated the plutonium uranium
reduction extraction (PUREX) process

[163]

Microfluidic device with microchannel with
following dimensions: width of 300 µm and
depth of 250 µm

Quantification of nitric acid (HNO3) in
solution [164,165]

R
am

an
sp

ec
tr

os
co

py The ceramic fixed-bed flow microreactor
reactor

Mixed model molybdate catalysts that
contain CoMoO4, Bi2Mo3O12, and
Fe2Mo3O12 were investigated in the
ammoxidation reaction of propene to
acrylonitrile

[166]

Optofluidic hollow-core fibre microreactor Monitoring of reactions involving
photo-induced electron transfer processes [167]

Silicon-based microfluidic semi-flow device

Investigation of bulk-to-bulk (toluene–,
diethyl ether–, and xylenes–water)
interactions for liquid–liquid immiscible
systems

[168]

Su
rf

ac
e-

en
ha

nc
ed

R
am

an
sc

at
te

ri
ng Paper-based (Whatman qualitative

filter paper) microfluidic device
Detection and quantification of the
thiram residue [169]

Glass plug-in optofluidic platform
Gold-catalysed reduction of
para-nitrothiophenol by sodium
borohydride

[170]

Polydimethylsiloxane microfluidic devices
fabricated using photo- and soft-lithography
techniques. Chip included area for the
nanoparticle synthesis and chamber for the
Raman spectroscopy

A microfluidic device was used to
encapsulate single prostate cancer cells
and wheat germ agglutinin
(WGA)-functionalized SERS nanoprobes
in water-in-oil droplets that were
subsequently locked into a storage
droplet array for spectroscopic
investigation

[171]
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Table 2. Cont.

Method Microfluidic Device Process Reference

Three-dimensional microfluidic chip.
Microfluidic device was based on the
integration of a nanoporous polycarbonate
track-etched (PCTE) membrane that connects
microchannels on two different levels with
each other

Separation and concentration of target
molecules present in a complex food
sample simultaneously, which shows
excellent potential in the rapid detection
of a food contaminant

[172]

Polydimethylsiloxane spiral shape
microfluidic device

In-situ patterning of silver nanoparticles
on a silicon substrate [173]

2D periodic metal (Cu-Ag) nanostructures
inside 3D glass microfluidic channels using
all-femtosecond-laser-processing

Efficient detection of Cd at levels as low
as 10 ppb [68]
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Figure 8. Schematic overview of using microfluidic device coupled with: (a) UV-Vis spectroscopy
Reprinted with permission from Ref. [174], (b) IR spectroscopy Reprinted with permission from the
Royal Society of Chemistry from Ref. [19] where following symbols were used (1) mixing channels
(2) reaction chamber (3) polymer microfluidic chip (4) silicon internal reflection element and (c)
Raman spectroscopy Reprinted with permission from Ref. [175].

3.1. UV-Vis Spectroscopy Monitoring of (Bio)Catalytic Processes in Continuously Operated
Microreactor Systems

The screening and optimization of (bio)catalytic reactions in batch systems is usually
time-consuming and expensive. Therefore, continuously operated microfluidic systems
with integrated in-situ detectors can provide an efficient alternative. Catalytic reactions are
effectively characterized when the catalysts in the reactors are continuously monitored in
real time. Therefore, in-situ spectroscopy provides the most accurate method for analysing
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the reaction mechanism and determining the structure–activity link [147]. For example,
Navin et al. [176] investigated the kinetics of the 5-(hydroxy-methyl)furfural (HMF) oxida-
tion into 2,5-furandicarboxylic acid (FDCA) catalysed by a nanostructured gold catalyst
immobilized on the microfluidic chip walls. The process was monitored using UV-Vis spec-
troscopy. The absorption of the polymeric microfluidic chip masked the absorption of the
reaction process, so it was not possible to analyse the reaction in-situ with a UV-Vis probe.
Consequently, UV-Vis spectra were recorded for samples gathered by dividing the microflu-
idic chip into different zones, which allowed the detection of the concentration changes of
the substrate and product over time. Furthermore, Suarnaba et al. [147] developed UV-Vis
microspectroscopic systems for in-situ monitoring of a silica-supported platinum catalyst
for the dehydrogenation of 1-methyl-1,4-cyclohexadiene to toluene. The authors showed
that based on the gathered UV-Vis spectra, it is possible to confirm the catalytic properties of
platinum and monitor the toluene formation at temperatures above 100 ◦C. Lauterbach and
Abetz [177] applied in-line UV-Vis spectroscopy with a time resolution of 10 s to monitor
the continuous flow polymerization of N,N-dimethylacrylamide (DMA), n-butyl acrylate
(nBA), and styrene, enabling productive reaction assessment and accurate customization of
polymer products. In addition to chemical catalytic processes, microfluidic devices with
on-line measurements are also used to monitor photocatalytic processes. Wang et al. [178]
constructed and tested a UV-Vis spectrophotometer on a microreactor with a titanium
dioxide photocatalytic film for the on-line detection of photocatalytic degradation of methy-
lene blue and methyl orange, and showed that these systems can efficiently be used for
analysing reaction kinetics, monitoring the process in real time, and detecting transient
processes of photochemical reactions.

As described by Yue et al. [122], most of the integrated systems are used for homoge-
nous processes, and there are still numerous challenges in the development of on-line
measurements in multiphase systems. In recent years, research has been focused on the
integration of micro-fluidic technology and UV-Vis spectroscopy to monitor the synthesis
of nanoparticles in multiphase systems [123]. For example, Yue et al. [122] carried out gold
nanoparticle (AuNPs) synthesis in a segmented flow. Two streams, the first containing
the gold precursor (chloroauric acid and polyvinylpyrrolidone) and the second containing
the reducing agent (ascorbic acid), were fed into a capillary microreactor in which decane
was used as the carrier phase. A cross-type flow-through cell, connected in series with
the microreactor, was designed to handle wavelengths from 488 to 635 nm. The results
obtained showed that UV-Vis spectra with high temporal resolution (2 ms) can be used to
calculate liquid-phase concentration and to analyse segmented flow features. Similarly,
Damilos et al. [123] performed AuNP synthesis using chloroauric acid, sodium citrate, and
citric acid at 95 ◦C and 2.3 bar pressure in a two-phase system based on heptane. Continu-
ous UV-Vis spectra were gathered on-line in the range of 200–800 nm. The results suggested
that synthesis integrated with on-line monitoring is a new approach for live process quality
control. Furthermore, Cai et al. [125] developed a microfluidic set up for the fast and
reproducible synthesis of gold nanoparticles with in-line UV-Vis-NIR spectroscopy for
process monitoring. Their results showed that by applying advanced analytical methods,
it is possible to accurately examine and parametrize the changing geometries of different
gold nanoparticle configurations.

3.2. IR Spectroscopy Monitoring of (Bio)Catalytic Processes in Continuously Operated
Microreactor Systems

As previously described in the literature [126,127], the major problem with esterifica-
tion reactions in general is their reversibility. This means that the composition of the mixture
can change after the product stream exits the reactor. Therefore, a sensitive measurement
technique is required to obtain a detailed understanding of the composition of the reaction
mixture in the reactor. As described by Perro et al. [128], traditional IR apparatus may be
integrated with microreactors to collect spatially distributed data on chemical reactions at
the micro level as soon as a few initial challenges are addressed. Real-time attenuated total
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reflection (ATR) infrared (IR) spectroscopy coupled with partial least squares regression
modelling was used for monitoring ethyl acetate production in a continuously operated mil-
lireactor (V = 24.7 mL) with aluminium trifluoromethanesulfonate as a co-catalyst [129,130].
The benefit of ATR spectroscopy over transmission spectroscopy is the shallow penetration
of radiation into the material (only a few micrometres), which is advantageous for highly
absorbing substances, including water or solids [131]. ATR-FTIR microfluidic cell use for
analysis of the intrinsic kinetic parameters of reactions at the solid/liquid interface [132],
for the in-situ characterization of processes driven by an external electrical field [133] and
for in-situ and spatial reaction monitoring [134], has been described in the literature.

It is important to mention that there is significant effort focussed on the fabrication of
modular microreactor systems used for on-line spectroscopy analysis [135]. As described by
Lozeman et al. [19], ATR-IR measurement can be performed on a chip by changing the num-
ber of layers and polymer materials of the reaction cell and combining them with internal
reflective elements. The aforementioned authors analysed the use of polydimethylsiloxane
(PDMS) and cyclic olefin copolymer (COC) for the fabrication of two types of modular
microfluidic chips that could be efficiently used to perform the Paal–Knorr reaction. The
reaction order of the different reaction steps was determined by analysing the IR spectra
gathered on-line, confirming the applicability of the fabricated microfluidic device for on-line
measurements. Moreover, Tan et al. [136] designed and fabricated a silicon microreactor
coupled with an FTIR system to monitor the adsorption and oxidation of carbon monoxide
on a platinum/silica dioxide catalyst surface. They demonstrated that it is possible to
simultaneously measure the concentration of surface and gas-phase molecules and monitor
the whole catalytic bed. Similarly, Daniel et al. [137] analysed CO oxidation over Pt/Al2O3
and Pt/CeO2–Al2O3 catalysts in a microreactor with IR spectroscopy, and concluded that
IR spectroscopy in microstructured reactors allows a very short beam path given the small
channel sizes and minimises the influence of the gas phase on the IR spectrum.

As mentioned before, the infrared range covers wavelengths from 780 nm to 1 mm,
which can be divided into near infrared (800 nm to 2500 nm), mid-infrared (2500 nm to
25 µm), and far infrared (25 µm to 500 µm). NIR spectra are sensitive to changes in hydro-
gen bonding and can, therefore, be efficiently used for the detection and quantification of
any hydrogen bonding between water molecules [138,139]. Bearing this specific property
of NIR spectroscopy in mind, Umea et al. [98] efficiently analysed the aqueous acid–base
reactions in a microfluidic channel. Three characteristic wavelengths in the absorption
band of water (1412, 1442, and 1520 nm for the HCl−NaOH reaction and 1410, 1450, and
1540 nm for the H2SO4−NaOH reaction) were selected to develop a multiple linear regres-
sion model (MLR) for connecting the changes in absorbance with changes in concentration.
There are also examples available of using NIR and chemometrics for the description of
the emulsification process in continuously operated microfluidic devices [31,140]. Data
on using NIR for monitoring catalytic processes in microdevices are still limited. For
example, Gojun et al. [141] used NIR spectroscopy for on-line monitoring of the glycerol
concentration changes during biodiesel synthesis in a microreactor. Their work included
the development of a glycerol concentration calibration model based on the data gathered
during GC analysis. Due to the high non-linearity of the data, artificial neural network
modelling was applied to connect the gathered NIR spectra and GC-measured glycerol
concentration.

3.3. Raman Spectroscopy Monitoring of (Bio)Catalytic Processes in Continuously Operated
Microreactor Systems

Raman spectroscopy is a well-established method for real-time chemical fingerprint-
ing that uses monochromatic light, often in the visible part of the spectrum. Raman
spectroscopy enables the direct on-line detection of analytes in situ when using glass or
quartz [111,179,180]. Meanwhile, Raman spectroscopy is efficiently used to monitor and
analyse various catalytic processes in microfluidic devices, for example (i) the assess-
ment of catalysts in a gas/liquid/solid reaction taking place in a continuously operated
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micropacked-bed reactor, where fourteen catalysts containing different combinations of Au,
Pd, and Pt supported on TiO2 were tested [175], (ii) for the in-situ analysis of pickering emul-
sions catalysis of acid-catalysed deacetalization of benzaldehyde dimethyl acetal to form
benzaldehyde in a droplet microfluidic system [181], (iii) on-line monitoring of the synthesis
of α-phenylethanol [182], (iv) for in-situ detection of trace target molecules interacting with
surface-enhanced Raman scattering (SERS) substrate in microfluidic chips [183,184], and
(v) monitoring local oxidation events in organic solvents at the level of an individual
air bubble armoured with surface-active low-surface energy catalytic particles [185]. All
mentioned studies agree that with advancements in UV Raman spectroscopy, the character-
ization of formerly challenging catalytic processes is becoming more and more applicable
and conventional.

3.4. MALDI-TOF MS for (Bio)Catalytic Processes in Continuously Operated
Microreactor Systems

As previously described by Buchberger et al. [127], MALDI-TOF MS has the abil-
ity to concurrently detect thousands of ions such as those in proteins, peptides, gly-
cans/polysaccharides, lipids, metabolites, and pharmaceuticals. There are numerous
examples available in the literature coupling microreactor technology and MALDI-TOF
MS for protein identification [186–192]. Protein digestion is required for effective protein
identification, which is critical for the progress of proteome investigations as well as the
production of bioactive peptides. Traditionally, protein proteolytical digestion is carried
out in solution for several hours (12–24 h) with low enzyme concentrations to avoid the
autodigestion of trypsin, which could result in excessive amounts of undesired tryptic
fragments and complicate the unambiguous assignment of the studied protein. To speed
up the procedure while preventing autodigestion, trypsin immobilization on different
carriers has been proposed. Microreactor technology has several key advantages, including
drastically reduced reaction time due to the large surface-to-volume ratio and the very
intense mass transport typical of micrometric channels. Different immobilization methods
have been used over the years to ensure maximum trypsin efficiency, for example (i) mono-
lith trypsin immobilization [187,193–195], (ii) DNA-directed trypsin immobilization [188],
(iii) packed bed microreactor with immobilized trypsin particles [196], (iv) the application of
a nanozeolite-derived matrix [197], and (v) application of trypsin-immobilized superparam-
agnetic nanoparticles [198]. As a result, small IMERs or chips have been used to efficiently
produce the amount of peptides required for MS identification, and different authors
state [187,196,197,199] that the digestion products were characterized using matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry with sequence coverage range.
There is also an example available of the coupling of a microfluidic device to a MALDI-TOF
mass spectrometer by integrating an on-chip microreactor unit into a MALDI-TOF standard
sample plate [200]. The effectiveness of the described system was illustrated for a variety
of systems ranging from simple synthetic chemistry to polymer analysis and enzymatic
digestion of peptides and oligonucleotides. Furthermore, Gorbunov et al. [201] developed
and evaluated a prototype 96-well on-target UV/TiO2-photocatalytic microreactor setup
that integrates drug metabolism simulation and sample preparation directly on a MALDI
target.

3.5. ESI-MS for (Bio)Catalytic Processes in Continuously Operated Microreactor Systems

ESI-MS is widely utilized for the fast detection and identification of polar chemical
molecules in a wide range of sample matrices. With regard to MALDI-TOF MS, most of
the examples regarding the combination of microreactors and ESI-MS currently available
in the literature are describing protein detection after protein digestion [202–206]. There
are also several examples of using the ESI-MS method for monitoring the polymerization
reaction [207,208], where the process efficiency was evaluated based on end group product
pattern. Furthermore, Guo et al. [209] presented an application of ESI-MS for monitoring
5-hydroxymethylfurfural synthesis from glucose in a two-phase slug flow microreactor.
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4. Conclusions

The concept and use of microfluidic spectroscopic detection devices are briefly pre-
sented through selected examples. The microfluidic spectroscopic detection system follows
the latest analytical technology development trends and meets today’s detection require-
ments. The advantages of microfluidic devices for analytical purposes are rapid detection,
ease of use, cost-effectiveness, and high precision in detecting low concentrations of haz-
ardous compounds.
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34. Benković, M.; Valinger, D.; Jurina, T.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Biocatalysis as a Green Approach for Synthesis of
Iron Nanoparticles—Batch and Microflow Process Comparison. Catalysts 2023, 13, 112. [CrossRef]

35. Rabiee, N.; Ahmadi, S.; Fatahi, Y.; Rabiee, M.; Bagherzadeh, M.; Dinarvand, R.; Bagheri, B.; Zarrintaj, P.; Saeb, M.R.; Webster, T.J.
Nanotechnology-Assisted Microfluidic Systems: From Bench to Bedside. Nanomedicine 2021, 16, 237–258. [CrossRef]

36. Khizar, S.; Ben Halima, H.; Ahmad, N.M.; Zine, N.; Errachid, A.; Elaissari, A. Magnetic Nanoparticles in Microfluidic and Sensing:
From Transport to Detection. Electrophoresis 2020, 41, 1206–1224. [CrossRef]

37. Khan, N.I.; Song, E. Lab-on-a-Chip Systems for Aptamer-Based Biosensing. Micromachines 2020, 11, 220. [CrossRef]
38. Xiang, Y.; Hu, C.; Wu, G.; Xu, S.; Li, Y. Nanomaterial-Based Microfluidic Systems for Cancer Biomarker Detection: Recent

Applications and Future Perspectives. TrAC Trends Anal. Chem. 2023, 158, 116835. [CrossRef]
39. Medina-Sánchez, M.; Miserere, S.; Merkoçi, A. Nanomaterials and Lab-on-a-Chip Technologies. Lab Chip 2012, 12, 1932–1943.

[CrossRef]
40. Monošík, R.; Angnes, L. Utilisation of Micro- and Nanoscaled Materials in Microfluidic Analytical Devices. Microchem. J. 2015,

119, 159–168. [CrossRef]
41. Ali, M.A.; Solanki, P.R.; Srivastava, S.; Singh, S.; Agrawal, V.V.; John, R.; Malhotra, B.D. Protein Functionalized Carbon Nanotubes-

Based Smart Lab-on-a-Chip. ACS Appl. Mater. Interfaces 2015, 7, 5837–5846. [CrossRef] [PubMed]
42. Zhou, J.; Huang, Y.; Chen, C.; Xiao, A.; Guo, T.; Guan, B.O. Improved Detection Sensitivity of γ-Aminobutyric Acid Based on

Graphene Oxide Interface on an Optical Microfiber. Phys. Chem. Chem. Phys. 2018, 20, 14117–14123. [CrossRef] [PubMed]
43. Wang, H.P.; Chen, P.; Dai, J.W.; Liu, D.; Li, J.Y.; Xu, Y.P.; Chu, X.L. Recent Advances of Chemometric Calibration Methods in

Modern Spectroscopy: Algorithms, Strategy, and Related Issues. TrAC Trends Anal. Chem. 2022, 153, 116648. [CrossRef]
44. Ríos-Reina, R.; Azcarate, S.M. How Chemometrics Revives the UV-Vis Spectroscopy Applications as an Analytical Sensor for

Spectralprint (Nontargeted) Analysis. Chemosensors 2022, 11, 8. [CrossRef]
45. Ríos-Reina, R.; Camiña, J.M.; Callejón, R.M.; Azcarate, S.M. Spectralprint Techniques for Wine and Vinegar Characterization,

Authentication and Quality Control: Advances and Projections. TrAC Trends Anal. Chem. 2021, 134, 116121. [CrossRef]
46. Hasbi, N.H.; Bade, A.; Chee, F.P. Pattern Recognition for Ultraviolet and Fourier Transform Data: A Walkthrough of Techniques

and Direction. J. Phys. Conf. Ser. 2022, 2314, 012012. [CrossRef]
47. Ballabio, D.; Consonni, V. Classification Tools in Chemistry. Part 1: Linear Models. PLS-DA. Anal. Methods 2013, 5, 3790–3798.

[CrossRef]

http://doi.org/10.1007/s10311-021-01342-4
http://doi.org/10.1039/D0RA00263A
http://doi.org/10.1021/acs.analchem.5b04310
http://www.ncbi.nlm.nih.gov/pubmed/26599485
http://doi.org/10.5213/inj.2013.17.1.2
http://www.ncbi.nlm.nih.gov/pubmed/23610705
http://doi.org/10.1007/s10404-017-1989-1
http://www.ncbi.nlm.nih.gov/pubmed/30881265
http://doi.org/10.3109/21691401.2015.1129619
http://doi.org/10.1016/j.cej.2017.12.024
http://doi.org/10.1039/C7TB00560A
http://doi.org/10.5530/jyp.2020.12.35
http://doi.org/10.3390/catal12091065
http://doi.org/10.3390/mi13111954
http://www.ncbi.nlm.nih.gov/pubmed/36422383
http://doi.org/10.3390/mi13020311
http://www.ncbi.nlm.nih.gov/pubmed/35208435
http://doi.org/10.1038/s41598-017-04216-4
http://www.ncbi.nlm.nih.gov/pubmed/28655888
http://doi.org/10.3390/catal13010112
http://doi.org/10.2217/nnm-2020-0353
http://doi.org/10.1002/elps.201900377
http://doi.org/10.3390/mi11020220
http://doi.org/10.1016/j.trac.2022.116835
http://doi.org/10.1039/c2lc40063d
http://doi.org/10.1016/j.microc.2014.12.003
http://doi.org/10.1021/am509002h
http://www.ncbi.nlm.nih.gov/pubmed/25719923
http://doi.org/10.1039/C8CP01626G
http://www.ncbi.nlm.nih.gov/pubmed/29748670
http://doi.org/10.1016/j.trac.2022.116648
http://doi.org/10.3390/chemosensors11010008
http://doi.org/10.1016/j.trac.2020.116121
http://doi.org/10.1088/1742-6596/2314/1/012012
http://doi.org/10.1039/c3ay40582f


Catalysts 2023, 13, 690 23 of 29

48. Indahl, U.G. The Geometry of PLS1 Explained Properly: 10 Key Notes on Mathematical Properties of and Some Alternative
Algorithmic Approaches to PLS1 Modelling. J. Chemom. 2014, 28, 168–180. [CrossRef]
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