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Abstract: As a powerful protocol for the preparation of common polymers, such as polyolefins,
polyesters, and polycarbonates, late-transition-metal-catalyzed polymerization can be carried out by
controlling the reaction conditions or developing dynamic catalytic systems that use external stimuli
to influence the performance of the active sites, resulting in well-defined polymeric materials. In
particularly, under the latter conditions, ‘one catalyst’ can provide more than one kind of polymer
with a controlled sequence from the monomer mixture, making full use of the prepared catalyst. In
this review, tunable modes, including reaction conditions, redox, light or electrochemical properties,
Lewis acids, and alkali metal cations, of late-transition-metal-complex (especially iron, cobalt, and
nickel)-catalyzed polymerization were collected and thoroughly discussed.

Keywords: tunable polymerization; late transition metal complexes; olefin polymerization; ring-
opening polymerization; ring-opening copolymerization

1. Introduction

In the past few decades, metal complexes, particularly late-transition-metal-complex-
catalyzed polymerizations, such as olefin polymerization [1–11], ring-opening polymeriza-
tion (ROP) [12–19], and ring-opening copolymerization (ROCOP) [20–23], have attracted
considerable attention due to their high efficiency in producing polymers with predictable
and well-defined structures. However, most of these polymerizations follow the “one
catalyst one material” principle, whereby one catalyst produces a single type of polymer
structure. In order to overcome this limitation and make full use of prepared catalysts,
rational design and synthesis of polymeric materials with increasingly complicated and
tailored structures have become a central focus of polymer chemistry [24,25].

Living polymerization techniques with timed monomer additions represent a new
controllable method to obtain a large number of polymers with well-defined microstruc-
tures [26,27]. Although ordered monomer addition has resulted in a wide range of copoly-
mers with basic but well-defined microstructures, this strategy appears to be overwhelmed
by the increasing complexity required of modern polymers. Other strategies typically ne-
cessitate the incorporation of stimulus-responsive functional groups into well-established
catalytic systems or direct modification of the intrinsic nature of the catalytically active
material (i.e., oxidation state). To achieve a high degree of controllability in polymerization,
delicate design of the available stimuli (e.g., mechanical force, light or electricity, redox,
Lewis acids, cations, etc.) for the catalyst is required.

Recently, the emerging field of tunable/switchable catalysis, in which the chemical
reactivity of a catalyst is selectively transformed between several different states (on/active
and off/inactive) by changing the reaction conditions or applying an external stimulus,
has provided an appealing solution to the aforementioned challenges [28–31]. Generally,
reaction condition tuning, which is considered a tunable catalysis method in this review, is
applicable to most polymerization reactions to control the microstructure of polymer prod-
ucts by changing environmental factors, such as temperature and pressure. The application
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of external stimulus varies depending on specific conditions and can be categorized into
reversible and irreversible forms. The former includes redox, light, and electrochemical
tuning, whereby the catalyst can switch back and forth between different states; the latter
includes Lewis acid and cation tuning, which can significantly alter the polymerization ac-
tivity and polymer microstructure. External stimuli can be used to modify in situ reactivity
and selectivity, as well as polymer molecular weight (MW), molecular weight dispersion (
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),
monomer conversion, monomer sequence, and many physical and mechanical properties,
when applied to various catalytic systems [31]. Tunable polymerization methods have rapidly
been extended to olefin polymerization [32–34], ROP [35–40], and ROCOP [41] catalyzed by
transition metals. Tunable polymerization also affords a unique opportunity to regulate the
polymer sequence and structure in a one-pot process from mixtures of monomers.

To date, there have many reviews have been conducted on the progress of tunable
polymerization catalyzed by early transition metal complexes. Therefore, in this review,
we summarize late transition metal polymerization (particularly iron-, cobalt-, and nickel-
catalyzed olefin polymerization), as well as ROP and ROCOP via tunable methods, includ-
ing reaction condition tuning, redox tuning, light or electrochemical tuning, Lewis acid
tuning, and alkali metal cation tuning.

2. Reaction Condition Tuning

High activity or conversion of polymerization can be achieved by optimizing reaction
conditions by changing environmental factors such as temperature, pressure, additives, or
solvents. Altering these variables also has a profound impact on olefin polymerization an
ring-opening (co)polymerization catalyzed by late transition metals. For instance, raising
the temperature typically accelerates the chain transfer reaction, resulting in decreased MW
polymers [42].

Branching is crucial in polyolefins and their copolymers because it presents a state-
of-the-art topology that directly determines the properties of the polymer. Fortunately,
adjusting the reaction temperature and ethylene pressure allows for fine tuning of the
branching pattern. One example is how Coates and colleagues produced well-defined
tetrablock polymers from ethylene alone using α-diimine nickel catalyst 1, which responded
promptly to changes in polymerization conditions (Figure 1). Linear polyethylene (PE) was
formed at high pressure and low temperature (88 psi at −35 ◦C; 9/1000C), while branched
PE was formed at low pressure and higher temperatures (15 psi at 20 ◦C; 112/1000C) [43].
Finally, a tetrablock polymer was achieved in a one-pot reaction by alternating between two
different conditions. The branches were found to be mostly methyl groups, presumably as
a result of chain walking during polymerization [44,45].
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Additives can also be employed to regulate the process of polymerization. Generally,
polar additives are toxic reagents that used to terminate ethylene polymerization reactions,
with little or no effect on the branching density of the resulting PE. However, the ele-
gant work reported by Jian’s group successfully demonstrated that palladium-promoting
branching of ethylene polymerization can be drastically switched from ultra-high branch-
ing (>200/1000C, Tg∼−62 ◦C) to significantly low branching (<10/1000C, Tm∼125 ◦C)
when acrylonitrile is used as a polar additive (up to 4000 equivalent) [46]. In addition to
failing to stop the polymerization, the addition of acrylonitrile considerably altered the
branch density (importantly, without inducing chain transfer (
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Controlling the polymerization process by varying the pressure is another common

strategy for the preparation of CO2-based block copolymers. For example, the Rieger
group prepared terpolymers of rac-β-butyrolactone (BBL), cyclohexene oxide (CHO), and
CO2 using the one-pot method under the condition of 3 bar CO2. On the contrary, they
only obtained the copolymerization product of CHO/CO2 when the pressure of CO2
increased to 40 bar [47]. Chen and Pang reported a Salen-MnIII-based catalyst to estab-
lish a controlled self-switching polymerization route by reversible insertion of CO2 and
achieved chemically selective ring-opening copolymerization of O-carboxylic anhydrides
(OCAs) and lactide (LA) without a cocatalyst to prepare multiblock polyesters [48]. Simi-
larly, Wang and coworkers reported a CO2-based protection and deprotection strategy to
prepare block polymers by temperature-triggered switchable ternary polymerization of
epoxides/five-membered cyclic carbonates/cyclic anhydrides. The chemical protection of
the conversion of epoxides to cyclic carbonates and the subsequent deprotection of cyclic
carbonates to epoxides play a crucial role in the overall process, which can be controlled
by temperature, i.e., epoxide/anhydride blocks at low temperatures (110 ◦C) and cyclic
carbonate/anhydride blocks at high temperatures (180 ◦C) [49].

Although the method of modulating polymerization (MW,
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, branch density, etc.) by
reaction conditions is suitable for most catalysts and reactions, the disadvantage is that this
process is slow and uncontrollable, since the heating and cooling of the reaction mixture
takes time, which may lead to loss of control of the structure.

3. Redox Tuning

The use of redox to regulate polymerization can be dated back to 2003 [50]. Redox
changes can significantly affect the electron distribution of complexes, allowing the reaction
to switch in the “on” or “off” state. Therefore, redox has been been widely used in olefin
polymerization and ring-opening polymerization since then. It has also emerged in the
preparation of block copolymers by the one-pot method featuring several substrates.

BIAN (bis(imino)acenaphthene) ligands have been proven to exhibit abundant coordi-
nation chemistry with numerous metal ions (e.g., Ni and Fe) and particularly simple redox
chemistry [51]. As an efficient catalyst skeleton for olefin polymerization, Ni complexes
based on BIAN ligands present excellent performance in redox control of ethylene poly-
merization (Figure 2). Redox regulation can be achieved by adding a reductant/oxidant or
by introducing ferrocene (Fc) moiety, depending on the para-R group.
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in the valence state and electron distribution of the nickel center in situ, which, in turn,
leads to the reversible control of ethylene polymerization performance [52]. The addition
of CoCp2 had a more significant effect on polymerization than AgOTf, which was reflected
in polymerization activity (Tm) and polymer structure (Table 1). The addition of CoCp2
inhibited the “chain walking” ability of active species, resulting in a decrease in branching
density as the Co/Ni ratio increased.

Table 1. Ethylene polymerization catalyzed by 2/MAO in the presence of CoCp2 or AgOTf a.
Reprinted from Ref. [52] with permission. Copyright 2021 John Wiley and Sons.

Entry CoCp2/Ni AgOTf/Ni Activity b Tm/◦C Branches c

1 0 0 1060 −3.00 93
2 0.5 0 750 6.68 85
3 1.0 0 610 39.69 81
4 0 0.5 1020 −3.47 93
5 0 1.0 1040 −6.94 95

a Conditions: [Ni] = 0.0025 mmol, Al/Ni = 600, T = 20 ◦C, total reaction time = 15 min. b Activity: kg mol−1 h−1.
c Branching density: x/1000C.

Similarly, the Long group used a catalytic system of 2/PMAO-IP (polyalkylaluminox-
ane), which can achieve precise regulation of polyethylene branching density with a CoCp2
reductant (Figure 3A) [53]. With the increase in CoCp2 from 0 to 1 equivalents, the degree
of branching decreased by about 30%, which can be directly attributed to a decrease in the
rate of β-H elimination relative to the overall rate of ethylene coordination and insertion.
The microstructure of the polymer was dominated by methyl-branched chains, and with
the increase in CoCp2, the contents of methyl groups and long-branched chains (≥6 carbon)
increased. However, the MW was not significantly affected (Mw = 200–274 kg/mol). Long
demonstrated that this redox-active olefin polymerization catalyst (2) can also be used to
predictably tailor incorporation levels of polyolefin comonomers to achieve copolymeriza-
tion of ethylene and higher α-olefins (Figure 3B) [54]. Once reduced by the in situ addition
of CoCp2, α-olefin incorporation, especially 1-hexane, is significantly reduced. This is the
inverse of the previous outcome [53]. This decreasing trend can be attributed to the in situ
reduction of catalyst 2, which makes the active nickel center less electrophilic.

Catalysts 2023, 13, x FOR PEER REVIEW 5 of 22 
 

 

Ferrocene groups (Fc) incorporated into the nickel BIAN framework also created re-

dox-tunable catalysts (catalyst 3, Figure 3C) [55]. The reason for introducing Fc groups in 

the para-position is that they can provide additional reducing activity on the one hand 

and, on the other hand, reduce the degree of branching as an electron-donating group, as 

previously reported [56]. Complex 3 could be converted into complex 3a or complex 3b 

when exposed to CoCp2 (1 equivalent) and AgBArF4 (2 equivalents), respectively. The re-

sults show that the PE obtained by 3 and 3b has almost the same characteristics under the 

same polymerization conditions. Similar to the previous example, this is due to the MAO 

(methylaluminoxane) reducing the Fc+ (ferrocenium) substituent back to Fc (i.e., from 3b 

to 3). Conversely, 3 and 3a yielded significantly different results, that is, 3 gave PE medium 

MW (Mn = 222 kg/mol) and moderate branching density (40/1000C), while 3a gave PE me-

dium MW (Mn = 264 kg/mol) and very low branching density (9/1000C). 

 

Figure 3. Redox-switchable Ni complexes (2 and 3) for ethylene polymerization. Reprinted from 

Ref. [53–55] with permission. 

A series of palladium complexes (4) comprising ferrocene-based phosphine–sul-

fonate ligands served as Chen’s example of redox-controlled olefin polymerization and 

copolymerization (Figure 4) [57]. The transition between the neutral and oxidation states 

of the complexes was achieved using AgOTf and CoCp2. As ethylene polymerization cat-

alysts, both the neutral and oxidized complexes were quite effective. The branching den-

sity was somewhat increased, the MW was decreased by a factor of three to five, and the 

activity of the oxidized state was lowered by a factor of four to six. In contrast, the oxidized 

homologue showed obvious activity, while the neutral complex exhibited no activity at 

all in norbornene homopolymerization. A similar phenomenon was observed in complex 

5, where the oxidation state led to a decrease in activity and MW [58]. It was hypothesized 

that the decreased activity of oxidation states in 4 and 5 may be caused by the ligand 

backbone becoming more electron-withdrawing as a result of the oxidation of the ferro-

cene unit. 

Figure 3. Redox-switchable Ni complexes (2 and 3) for ethylene polymerization. Reprinted from
Refs. [53–55] with permission.



Catalysts 2023, 13, 670 5 of 21

Ferrocene groups (Fc) incorporated into the nickel BIAN framework also created
redox-tunable catalysts (catalyst 3, Figure 3C) [55]. The reason for introducing Fc groups
in the para-position is that they can provide additional reducing activity on the one hand
and, on the other hand, reduce the degree of branching as an electron-donating group, as
previously reported [56]. Complex 3 could be converted into complex 3a or complex 3b
when exposed to CoCp2 (1 equivalent) and AgBArF

4 (2 equivalents), respectively. The
results show that the PE obtained by 3 and 3b has almost the same characteristics under the
same polymerization conditions. Similar to the previous example, this is due to the MAO
(methylaluminoxane) reducing the Fc+ (ferrocenium) substituent back to Fc (i.e., from 3b
to 3). Conversely, 3 and 3a yielded significantly different results, that is, 3 gave PE medium
MW (Mn = 222 kg/mol) and moderate branching density (40/1000C), while 3a gave PE
medium MW (Mn = 264 kg/mol) and very low branching density (9/1000C).

A series of palladium complexes (4) comprising ferrocene-based phosphine–sulfonate
ligands served as Chen’s example of redox-controlled olefin polymerization and copoly-
merization (Figure 4) [57]. The transition between the neutral and oxidation states of the
complexes was achieved using AgOTf and CoCp2. As ethylene polymerization catalysts,
both the neutral and oxidized complexes were quite effective. The branching density was
somewhat increased, the MW was decreased by a factor of three to five, and the activity
of the oxidized state was lowered by a factor of four to six. In contrast, the oxidized
homologue showed obvious activity, while the neutral complex exhibited no activity at all
in norbornene homopolymerization. A similar phenomenon was observed in complex 5,
where the oxidation state led to a decrease in activity and MW [58]. It was hypothesized that
the decreased activity of oxidation states in 4 and 5 may be caused by the ligand backbone
becoming more electron-withdrawing as a result of the oxidation of the ferrocene unit.
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Figure 4. Phosphine–sulfonate catalyst systems.

Redox tuning also shows good control in the ROP of cyclic esters (Figure 5). FcPF6 was
used to reversibly transform a bis(imino)pyridine iron(II) bis(alkoxide) complex (6a) (FeII)
into the oxidized form (6b) (FeIII), which was then reduced back to 6a. At room temperature
for 3 h, the reduced FeII species (6a) catalyzed ROP of LA with 93% monomer conversion,
while its oxidized FeIII species (6b) was inert [59]. In contrast to complex 6, pincer-type
iron(II) complex 7 has exhibits catalytic activity towards ROP of ε-caprolactone (CL) in its
oxidized form (7b) (FeIII). The poly(ε-caprolactone) produced in the 7b/alcohol system
had a low
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carbonate/anhydride blocks at high temperatures (180 °C) [49]. 

Although the method of modulating polymerization (MW, Ɖ, branch density, etc.) by 

reaction conditions is suitable for most catalysts and reactions, the disadvantage is that 

this process is slow and uncontrollable, since the heating and cooling of the reaction mix-

ture takes time, which may lead to loss of control of the structure. 

3. Redox Tuning 

The use of redox to regulate polymerization can be dated back to 2003 [50]. Redox 

changes can significantly affect the electron distribution of complexes, allowing the reac-

tion to switch in the “on” or “off” state. Therefore, redox has been been widely used in 

and exhibited a linear trend in MW with conversion [60]. Thus, ROP can occur
with an in situ redox switch between “on” and “off”, demonstrating the complexity of the
mode of control.

In the presence of epoxide and LA monomers, a one-pot method was developed for
the preparation of block copolymers, the properties of which were modulated by changing
the oxidation state of the catalyst from FeII (8a) to FeIII (8b). This allowed for the selective
polymerization of LA and epoxide, respectively (Figure 6) [61]. One possible explanation is
that while the electrophilic activation typical of an electron-deficient FeIII center is more
advantageous for ROCOP, the nucleophilic activation of the alkoxides is more advantageous
for ROP, which is indicative of a more electron-rich FeII center. Further DFT calculations
also proved this explanation [62]. A special redox-triggered crosslinking process can also
be accomplished by switching between 8a and 8b, and the crosslinked polymer that was
obtained by oxidation state 8b showed thermal characteristics that considerably differ from
those of linear polylactide [63].
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Figure 6. Redox-switchable ring-opening (co)polymerization of cyclic monomers by iron complex 8.
Reprinted from Ref. [61] with permission. Copyright 2016 John Wiley and Sons.

Three polymerization reactions—ROP of cyclic esters, ROMP (ring-opening metathesis
polymerization) of cyclic olefins, and coordination-insertion polymerization of olefins—
have been successfully completed using the redox-controlled method (ROMPs are not
covered in the text). The redox-tuning technique has one inherent drawback in that
it necessitates the external injection of oxidants and reductants, which complicates the
experimental procedure, and occasionally, the catalyst or the monomer may react with
the oxidizing/reducing substances. There are currently few examples of redox-controlled
synthetic copolymers and a limited ability to identify monomers. It would also be exciting
if redox processes could be used to alter the stereoselectivity towards the ROP of LA.

4. Electrochemical or Light Tuning

The chemical reagents (oxidants or reductants) used in the aforementioned redox
tuning procedure can interact with the catalyst or the monomers, causing a loss of kinetic
control of the polymerization process. In contrast, electrochemical or light control systems
stand out as desirable options because they are not obtrusive and do not require any
additional chemical reagents. In fact, the goal of both redox tuning, as well as electro-
chemical and light tuning, is to stimulate the catalyst into “on” and “off” states to achieve
polymerization.
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Based on redox control of lactide and epoxide copolymerization, the Byers group
used electrochemical stimulation to achieve “on” and “off” states between 8a and 8b [64].
Without any epoxide inclusion, 8a polymerized lactide (LA) solely from the combination
of LA and cyclohexene oxide (CHO). When oxidative electrolysis was used at 3.7 V after
50% LA conversion, 8a was oxidized into 8b, which enabled the polymerization of CHO.
Epoxide polymerization was then stopped by introducing a reducing potential of 2.3 V,
converting 8b back to 8a and producing a clearly defined block copolymer. Furthermore,
the concept mentioned above was extended to surface-initiated polymerization reactions
to be used for simple surface modification [65]. The redox-switching properties and
reactivity of the molecular complexes were preserved in the solid form. By using selective
electrical stimulation, such a system could be used to create various polymer patterns in situ,
drastically reducing the number of steps necessary to create complicated polymer designs.

Based on the chemical selectivity of different valence states of a heterometallic salen–
Co–Mn complex, the Chen group established an electrochemically switchable strategy for
LA, CO2, and epoxide copolymerization that can easily synthesize polylactide (PLA) and
polycarbonate (PC) multiblock copolymers [66]. The active valence of ROP of LA, which
was CoII-MnII, was inactive in ROCOP of CO2 and epoxide. CoIII-MnIII, on the other hand,
was inactive in ROP and active in ROCOP (Figure 7). Electrochemical cycling between the
reduction potential of −1.3 V and the oxidation potential of 1.8 V for 9 and −1.6 V and
2.1 V for 10 served to demonstrate the ability to switch the polymerization between “ON”
and “OFF”. The catalytic selectivity of heteronuclear complex 10 was comparable to that of
9, but the catalytic activity was reduced, and the Ð values of the produced polymers were
slightly higher (Table 2).
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Table 2. Three reaction stages of LA, PO (propylene oxide), and CO2. Reprinted from Ref. [66] with
permission. Copyright 2022 John Wiley and Sons.

Reaction State
Catalyst 9 Catalyst 10

Mn (kg/mol) Ð Mn (kg/mol) Ð

Redox state (4 h) 8.4 1.15 9.6 1.17
Oxidation state (8 h) 12.1 1.16 10.4 1.20

Redox state (4 h) 15.1 1.15 13.1 1.25
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In [67], 1 atm ethylene was typically polymerized by catalyst 2 at 20 ◦C for 30 min in
the presence of light from a 3 W blue LED and an equivalent photoreductant called fac-
Ir(ppy)3 (tris [2-phenylpyridinato-C2, N] iridium(III)). The inclusion of fac-Ir(ppy)3 and light
irradiation (30 min) did not affect the catalytic activity of 2 but raised the polymer dispersity
from 1.54 to 1.97 with the irradiation time. This pattern was seen when CoCp2 was utilized
as a reductant [53], indicating that fac-Ir(ppy)3 and CoCp2 may have similar functions in Ni-
catalyzed ethylene polymerization. It is interesting that after polymerizing under blue LED
irradiation for 30 min, the branching content of the resulting PE significantly dropped from
113/1000C to 93/1000C. This considerable decrease in PE branching density in the presence
of fac-Ir(ppy)3 is due to the delayed chain walking through decreased, more electron-rich
roles in propagating Ni species during polymerization [44]. This work displays the first
example of photomediated modification of the microstructure of polyethylene.

Due to the difficulty of synthesis, corresponding photoresponsive transition metal
catalysts are very rare in olefin polymerization. Chen successfully reported a light-induced
polymerization process in a controlled manner (Figure 8) [68]. Catalysts 11 and 12 under-
went rapid and reversible photoisomerization at 365 nm or 420 nm light, i.e., cis-isomers
were created when exposed to light at 365 nm, while a cis-to-trans conversion occurred
when exposed to light at 420 nm. Under the same polymerization conditions, 11 exhibited
distinct photoresponse characteristics, while 12 exhibited superior polymerization activity
(polymerization conditions: 500 equiv. MAO, 0 ◦C, 8 atm ethylene, 20 mL CH2Cl2, 30 min).
Increasing the temperature (20 ◦C) made the difference negligible. Contrary to 11, 12
showed reduced activity (OFF: 33,340 kg mol−1 h−1 vs. ON: 21,140 kg mol−1 h−1) under
UV irradiation, yielding PE with a higher MW (OFF: 902 kg/mol vs. ON: 1005 kg/mol)
and reduced branching density (OFF: 48/1000C vs. ON: 39/1000C). The photoinduced
trans-to-cis isomerization of the azobenzene unit most likely enhanced the steric hindrance
around the nickel center, according to the structure of compound 12. This is in line with
earlier research on α-diimine nickel catalysts, which showed that raising the ligand steric
hindrance enhanced the MW of PE while lowering the branching density [69,70]. Addi-
tionally, catalyst 12 performed admirably when loaded with MgCl2. Due to the electrical
impact of photoinduced ligands, the copolymerization of ethylene with polar monomers
likewise exhibited the same trend as homopolymerization.
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Figure 8. Polymerization data of photoresponsive nickel catalysts (11 and 12) at 0 ◦C. Reprinted from
Ref. [68] with permission. Copyright 2021 John Wiley and Sons.

Jian and colleagues mounted four synergistic azobenzene moieties into symmetrical
terphenyl-based α-diimine Ni(II) complexes to prepare photoresponsive catalysts 13 and
14 for ethylene polymerization and copolymerization with polar monomers, taking into
account the critical role of steric hindrance shielding at the axial site [71]. Noticeably higher
catalytic activities and polymer MWs and lower polymer branching densities occurred
when ethylene was polymerized in the dark (Figure 9). The breakdown of the catalyst or the
extremely slow chain propagation resulting from the switching of the steric hindrance may
be responsible for the activity disappearing under 365 nm UV radiation. It is hypothesized
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that the trans isomer state of the azobenzene in the Ni(II) catalysts existed in the dark,
providing a significant steric hindrance at the axial position of the metal center. As a result,
the chain transfer reaction was significantly hindered, leading to higher-molecular-weight
polymers. However, significantly superior catalytic activities and polymer MWs occurred
when ethylene was copolymerized with a polar monomer under UV light.
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Figure 9. The use of azobenzene moiety in α-diimine Ni(II) catalysts (13 and 14) for light-tuning olefin
polymerization. Reprinted from Ref. [71] with permission. Copyright 2022 John Wiley and Sons.

5. Lewis Acid Tuning

Lewis acids such boranes can also be used to tune the reactivity of metal catalysts. In
2001, Bazin and colleagues developed B(C6F5)3-promoted olefin polymerization catalysts
based on nickel α-iminocarbox-amidato complexes [72] but failed to reveal the specific
role of the introduced Lewis acid [73]. Since then, several B(C6F5)3-involved [N, O]-
type Ni [74,75] and Pd catalysts [76,77] have been developed. The role of Lewis acid
coordination is very similar to that of ferrocene oxidation in the aforementioned redox
control system and modified conventional catalyst by substituting various ligands [78–80],
reducing the electron density of the catalytically active metal center, thereby increasing
the electrophilicity of the catalyst with minimal disturbance of the ligand steric hindrance,
which has a considerable impact on polymerization [81–83].

The usage of borane to regulate the copolymerization of ethylene and 10-undecenoate,
which was catalyzed by pyridazine–imine nickel complexes, was studied by Tan and
colleagues in 2019 (Figure 10A, 15) [84]. The authors hypothesized that boranes would
bind to the free pyridazine nitrogen donor (15b), increasing the electrophilicity of the
catalyst. The addition of BF3·Et2O increased catalyst activity (3 vs. 27 kg mol−1 h−1) and
decreased polymer Mn (12.2 vs. 3.2 kg/mol). Interestingly, the polymers produced by
the borane-containing catalyst (15b) had a higher percentage of 10-undecenoate (0.6 vs.
2.0 mol%) and narrower dispersity (
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catalyst (15a).



Catalysts 2023, 13, 670 10 of 21

Catalysts 2023, 13, x FOR PEER REVIEW 10 of 22 
 

 

5. Lewis Acid Tuning 

Lewis acids such boranes can also be used to tune the reactivity of metal catalysts. In 

2001, Bazin and colleagues developed B(C6F5)3-promoted olefin polymerization catalysts 

based on nickel α-iminocarbox-amidato complexes [72] but failed to reveal the specific 

role of the introduced Lewis acid [73]. Since then, several B(C6F5)3-involved [N, O]-type 

Ni [74,75] and Pd catalysts [76,77] have been developed. The role of Lewis acid coordina-

tion is very similar to that of ferrocene oxidation in the aforementioned redox control sys-

tem and modified conventional catalyst by substituting various ligands [78–80], reducing 

the electron density of the catalytically active metal center, thereby increasing the electro-

philicity of the catalyst with minimal disturbance of the ligand steric hindrance, which 

has a considerable impact on polymerization [81–83]. 

The usage of borane to regulate the copolymerization of ethylene and 10-undeceno-

ate, which was catalyzed by pyridazine–imine nickel complexes, was studied by Tan and 

colleagues in 2019 (Figure 10A, 15) [84]. The authors hypothesized that boranes would 

bind to the free pyridazine nitrogen donor (15b), increasing the electrophilicity of the catalyst. 

The addition of BF3·Et2O increased catalyst activity (3 vs. 27 kg mol−1 h−1) and decreased poly-

mer Mn (12.2 vs. 3.2 kg/mol). Interestingly, the polymers produced by the borane-containing 

catalyst (15b) had a higher percentage of 10-undecenoate (0.6 vs. 2.0 mol%) and narrower dis-

persity (Ɖ = 8.1 vs. 2.5) than those produced by the parent catalyst (15a). 

 

Figure 10. Ethylene (co)polymerization catalyzed by Ni/borane complexes (15 to 18). Reprinted 

from Ref. [84,85,86] with permission. 
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from Refs. [84–86] with permission.

Lewis acid additive B(C6F5)3 effectively increased activity and reduced polymer MW
in ethylene polymerization, as reported by Chen (Figure 10B) [85]. The addition of B(C6F5)3
to 16 resulted in an approximately 2.6-fold increase in activity accompanied by a significant
decrease in MW. B(C6F5)3 coordinated with sulfonate groups can increase the electrophilic-
ity of the Ni center, resulting in faster chain transfer rates. The addition of B(C6F5)3 can
also effectively increase the degree of branching of the resulting polyethylene, making
this strategy more widely applicable and capable of modifying the polymer structure. It
was hypothesized that the ligand of B(C6F5)3 would increase the electrophilicity of the
nickel center, resulting in an increase in ligand–metal secondary interaction and an increase
in branching density [87,88]. Similarly, the addition of boron salts may also promote the
polymerization activity of complex 17. Because nickel is more electrophilic than palladium,
the stronger ligand–metal interactions may compete with ethylene binding, leading to a
decrease in activity and polymer MW [89]. The modulation of ligand–metal secondary
interactions with Lewis acid binding makes the strategy highly versatile and potentially
applicable to other catalytic processes. Additionally, the direct introduction of metal Lewis
acids (Ni(OAc)2, Zn(OAc)2, Zn(TMEDA)(OAc)2) also had the potential to significantly
enhance the catalytic activity of N-containing phosphonate Pd catalysts in the ethylene
polymerization, producing high-molecular-weight PE (Mn = 369.2 kg/mol) and improved
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catalytic activity [90]. It was demonstrated that the N-containing groups on phosphonate
Pd catalysts can interact with metal Lewis acids.

Another example of the use of borane to modulate ethylene (co)polymerization was
reported by the Chen group (Figure 10C) [89]. Catalyst 18a has deficient activity in nor-
bornene (NB) homopolymerization. The addition of one equivalent of B(C6F5)3 to the
system, i.e., 18b, increased the catalytic activity by a factor of 4000. Compared to adding
thousands of MAO equivalents, this represents a more straightforward and cost-effective
activation methodology. The utilization of 18b for ethylene homopolymerization resulted
in increased activity and decreased MW, possibly due to B(C6F5)3 binding to reduce the
electron density of the nickel center. Catalyst 18a demonstrated promising activity in the
ethylene–norbornene (E-NB) copolymerization reaction, with NB incorporation of up to
10.1%. Surprisingly, the addition of B(C6F5)3 resulted in a decrease in activity. This work
represents a rare example of a late transition metal catalyst that can be used in all three
types of polymerizations. The Lewis acid regulation strategy is also applicable to ROP
catalyzed by zinc complexes [91].

A Lewis-acid-regulated phenoxyimide-based nickel catalyst (19) was reported for
ethylene polymerization; the key feature of the complex is the presence of 2, 2′-bipyridine
for coordination of the Lewis acid moiety (Figure 11A) [92]. Catalyst 19 was not active
in ethylene polymerization but coordinated with ZnCl2 to provide a discrete bimetallic
nickel–zinc species (19-Zn) that can catalyze ethylene polymerization with low activity
(50 equivalent ZnCl2, 10.3 kg mol−1 h−1). The smaller the amount of ZnCl2, the greater the
molecular weight distribution. Other Lewis acids (such as CuCl2 and AlCl3) could only
produce oligomers.
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Nickel bis(imino)phenolate complex 20 behaved significantly differently for ethylene
polymerization with or without zinc salt [93]. In the absence of zinc, 20 was inactive.
After adding ZnBr2, bimodal PE was obtained at 35 ◦C, with a unimodal product obtained
at 50 ◦C. The active species were thought to exist in two forms, i.e., 20a and 20b, at a
low temperature of 35 ◦C (Figure 11B). Catalyst 20a tended to result in high-molecular-
weight PE, while 20b resulted in low-molecular-weight products. At a high temperature
of 50 ◦C, equilibrium favored the more thermodynamically stable formation of 20b, so
polymerization occurred mainly from this species, producing unimodal PE.
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6. Alkali Metal Cation Tuning

Since the aforementioned tuning method can only convert the catalyst into two switch-
able states, it encounters issues such as single regulatory means and simple structural
changes. Because alkali metal ions are easily soluble in organic solvents and have a wide
variety of properties, including different charges, atomic radii, Lewis acidities, redox poten-
tials, coordination geometries, etc., external alkali metal binding expands the possibilities
for catalytic tuning almost infinitely.

Johnson, Brookhart, and coworkers were the first to show the advantages of combining
alkali ions with olefin polymerization catalysts in 2003 (Figure 12) [94]. It was found that
the activity of a nickel–lithium alkoxy phosphine complex (22) in the copolymerization of
ethylene and hexyl acrylate was about 8.5 times higher than that of a mononickel complex
(21). This can be interpreted as making the Ni center more electrophilic due to the direct
interaction of the Li+ in 22 with the nickel primary coordination sphere. Furthermore, due
to the narrowed molecular weight distribution (
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Figure 12. Lithium cation-promoted ethylene and hexyl acrylate copolymerization. Reprinted from
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Later, in 2016, the Tonks group also tried to control olefin polymerization using cation-
tuning methods [95]. The synthesized β-oxo-δ-diimide-nickel complex has two separable,
kinetically stable tautomers, such as enamine 23 and imine 24 (Figure 13). Deprotonation
of 24 with M(HMDS) (where M = Li, Na and K HMDS = hexamethyldisilazide) yielded
a corresponding heterobimetallic species, 24-M. In ethylene polymerization, 24 and 24-M
produce comparable PE products with similar MW (Mn = ~12 kg/mol) and branching
density (~30/1000C). The authors believe that the deprotonated catalyst (24-M) behaves
more similarly to imine 24 than enamine 23 due to rotation. Crown ether was added to cap
the alkali metal in 24-M, ensuring that the alkali metal had no effect on the overall charge
of the catalyst and therefore had little impact on the polymerization result. The authors did
not explain why enamine tautomer 23 increased the branching density (118/1000C) but
decreased the MW of PE (Mn = 1.6 kg/mol). These findings demonstrate the difficulties
of building preorganized ligand platforms to optimize the positive impacts of secondary
metals, even while cation tuning is unsuccessful in this scenario.
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The objective of the research conducted by the Do group was to examine a compound
featuring two metal centers that exhibit disparate olefin polymerization characteristics.
Specifically, one of the metal ions serves as a catalyst for olefin polymerization, while the
other functions as an activator and binding location for polar activities [32]. This hetero-
geneous metal species with different active sites can enhance the coordination insertion
of olefins because the bindings of the two metal centers to the monomer do not compete
with one another and no sterically hindered chains of the growing polymer are located
within the same catalyst structure. A series of nickel phenoxy-imine complexes containing
PEG (polyethylene glycol) chains were designed and synthesized based on this concept,
according to which PEG can be coordinated with alkali metal ions (M = Li, Na, K) to form
bimetallic or trimetallic complexes (Figure 14) [96]. In ethylene polymerization (conditions:
2 equiv. Ni(COD)2, 100 psi ethylene, 5 mL toluene, 1 h, room temperature), 25 (n = 4)
exhibited low activity (2.8 kg mol−1 h−1), and PE produced a low MW (3.0 kg/mol) and
low branching density (19/1000C). The addition of alkali cations had a significant effect on
polymerization, especially after the addition of Na+ (25-Na), which significantly increased
polymerization activity and the degree of product branching. The authors believe that
alkali metal ions can improve the electrophilicity of nickel centers, resulting in more effi-
cient olefin binding and insertion and a faster chain-walking rate, while bulky PEG side
chains increase steric hindrance at the axial position of metal, effectively protecting the
active center. This discovery served as inspiration for the development of PEG units, which
interact with polar monomers to facilitate C=C double-bond coordination and influence
polymerization activity, the monomer insertion rate, and copolymer MW [97,98].
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Catalyst 26 was designed and synthesized on the basis of 25 and used for ethylene
polymerization and copolymerization with non-polar α-olefins (Figure 14) [99]. Both
alkali cation-regulated catalysts (25 and 26) required additional cocatalysts, i.e., Ni(COD)2
and B(C6F5)3, respectively. PE with different combinations of nickel catalysts and alkali
metal ions (Na+ or K+) had different microstructures and MWs according to the findings.
Higher steric hindrance 26b and 26c were more active than lower steric hindrance 26a.
The activity and thermal stability of 26-M were significantly higher than those of 26. As
with 25, Na+ worked better than K+, which was thought to be because Na+ ions were
better matched to the PEG side chain. The difficulty of logically explaining variations in
polymer branching density and MW brought on by the addition of Na+ or K+ based on
current trends emphasizes the need for a more theoretical understanding of cation-assisted
coordination–insertion polymerization.

In order to further explore the regulatory mechanism of cations and realize the re-
sponse of polymerization to different cations, the Do team designed and synthesized a



Catalysts 2023, 13, 670 14 of 21

series of nickel phenoxy phosphine–PEG complexes (27 and 28) [100–102]. It was discov-
ered that the steric hindrance of the catalyst met the following rule by calculating the buried
volume (%Vbur): 27 < 28a-Na < 28a-Li < 28a-K < 28a-Cs. Therefore, the steric hindrance
of the catalyst could be easily realized as long as the proper cation was chosen. Under
the conditions of 30 ◦C, 8 equivalent Ni(COD)2 (COD = 1,2,5,6-cyclooctanetetraylidene),
450 psi ethylene, toluene as solvent, and reaction for 1 h, 27 behaved moderately in ethy-
lene polymerization (Figure 15). Although the PEG side chain also had a certain steric
hindrance, catalyst 28a was basically inactive without the coordination of alkali metal
ions. The polymerization activity dramatically increased with the addition of M+, and the
activity was inversely correlated with the radius of the secondary metal ions; the smaller
the radius, the greater the activity. Catalyst 28a-Li is one of the most active late-transition
metal catalysts reported to date. In the series of nickel–alkali species, 28a-Cs displayed
the maximum activity (23,000 kg mol−1 h−1) at 90 ◦C, which we attributed to its higher
thermal stability. Catalyst 28b created a linear PE with a medium MW (Mn = 271 kg/mol)
and moderate activity (279 kg mol−1 h−1) in the absence of M+. When Li+, Na+, K+, and
Cs+ were added, the activity rose by 10.5, 8.6, 6.7, and 4.5, respectively. Polymerization can
be accomplished in a non-switching or dynamic switching mode by varying the solvent
polarity. For instance, a bimodal polymer was produced when 28a-Li and 28a-Na reacted
with ethylene in a 100:2 combination of toluene and diethyl ether (low-polarity solvent
system) because M+ did not switch between nickel complexes. Catalysts 28b-C produced
a monomodal PE with
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< 2.0 in a 98:2 mixture of toluene and diethyl ether (more polar
solvent mixtures), and the MW increased with the addition of Cs+ [102,103]. The experi-
mental results show that the relative stability of the cis and trans isomers are affected by
the closec distance between the secondary metal and the active center in the nickel phenoxy
phosphine–PEG complex.
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Although non-polar solvents are typically used for olefin polymerization, +2 and
+3 metal cations are not soluble in them, forcing secondary metal ions to select +1 metal
cations with a higher solubility. The first comprehensive examination of the magnitude of
the effect of M+, M2+, and M3+ ions on the reactivity of nickel olefin polymerization cata-
lysts was enabled by nickel phosphine phosphonate ester complexes, which can facilitate
ethylene polymerization in 100% tetrahydrofuran [97]. The most effective enhancement
of homopolymerization in ethylene was achieved by adding Co(OTf)2 to the nickel–PEG
complex (activity up to 2700 kg mol−1 h−1). Additionally, secondary metal enhancement
was observed in studies of ethylene and polar olefin (e.g., propyl vinyl ether, allyl butyl
ether, methyl-10-undecenoate, and 5-acetoxy-1-pentene) copolymerization. The secondary
metals in the aforementioned PEG ligated catalysts can be easily removed (e.g., by the
addition of crown ethers), unlike in systems that use boranes as remote Lewis acid activa-
tors [73,84,90,104]. A similar boosting effect was also observed in Pd analogues but not
as high as that in Ni complexes [105]. Although these Ni complexes in solution can form
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adducts with secondary metals, the crystallographic characteristics of 29a-Na show that
the Na+ is not connected to the P=O unit (Figure 16). Instead, because of its distance from
the nickel center, this dangling sodium was unable to interact with it, and as a result, had
no significant impact on the catalyst.
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To improve the catalyst design, the introduction of rigid chelated phenyl substituents
helps to shorten the Ni–alkali metal distance (Figure 16, 30 and 30-M) [106]. The reaction
of 30 in solution with Li+ and Na+ most likely produced 1:1 and 1:1/2:1 Ni:alkali species
(30-M and 30-M’). Catalyst 30 showed activity up to 3810 and 28.3 kg mol−1 h−1, making
it a suitable catalysts for ethylene homopolymerization and copolymerization with methyl
acrylate (MA). As previously reported, the introduction of alkali metals is beneficial for
polymerization. In ethylene polymerization, the highest activity was that of 30-Li, which
was 2.3 times more active than 30. The MW and branching density of the resultant PE were
largely unaltered (Mn = 6.6–8.4 kg/mol, branches = 5–7/1000C). These findings suggest
that the alkali ions played a key role in accelerating both chain growth and chain transfer
rates by roughly the same order of magnitude (vgrowth/vtransfer ≈ 300). Catalyst 30-Li
showed activity up to 81.0 kg mol−1 h−1 towards ethylene copolymerization with MA.
These alkali-boosted Ni-base catalysts were competitive compared to other Ni catalysts
used for the copolymerization of ethylene and MA.

Low catalytic activity, poor tolerance to a large number of excess chain transfer agents,
and easy byproduct generation are constraints on the production of poly(propylene car-
bonate) (PPC) polyols from ROCOP of CO2 and propylene oxide (PO). A number of novel
catalysts, including heterodinuclear Co(III)/M(I) macrocyclic complexes (M = Na, K, Rb,
Cs, 31), were reported by Williams (Figure 17) [107]. Two bridging phenol sites in the lig-
and improved the electron communication between Co(III) and M(I), increasing electronic
synergy in catalysis [108,109]. These catalysts showed remarkable selectivity for polyol pro-
duction (>95%), outstanding yields, and quantitative CO2 uptake (>99%). With a turnover
frequency (TOF) of 800 h−1 at low catalyst loading (0.25 mmol, 70 ◦C, 30 bar CO2), the
Co(III)/K(I) complex (31-K) had the maximum activity. When the radius of the alkali metal
is too small, e.g., 31-Na cannot be coordinated with PO because Na(I) may be saturated
by the macrocyclic crown–ether coordination. Coplanar metal coordination within the big
ring is no longer possible when the alkali metal is too large, such as Rb(I) or Cs(I), leading
to the formation of aggregates. The ring opening of the potassium-coordinated epoxide
by a cobalt(III) carbonate intermediate, which would be in agreement with a dinuclear
process, might be the rate-determining step (RDS) that is used to explain the kinetic data.
In addition to the Co(III)/K(I) complex mentioned above, the heterodinuclear Al(III)/K(I)
and heterotrinuclear Zn(II)/Na(I) complexes also performed well in the ROCOP of epoxy,
anhydride, and CO2 [110,111].
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Although there are already many reports of successful heterobimetallic catalysts (in-
cluding cation tuning), creating synthetic systems that take advantage of metal–metal
synergy is still a difficult task. First, the metallization of symmetric dinuclear ligands
results in mixes of homobimetallic and heterobimetallic species that are challenging to dis-
tinguish, making it difficult to prepare well-structured heterobimetallic compounds [112].
Second, identification and structural determination of the synthesized heterobimetallic
complexes through thorough physical characterization are not easy tasks. Finally, identify-
ing the elements that contribute to the cooperative effect is the third obstacle in creating
heterobimetallic catalysts. The radius, solubility, acidity, and alkalinity of cations influ-
ence polymerization activity, polymer MW, and microstructure in terms of cation tuning;
however, the law and mechanism underlying this relationship are still unclear [113].

7. Summary and Outlook

The development of precise control of polymerization processes resulted in prod-
ucts with well-defined microstructures by tunable/switchable means is still in its infancy,
although late-transition-metal-catalyzed polymerization to polyolefins, polyesters, and
polycarbonates is now considered a relatively mature area of research. Considerable ef-
forts have been made in the field of tunable catalysis because some earlier studies in the
literature included herein clearly demonstrate that the topic is full of potential. Every
tunable mode discussed in this review has advantages and disadvantages. For example,
most polymerization reactions can be easily controlled by changing the reaction conditions
and eliminating the requirement for special reagents. However, this regulatory process
is cumbersome and difficult to implement in industrial production. Redox tuning can
reversibly control polymerization processes and modify the electronic environment of the
active site, although additional redox agents are needed. Light or electrochemical tuning is
similar to redox tuning and can reversibly change the valence state of the metal, which has
the superiority of avoiding the addition of special reagents, although it increases energy
consumption. Both of these methods are deficient in controlling the stereoselectivity of
the product. The electronic environment and steric hindrance effect of the catalyst can
both be altered simultaneously by Lewis acid tuning; however, once bonded, the Lewis
acid is challenging to remove. Due to the abundance of accessible Mn+ salts, alkali metal
cation tuning is an effective way to control the polymerization process, since it allows for
the creation of numerous catalyst configurations that are not possible through the design
and synthesis of ligands alone. It is challenging to build catalysts that preserve a distinct
heterometallic structure in solution, have a distinctive reactivity to Mn+ binding, and exhibit
high catalytic efficiency and stability, which is a severe drawback. As a result, choosing
the optimum tuning mode for a certain application necessitates consideration of a number
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of variables, including whether additional additives are needed, whether it is reversible,
whether it is simple to conduct, etc.

Tunable polymerization catalysis is intended to provide a more efficient method of ob-
taining known materials or a simple method of obtaining new materials. Tunable catalysts,
which are superior to traditional catalysts, can achieve more precise control of the poly-
merization process, allowing for customized polymer products such as polyolefins with
controlled branching density and microstructure, epoxide- and lactone-based block copoly-
mers, etc. While significant progress has been made, some technical and chemical issues
remain and need to be resolved, including high activity, polar monomer incorporation, and
thermal stability, which are other challenging properties that allow for the incorporation of
tunable catalysts. Furthermore, future efforts should concentrate on more sophisticated
control of the system’s switchable properties. For example, the development of polymer-
ization catalysts with two distinct switching mechanisms driven by orthogonal external
stimuli can be used to create complex materials with precisely tuned microstructures. As
an alternative, new switchable polymeric catalysts with numerous distinct catalytic centers
that may independently open and close in a selective manner can enhance the control of
the polymer structure (e.g., stereoselectivity, structure, composition, topology, etc.). We an-
ticipate that these issues will be resolved in the near future and that tunable polymerization
will rank among the most reliable and effective processes for creating novel polymers.
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