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Abstract: One of the major concerns that receive global attention is the presence of organic pollutants
(dyes, pharmaceuticals, pesticides, phenolic compounds, heavy metals, and so on), originating from
various industries, in wastewater and water resources. Rhodamine B is widely used in the dyeing
of paints, plastics, textiles, and other fabrics, as well as biological products. It is highly persistent,
toxic, and carcinogenic to organisms and humans when directly released into the water supply.
To avoid this hazard, several studies have been conducted in an attempt to remove Rhodamine
B from wastewater. Metal oxide semiconducting materials have gained great interest because of
their ability to decompose organic pollutants from wastewater. TiO2 is one of the most effective
photocatalysts with a broad range of applications. Several attempts have been made to improve
its photocatalytic activity. Accordingly, we have prepared in this work a series of cerium (Ce) and
samarium (Sm) co-doped TiO2 nanoparticles (x = 0.00, 0.25, 0.50, 1.00, and 2.00%) using a sol–gel
auto-combustion approach. The influence of Ce–Sm concentrations on the structural, morphology,
electronic, and optical properties, as well as the photocatalytic activity, was investigated. Structure
and elemental mapping analyses proved the presence of Ce and Sm in the compositions as well as the
development of the TiO2 anatase phase with a tetragonal structure and crystallite size of 15.1–17.8 nm.
Morphological observations confirmed the creation of spherical nanoparticles (NPs). The examination
of the electronic structure properties using density functional theory (DFT) calculations and of the
optical properties using a UV/Vis diffuse spectrophotometer showed a reduction in the bandgap
energy upon Ce–Sm co-doping. The photocatalytic activity of the synthesized products was assessed
on the degradation of Rhodamine B dye, and it was found that all Ce–Sm co-doped TiO2 nanoparticles
have better photocatalytic activities than pristine TiO2 nanoparticles. Among all of the prepared
nanoparticles, the sample with x = 0.50% demonstrated the best photocatalytic activity, with a
degradation efficiency of 98% within 30 min and a reaction rate constant of about 0.0616 min−1. h+

and •O2
− were determined to be the most important active species in the photocatalytic degradation

process. Besides the high photocatalytic degradation efficiency, these photocatalysts are highly stable
and could be easily recovered and reused, which indicates their potential for practical applications in
the future.
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1. Introduction

Environmental pollution stemming mainly from agricultural and industrial activities
has become a major issue that threatens human life and all other living beings. Indeed, the
arbitrary industrial spread leads to the permanence of toxic substances in nature, water,
and soil, causing serious diseases. Remarkably, the detection of numerous toxic organic
contaminants and dyes in soil and marine environments has indicated the deterioration of
the state of water sources in the world [1,2].

Since the introduction of synthetic dyes to the present day, the textile and dye in-
dustries have substantially boosted their output. On the other hand, the discharge of
synthetic dyes into various water sources generates several issues for aquatics and humans.
Rhodamine B (RB) is a dye that is widely utilized in a variety of sectors, including foods
and textiles. However, it is an incredibly toxic material that is mutagenic and carcinogenic
to all living organisms [3]. Additionally, RB is highly persistent and presents a major
concern over the long term for aquatic species, as it does for plants, because it obstructs the
penetration of light, reducing the photosynthetic mechanism and interfering with natural
purification processes. Hence, RB must be totally eliminated from wastewater to prevent
the potentially harmful impacts of its occurrence in the environment. Therefore, the search
for robust strategies that help to remove these environmental hazards is of vital importance,
especially when dealing with a very high concentration of contaminants. The traditional
procedures for treating wastewater (biological, chemical, and physical routes) employed
for the removal of dyes are inept and show significant drawbacks, including poor removal
efficiency for resistant and nonbiodegradable organic dyes, as well as the requirement of
several post-treatment processes and very long removal periods [3,4]. In recent years, there
has been much interest in the use of advanced oxidation processes (AOPs) to purify con-
taminated wastewater [5–7]. AOPs are distinguished by the generation of reactive oxygen
species (ROS) such as singlet oxygen (O•2), hydrogen peroxide (H2O2), hydroxyl radical
(•OH), and superoxide radical anion (•O2

−), which could rapidly oxidize and degrade dye
molecules found in industrial effluents. Sonocatalysis, sonolysis, photocatalysis, photolysis,
ozonation, and Fenton reaction are some examples of AOPs [8–10]. Recently, nanomaterials
endowed with effective photocatalytic activity have been considered as high-performing
candidates for advanced oxidation processes, making it possible to remove even intractable
pollutants from wastewater [11–14].

During recent decades, several compounds such as TiO2, ZnS, ZnO, and CdS, among
others, have been classified as materials of high photocatalytic activity and have gained
more trust in water purification, healthcare, and food packaging [15–18]. Of these pho-
toactive materials, titanium dioxide (TiO2) has been widely explored as a promising pho-
tocatalyst, enabling both air and water pollution control, organic pollutants’ degradation,
and fuel production from water and carbon dioxide [19,20]. Abundance, cheapness, non-
toxicity, and stability are among the highly crucial advantages that allowed the emergence
of this metal oxide semiconductor in the photocatalysis area and other fields of applications,
including supercapacitors, solar energy conversion, and so on [21–25]. On another side,
TiO2 exhibits specific properties that are indispensable for photocatalytic purposes, mainly
including a suitable redox ability, proper photo-response, and charge mobility [26]. How-
ever, the catalytic performance of TiO2 faces some obstacles related to the material’s large
bandgap (Eg = 3.2 eV), principally including the quick recombination of photogenerated
charge carriers and low interfacial charge transfer rates [27]. As a consequence, the use of
this material oxide is restricted to the ultraviolet range, with poor utilization of solar light
for TiO2 excitation.
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For better photocatalytic efficiency, the light absorption range of TiO2 photocatalysts
should be extended to visible light. To achieve this goal, vigorous investigations have
been conducted to enhance the properties of TiO2 either by controlling its morphology
and crystal structure or by doping. Introducing defects in titanium (Ti) or oxygen (O)
sites provides a relevant and effective way to reduce bandgap energy by forming new
energy states and enhance the photocatalytic response [28]. It should be noted that the
optoelectronic and catalytic properties for target applications as well as the creation of
new energy states and defects depend strongly on the synthesis method and the choice of
dopant. Sol–gel, chemical vapor deposition, solvothermal, hydrothermal methods, and
hydrolysis, among others, are among the available synthesis routes of pristine and doped
TiO2 NPs [29,30]. The sol–gel method has been proven to be the most beneficial thanks to
its simplicity, low cost, accurate control of composition, purity, homogeneity, and so on.

Several reported results have shown that doping with rare earth (RE) ions such as
Sm3+, Nd3+, Gd3+, Pr3+, Ce3+, and La3+ could notably enhance the photocatalytic activity
of TiO2 [31,32]. Thanks to their 4f orbital, which allow them to act as electron acceptors
when doped into TiO2, these ions afford reliable sites for organic pollutants’ adsorption.
They are also characterized by a large ionic radius, making possible their deposition on
the surface of TiO2 with a considerable increase in the surface area [32]. Cerium (Ce) is
one of the RE elements that has attracted special interest as a TiO2 doping agent thanks
to its non-toxicity, cheapness, and potential to boost the light-absorption capability of
TiO2. It has been demonstrated that an increase in Ce content leads to the tightening
of the TiO2 bandgap and a clear redshift of the absorption has been observed [33]. For
instance, Xiu et al. [33] showed that Ce-doped TiO2 is a promising composite catalyst that
enhances the degradation of methylene blue under visible light. Likewise, samarium (Sm)
has been widely applied to improve TiO2-based photocatalysts. It has been shown that
the incorporation of Sm into TiO2 brings important changes, especially the reduction in
particle size and the formation of discrete energy levels, which are key reasons to avoid
electron–hole pair recombination [34]. In their work, Peng et al. [35] produced Sm-doped
TiO2 via the sol–gel approach and reported an efficient photocatalytic activity because of
the increase in surface area and the significant improvement in visible light response.

Until now, many investigations have been carried out to develop modified TiO2
photocatalysts by either doping or co-doping routes. To the best of our knowledge, no study
has been reported on simultaneous Ce and Sm co-doped TiO2 photocatalysts. Taking into
account this lack of research, we report here the synthesis of TiO2 doped simultaneously
with Sm and Ce using the sol–gel method. Our aim is to further the design of high-
performing TiO2 nano-photocatalysts through an analysis of the structure; morphology;
and electronic, optical, and photocatalytic properties of co-doped samples with different
dopant percentages.

2. Results and Discussions
2.1. Phase Analysis

X-ray powder diffraction patterns of the prepared Ce–Sm co-doped TiO2 NPs (x = 0.00,
0.25, 0.50, 1.00, and 2.00%) are presented in Figure 1. The pure and Ce–Sm co-doped TiO2
NPs exhibited diffraction peaks at about 25.33◦, 37.84◦, 48.06◦, 53.96◦, 55.11◦, 62.69◦, 68.89◦,
70.34◦, and 75.15◦, which are associated with crystal planes (1 1 0), (0 0 4), (2 0 0), (1 0 5),
(2 1 1), (2 0 4), (1 1 6), (2 2 0), and (2 1 5), respectively. All of these peaks correspond
to the anatase phase of tetragonal TiO2 without the detection of any undesired phase,
which approved the incorporation of Ce and Sm ions within the anatase crystal lattice.
Furthermore, no other peaks belonging to brookite or rutile TiO2 phases are detected. The
XRD patterns also showed high-intensity peaks, which indicated the crystalline nature
of TiO2 NPs. The formation of the anatase TiO2 phase was approved through Rietveld
refinement of experimental XRD data by utilizing Match 3 and Fullproof software, as
shown in Figure 1.
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Figure 1. Refined XRD patterns of Ce–Sm doped TiO2 NPs (x = 0.00, 0.25, 0.50, 1.00, and 2.00%). The 
dots lines (red lines) and solid lines (black lines) represent the measured and calculated XRD pro-
files, respectively. The blue lines represent the difference between the experimental and calculated 
profiles. Bragg reflections are represented by tick marks (green). 

The calculated structural parameters and average crystallite size (DXRD) are presented 
in Table 1. It can be observed that the structural parameters a=b and c varied with Ce–Sm 
co-doping, which are generally influenced by the dissimilarity in ionic radii of different 
cations, the impurity atoms, the defects, and so on [36]. This would generate a distortion 
in the lattice structure. The calculated DXRD values were found to be in the range of 17.8–
15.1 nm. The crystallite size of TiO2 NPs slightly decreased with the increasing concentra-
tion of Ce–Sm co-dopants. This could be ascribed to the inhibition in the growth of TiO2 
nanocrystallites by the adsorptions of Ce and Sm ions when increasing the concentration 
of Ce–Sm co-dopants [37]. 

Table 1. Refined structural parameters of Ce–Sm co-doped TiO2 NPs (x = 0.00, 0.25, 0.50, 1.00, and 
2.00%). 

x (%) a = b (Å) c (Å) V (Å3) DXRD (nm) RBragg χ2 (chi2) 
0.00 3.7856 9.5034 136.19 17.8 11.3 1.3 
0.25 3.7853 9.5036 136.17 16.6 22.3 4.4 

Figure 1. Refined XRD patterns of Ce–Sm doped TiO2 NPs (x = 0.00, 0.25, 0.50, 1.00, and 2.00%). The
dots lines (red lines) and solid lines (black lines) represent the measured and calculated XRD profiles,
respectively. The blue lines represent the difference between the experimental and calculated profiles.
Bragg reflections are represented by tick marks (green).

The calculated structural parameters and average crystallite size (DXRD) are presented
in Table 1. It can be observed that the structural parameters a=b and c varied with Ce–Sm
co-doping, which are generally influenced by the dissimilarity in ionic radii of different
cations, the impurity atoms, the defects, and so on [36]. This would generate a distortion
in the lattice structure. The calculated DXRD values were found to be in the range of
17.8–15.1 nm. The crystallite size of TiO2 NPs slightly decreased with the increasing concen-
tration of Ce–Sm co-dopants. This could be ascribed to the inhibition in the growth of TiO2
nanocrystallites by the adsorptions of Ce and Sm ions when increasing the concentration of
Ce–Sm co-dopants [37].
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Table 1. Refined structural parameters of Ce–Sm co-doped TiO2 NPs (x = 0.00, 0.25, 0.50, 1.00,
and 2.00%).

x (%) a = b (Å) c (Å) V (Å3) DXRD (nm) RBragg χ2 (chi2)

0.00 3.7856 9.5034 136.19 17.8 11.3 1.3
0.25 3.7853 9.5036 136.17 16.6 22.3 4.4
0.50 3.7846 9.5027 136.11 15.7 26.0 3.7
1.00 3.7851 9.4974 136.06 15.5 23.4 3.4
2.00 3.7856 9.5035 136.19 15.1 23.6 3.8

2.2. Morphological Observations

TEM is a valuable technique to assess the size and morphology of nanoparticles.
Figures 2 and 3 present the TEM images and the NPs’ size distribution histograms of the
pure and Ce–Sm co-doped TiO2 NPs (x = 0.00, 0.25, 0.50, 1.00, and 2.00%), respectively.
These images indicate spherical nanoparticles with an average particle size in the interval
of 19–25 nm. The median size of nanoparticles is slightly reduced from 25 nm to about
19 nm with the inclusion of Ce and Sm ions. Furthermore, the obtained results indicated
a suitably homogenous size distribution for each prepared composition. The obtained
findings are in good agreement with the above XRD analyses.
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Figure 3. Histograms representing nanoparticles’ size distribution of Ce–Sm co-doped TiO2 nanopar-
ticles (x = 0, 0.25, 0.50, 1, and 2%).

Figure 4 displays the elemental mapping of TiO2 nanoparticles co-added with an
x content of 1% of Ce and Sm ions. It clearly shows the presence of Ti, Ce, Sm, and O
elements, which are uniformly distributed in the sample. The atomic percentages for O, Ti,
Ce, and Sm elements are about 67.87%, 31.44%, 0.39%, and 0.30%, respectively.
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2.3. Electronic Structure Properties

Exhibiting the electronic structure characteristics plays a crucial role in the complete
understanding of the experimental findings. They are related to the absorption mechanism
and accompanying catalytic activity. Density functional theory (DFT) is an appropriate
tool to reveal the electronic structure and band gap of nanomaterials. In this context, the
combination of experiments and the DFT study provides a better understanding of the
mechanisms behind RB dye removal [38]. By employing density functional theory (DFT),
we performed numerical calculations to unveil the effect of Sm and Ce co-doping on the
electronic structure properties of TiO2. To this end, DFT-based QuantumATK software [39]
was employed for the Sm and Ce co-doped TiO2. Its unit cell, composed of 72 atoms
(22 Ti, 1 Sm, 1 Ce, and 48 O atoms), is illustrated in Figure 5. The number of dopants
employed in the unit cell suggests 2.8% co-doped NPs. This content is higher than the
maximum dopant amount (2.0%) used in the experimental work. TiO2

′s unit cell (given
by lattice parameters a = 11.41 Å, b = 7.61 Å, and c = 9.75 Å), upon replacing the two Ti
atoms by Sm and Ce, was optimized by setting a force tolerance of 0.01 eV/Å. Next, DFT
calculation was implemented using spin-dependent generalized gradient approximation
(SGGA + U) with the Perdew–Burke–Ernzerhof (PBE) function (SGGAU.PBE) [40] for the
exchange and correlation effects of the electrons. Here, U is the Hubbard term providing
a band gap correction to the DFT approximation. In this way, the hybridization of RE-4f
and Ti-3d atoms can be properly described. The U term was set to 8.5, 1.5, and 1.5 eV for
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Ti-3d, Sm-4f, and Ce-4f electrons, respectively [41,42]. As for the ion cores, PseudoDojo
pseudopotentials [43] were utilized. Ti, Sm, Ce, and O atoms were identified by their
valence electrons; Ti: 4s23d2, Sm: 6s24f6, Ce: 6s25d14f1, and O: 2s22p4. A mesh cutoff
energy of 125 Hartree with (3,4,3) k-point mesh within the Monkhorst–Pack scheme [44]
was employed. To the best of our knowledge, the present work is the first investigation of
Ce–Sm co-doped TiO2 material.
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Figure 5. Unit cell of Ce–Sm co-doped TiO2 nanomaterial composed of 72 atoms.

The total density of states (DOS) for both pristine TiO2 and Ce–Sm co-doped TiO2 NPs
is illustrated in Figure 6a,b, respectively, where the Fermi energy (EF) is adjusted to zero.
The DOS spectra, providing information about the electronic structure, demonstrate that
the spin-up (positive variation) and spin-down (negative variation) states are identical. Ce
and Sm atoms bring about additional states around the EF, modifying the Ce–Sm co-doped
TiO2

′s electronic structure properties. This indicates that electronic characteristics can be
tuned by the addition of RE atoms, resulting in the alteration of the energy bandgap (Eg).
Using the difference between the valence band maximum (negative energy) and conduction
band minimum (positive energy), it can be obtained from the DOS spectra, as shown in
Figure 6a. TiO2’s Eg was calculated as 3.19 eV. Upon the addition of Ce–Sm dopants, Eg
decreases to 2.13 eV and impurity states emerge, as displayed in Figure 6b. Such a drop in
Eg is reasonable, as it was reported to be 2.20 eV in earlier experimental work [45] for the
Ce-doped TiO2 nanocrystals where the Ce concentration was 10%. It could be ascribed to
factors such as the modification of the unit cell (provoking a change in lattice parameters)
and new available states in the vicinity of EF (which lowers the band gap) owing to the
incorporation of RE ions.
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2.4. UV/Visible Spectra Investigation

The impact of Ce–Sm co-doping on the UV–visible spectra of TiO2 NPs was studied in
a wavelength range of 200–800 nm. The spectra were registered in reflectance mode. From
these spectra, F(R) plots were determined by employing the Kubelka–Munk (KM) function,
F(R) = (1 − R)2/2R. All of the spectra display almost similar curve shapes (Figure 7). There
is no notable variation in the absorption peak position of TiO2 NPs on co-doping. The inset
displays the enlarged image of the absorption edges for all compositions. The absorption
edge is slightly red-shifted when the concentration of cerium and samarium increases.
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The bandgap is frequently determined by plotting [F(R)hυ]2 against hv and [F(R)hυ]1/2

against hυ for the direct band gap and indirect band gap, respectively. In anatase bulk TiO2,
the direct transition is prohibited and an indirect bandgap is permitted. This bandgap is
due to the phonon-assisted electronic transition from O2p to Ti3d in the M→ Γ transition
in the zone of Brillouin [46]. In our case, we have considered both direct and indirect
bandgaps and we have examined the variations in the bandgaps of TiO2 with co-doping
Sm and Ce ions. We have plotted [F(R)hυ]1/2 against hv (Figure 8a) and [F(R)hυ]2 against hv
(Figure 8b). The dashed lines drawn at the linear fragments of the curves at [F(R)hυ]1/2 → 0
and [F(R)hυ]2 → 0 yield the values of the indirect bandgap (Eg indirect) and direct bandgap
(Eg direct), respectively. For all compositions, the magnitude of Eg direct is higher than
that of Eg indirect (insets of Figure 8a,b). Similar results have been previously found by
Calandra et al. [47] and Reddy et al. [48]. The measured direct and indirect Eg values are
3.23 eV and 3.16 eV, respectively, for pure TiO2 nanoparticles. Choudhury et al. measured
the indirect bandgap of pure TiO2 NPs and found a value of 3.24 eV [49]. K.P. Priyanka
found an Eg value of 2.88 eV for pure anatase TiO2 nanoparticles [50]. Our Eg direct values
are slightly greater than those obtained in bulk TiO2 (Eg = 3.22 eV), while our Eg values are
lower than those obtained by Calandra et al., where the authors obtained a value of 4.26 eV
and 3.63 eV for the direct and indirect bandgaps, respectively [47]. However, a progressive
reduction in both the direct and indirect energy bandgaps of TiO2 NPs was observed as the
amount of Sm and Ce elements increased from 0.25 to 2.0%. Similar results were obtained
in the case of TiO2 co-doped with Ce–Nd elements [49]. Upon co-doping, the 4f levels of
Ce and Sm rare earth can be introduced below the 3d level of Ti, permitting the electronic
transition from O2p to Ce and Sm 4f levels [49,51,52]. This eventually led to the shift in the
edge of absorption to low energies and a narrowing in the bandgap value of the material.
These analyses agree well with the theoretical results discussed above. According to these
obtained results, it can be assumed that the cerium and samarium elements surrounding
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the TiO2 granules can absorb a larger light radiation range and increase the visible light
absorption capacity of the nano-photocatalysts.
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Figure 8. Determination of (a) the indirect bandgap and (b) the direct bandgap of Ce–Sm co-doped
TiO2 samples. Insets show the evolutions in the direct and indirect bandgap energies of TiO2 versus
Ce–Sm co-doping amounts.

2.5. Photocatalytic Degradation

The photocatalytic features of Ce–Sm co-doped TiO2 NPs (x = 0.00, 0.25, 0.50, 1.00, and
2.00%) on the degradation of Rhodamine B (RB) dye as a pollutant were investigated under
visible light radiation. As a tracking parameter, the temporal variations in the absorption
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peak with time (−30, 0, 10, 20, and 30 min) were investigated. Figure 9 illustrates the
absorption spectra of blank, pristine TiO2 NPs and Ce–Sm co-doped TiO2 NPs as nano-
photocatalysts. It is obvious from Figure 9a that RB dye without a catalyst in the solution
is hardly degraded solely by visible light irradiation. In the presence of NPs in the RB
dye solution, the intensity of the absorption peak progressively reduces under visible
light irradiation, which indicates that the Ce–Sm co-doped TiO2 NPs enhance the dye
photo-degradation. This demonstrates that RB was demethylated via the demolition of
the chromophore structure of the dye [53]. The pristine TiO2 NPs (Figure 9b) showed an
insignificant increase in the degradation of RB dye with a removal efficiency of about 50%
after 30 min. However, the degradation of different samples of Ce–Sm co-doped TiO2 NPs
showed a significant gradual increase from x = 0.00% to x = 0.50%, and then a gradual
decrease at x = 1.0% and x = 2.0% compositions. This occurred because, if the dopant
ion concentration exceeds 0.50%, the excess dopants can cover the surface of TiO2, which
leads to a decrease in the concentration of the photogenerated charge carrier, and thus the
photocatalytic activity decreases, as is clear from Figure 9c–f. It is worth mentioning that
the x = 0.5% composition showed the extreme absorption curve of the RB dye solution with
the shortest degradation time of 30 min, which indicates that the x = 0.5% composition has
a photocatalytic performance better than that of other ratios.
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Figure 10 presents the degradation percentage (%) of RB dye against the different
concentrations of Ce–Sm co-dopants after 30 min of visible light illumination. It is evident
that the presence of NPs helps significantly in degrading the RB dye. The pristine TiO2
NPs showed an RB dye degradation % of about 50% after 30 min. The RB dye degradation
% increases gradually with the increasing concentration of Ce–Sm co-dopants to reach a
degradation efficiency of about 85% and 98% for x = 0.25% and 0.50%, respectively. With
the further increase in the concentration of Ce–Sm co-dopants, the RB dye degradation
% decreases to about 90% and 79% for x = 1.00% and 2.00%, respectively. The highest
degradation efficiency was noted for TiO2 nanoparticles co-doped with x = 0.50% of Ce
and Sm ions with 98% decomposition. Hence, an optimal concentration of Ce–Sm as
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co-dopants within the structure of TiO2 NPs could enhance the photocatalytic activity
against pollutants.
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Figure 10. Degradation of RB dye of Ce–Sm co-doped TiO2 NPs (x = 0.00, 0.25, 0.50, 1.00, and 2.00%).

In Table 2, we present some previous photocatalytic results reported for TiO2-based
materials in comparison with the present results. As shown in this table, Ce–Sm co-doped
TiO2 NPs showed a greatly enhanced photocatalytic activity in comparison with other
TiO2-based compositions.

Table 2. List of some TiO2-based materials.

Materials Irradiation Source Dyes Degradation % Duration (min) Ref.

Ce–Sm co-doped TiO2 NPs Xenon lamp (250 W, λ ≤ 400 nm) RB 98 30 This work

Ce-doped TiO2 nanosheets UV light (15 W, 365 nm) RB 95 120 [54]

Mn-doped TiO2
Tungten halogen lamp (300 W,
500 nm) Malachite green (MG) 96 105 [55]

Cobalt-doped TiO2
Fluorescent lamp (23 W, 6400 K,
1311 Lumens) Methyl orange (MO) 34.7 360 [56]

Sm-doped TiO2 NPs UV light (365 nm) MO 96 120 [34]

Sm-doped TiO2 NPs UV source (125 W Hg lamp) RB 95.7 120 [57]

Er3+-doped TiO2 NPs Xe lamp (400 W, λ > 450 nm) Phenol 75 180 [58]

Nd-doped TiO2 NPs Xe lamp (350 W, λ > 420 nm) MO 96.5 60 [59]

La–Gd co-doped TiO2
hollow spheres

Xe lamp (300 W, PLS-SXE
300/300UV) MO 97 150 [60]

Na-doped TiO2 UV lamp (300 W, 365 nm) Methylene blue (MB) 92.5 60 [61]

Gd-doped TiO2 films UV source (500 W high-voltage
mercury lamp) MO 41 28 [62]

For further investigation, the percent degradation with time for all samples under
UV/Vis light was plotted, and the plots are shown in Figure 11 [63,64]. The degradation rate
of TiO2 NPs is a bit slow because the band gap is too broad to be excited by visible light [65].
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However, the degradation rates of Ce–Sm co-doped TiO2 NPs are much higher because of
the inhibition of photogenerated electron–hole recombination [65]. The improvement in
the degradation rate rapidly decreased for Ce–Sm co-doped TiO2 NPs with x = 0.50%.
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and 2.00%).

Pseudo-first-order kinetics was applied to calculate the kinetics constant (k) values of
Ce–Sm co-doped TiO2 NPs (x = 0.00, 0.25, 0.50, 1.0, and 2.0%). Accordingly, curves of ln(C0/C)
versus time were plotted (Figure 12) [66]. The rate constants determined from the slope were
used to evaluate the photocatalytic activity of the prepared nanoparticles. The best reaction rate
constant was observed for Ce–Sm co-doped TiO2 NPs with x = 0.50% of about 0.0616 min−1,
which is almost four times greater than that of pure TiO2 NPs of 0.0149 min−1 after 30 min of
visible light illumination. The other compositions revealed rate constants of about 0.0367 min−1,
0.0434 min−1, and 0.0303 min−1 for x = 0.25%, 1.00%, and 2.00%, respectively.

The reusability and stability of the Ce–Sm co-doped TiO2 NPs are among the important
factors of nano-photocatalysts for the degradation of dyes. Accordingly, Ce–Sm co-doped
TiO2 NPs with x = 0.50% were subjected to consecutive photocatalytic experiments against
RB dye under the same starting conditions to verify their stability (Figure 13). After each
experiment, centrifugation was used to recover the nanoparticles, which will be then dried
in the oven and ground again using agate mortar. These experiments were repeated three
times consecutively and the RB dye photocatalytic % was found to be higher than 94%,
which is not drastically diminished, as presented in Figure 13. The obtained results suggest
that the present nano-photocatalysts display great photocatalytic activities and are highly
stable and easily recovered and reused, indicating their potential for practical applications
in the future.

The probable active species involved in the photocatalytic degradation process were
examined using various scavengers. In most cases, four active species are involved in
the photocatalytic degradation process. These are •O2

−, •OH, e−, and h+; various scav-
engers were introduced, correspondingly, in the photocatalytic degradation system, and
other conditions were the same as those indicated in “2.4. Photocatalytic activity”. The
scavengers are isopropanol, IPA (•OH scavenger); ethylenediaminetetraacetic acid, EDTA
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(h+ scavenger); 1,4-benzoquinone, BQ (•O2
− scavenger); and silver nitrate, AgNO3 (e−

scavenger), respectively. Figure 14 shows that h+ and •O2
− play the most critical roles in

the degradation of RB, because the inclusion of scavengers for these two active species
reduces the degradation capacity significantly. •OH is also shown to be involved in the
degradation, as the addition of IPA may also influence the degradation. h+, •O2

−, and •OH
are three highly oxidative species. According to these findings, their significant oxidative
activities might be used to degrade RB in this photocatalysis process. It is worth noting that
the addition of AgNO3 can promote degradation. The reason is that AgNO3 may consume
e− as an e− scavenger, which reduces the recombination of e−–h+ pairs and enhances the
photocatalytic activity.

The mechanism can be described as shown in Figure 15. Once the TiO2 NPs are
subjected to light illumination, the electrons (e−) within the valence band (VB) are excited
to the conduction band (CB), generating electron–hole (e−–h+) pairs. When the electrons
(e−) react with the oxygen molecules (O2) to generate superoxide radicals (•O2

−), the holes
(h+) in VB can directly destroy RB molecules or mix with water molecules adsorbed on
the surface of the nano-photocatalysts to create hydroxyl radicals (•OH). These hydroxyl
radicals are effective oxidation agents that destroy organic pollutants. This procedure
thus causes photo-oxidation of the organic pollutants with the subsequent steps [67]:
(a) adsorption of light by the nano-photocatalysts, (b) generation of e−–h+ pairs, (c) charge
carriers’ recombination, and (d) reactants’ use of charge carriers. On the other hand, the
boost in the photocatalytic activities of Ce–Sm co-doped TiO2 NPs is mainly attributable to
the dual inclusion of Ce4+ and Sm3+ cations and the defects generated in the TiO2 anatase
structure. Ce–Sm co-doped TiO2 NPs would create large amounts of oxygen vacancies
because of the existence of Ce4+ and Sm3+ ions. Hence, Ce4+ and Sm3+ ions can act as
scavengers for electrons. They may generate interbond defects below CB, acting as traps
for the transition of electrons, and thus lowering the recombination process of e−–h+ pairs.
Consequently, the photocatalytic efficiency of nanoparticles will be enhanced.
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Nevertheless, the photocatalytic efficiency is also dependent on the crystal structure
of NPs, particle size distribution, and morphology [68]. In summary, depending on the
findings, the photocatalytic activities of the present nanoparticles are considerably influ-
enced by many factors, such as the preparation method of co-doped TiO2 NPs using the
sol–gel auto-combustion technique, which can lead to a large surface area and agglomer-
ated nanosized particles, which could enhance the photocatalytic efficiency. Moreover, the
dual doping of rare earths (Ce and Sm) has been discovered to be helpful in shifting the
impurity states and boosting the 4f electrons interface between the TiO2 intrinsic bands and
impurity states, leading to a reduction in bandgap energy [69].
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3. Experimental Details
3.1. Materials

The chemicals titanium(IV) isopropoxide (C12H28O4Ti; 98%; Thermo Fisher Scien-
tific, Waltham, MA, USA), cerium(III) nitrate hexahydrate (Ce(NO3)3·6H2O; 99.99%; Loba
Chemie, Mumbai, India), samarium(III) nitrate hexahydtrate (Sm(NO3)3·6H2O; 99.9%;
Sigma Aldrich, St. Louis, MI, USA), citric acid (C6H8O7; 99+%; Aldrich), ammonium hy-
droxide solution (NH4OH), and absolute ethanol (CH3CH2OH) were used as raw materials
without further purification.

3.2. Synthesis of Pristine and Ce–Sm Co-Doped TiO2 NPs

Pristine TiO2 and Ce–Sm co-doped TiO2 NPs were prepared using the sol–gel auto-
combustion approach. The procedure could be described as follows. An appropriate
amount of titanium isopropoxide was dissolved in a beaker containing an ethanolic solution
and citric acid mixture under vigorous stirring. In other beakers, appropriate amounts of
rare-earth-based nitrates of Ce and Sm were dissolved in deionized water under stirring.
The amounts of doped Sm3+ and Ce3+ ions were x = 0.00, 0.25, 0.50, 1.00, and 2.00%. After
a while, the different solutions were mixed into one beaker and left under continuous
stirring for 2 h. Then, the pH value was adjusted to about 6–7 with ammonia. Some amount
of water was evaporated by heating the solution above a hot plate at a temperature of
about 80 ◦C for 3 h. Under continuous stirring and heating, a precursor gel was then
gradually created. Later, the temperature was raised to about 150 ◦C for 30 min and then to
about 280 ◦C until the sample was auto-ignited. The obtained as-combusted powders were
finely ground in an agate mortar and then transferred for calcination at 500 ◦C for 2 h in a
furnace. TiO2 nanoparticles co-doped with different concentrations of Ce–Sm ions (x = 0.00,
0.25, 0.50, 1.00, and 2.00%) were finally obtained. The wight and/or volume of different
precursors used is listed in Table 3.
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Table 3. Weight and/or volume of precursors.

x (%) Titanium Isopropoxide (mL) Cerium Nitrate Hexahydrate (mg) Samarium Nitrate Hexahydtrate (mg)

0.00 12.9 – –
0.25 12.9 49.3 50.5
0.50 12.9 98.6 101
1.00 12.9 197.2 202
2.00 12.9 394.4 404

3.3. Characterization Techniques

The crystalline phases of prepared NPs were studied with a benchtop X-ray diffrac-
tometer (Miniflex 600, Rigaku, Japan) with Cu Kα radiation of λ = 1.5406 Å and a scan
rate of 0.02◦ per second. The values of crystallite size (DXRD) were estimated from XRD
patterns by applying the Scherrer equation [70]:

DXRD =
Kλ

βcosθ
(1)

where λ is the wavelength of X-rays, K is a constant (~0.94), θ is the diffraction angle, and
β is the full width at half maximum (FWHM). The morphology and size of the prepared
products were observed by a transmission electron microscopy (TEM, FEI Morgagni 268,
Czech Republic). The chemical composition by elemental mapping was determined by
energy-dispersive X-ray spectrometry (EDXS) coupled with a scanning electron microscopy
(SEM, Tescan Vega 3, Tescan Orsay Holding, Brno, Czech Republic). To investigate the
electronic properties, density functional theory (DFT) calculations were performed using
QuantumATK software (Synopsys, Mountain View, CA, USA, 2021).

The optical properties were studied in a wavelength interval of 200–800 nm by means
of an ultraviolet/visible (UV/Vis) spectrophotometer (JASCO V-750, JASCO Corp, Tokyo,
Japan). The values of band gap energy (Eg) can be estimated using the Kubelka–Munk
function F(R) and Tauc plots [71,72]:

F(R) = α =
(1− R)

2R
(2)

αhν = α
(
hν− Eg

)n (3)

where R is the reflectance, ν is the frequency, h is the Planck constant, hν is the photon
energy, and α is a constant representing the absorption coefficient. The exponent n specifies
the nature of optical transition, where n = 1/2 and n = 2 represent direct and indirect
band gaps, respectively. Hence, by plotting [F(R)hυ]2 against hv and [F(R)hυ]1/2 against hυ
(called Tauc plots), one can determine the values of Eg, direct and Eg, indirect, respectively.

3.4. Photocatalytic Activity

The photocatalytic degradation of Rhodamine B (RB) dye was performed under the
irradiation of visible light sources in the presence of nano-catalysts. An amount of the
nanocatalyst was dispersed in a solution containing 50 mL of RB (10 ppm) dye. Before
light illumination (dark condition), the mixture was constantly stirred for 30 min above the
magnetic stirrer to achieve an adsorption/desorption equilibrium in the existence of the
nanocatalyst. Then, the solution mixture was irradiated with visible light (250 W, Xenon
lamp with a cutoff filter of λ ≤ 400 nm) for 30 min. Throughout the experiments, 2 mL of
this solution was collected, and the concentration of RB dye at a wavelength of 554 nm was
determined using a UV/Vis spectrophotometer (JASCO V-750, JASCO Corp, Tokyo, Japan)
and an examination of the absorption spectra in the wavelength range from 400 to 700 nm,
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respectively. The following equation was used to calculate the degradation efficiency of
the dye [73]:

Degradation efficiency % = (C0 − C/C0) × 100 (4)

Here, ‘C0’ (in mg·L−1) is the initial RB dye concentration and ‘C’ (in mg·L−1) is the
residual concentration of RB dye.

The kinetics assessment of RB elimination tended to follow pseudo-first-order kinetics.
The following equation was used to calculate the photodecomposition rate (k) constant [74]:

ln(C0/C) = kt (5)

To assess the stability of the photocatalyst, the degradation experiment was repeated
for up to three cycles in the same environment. The photocatalyst was separated after
each degradation test by washing and filtering the solution for the next photocatalytic
activity test.

In addition, to determine the reactive oxygen species (ROS) of the photocatalytic activ-
ity, trapping experiments were carried out using various radical scavengers [75] such as iso-
propanol (IPA, 10 mM), ethylenediaminetetraacetic acid (EDTA, 10 mM), 1,4-benzoquinone
(BQ, 1 mM), and silver nitrate (AgNO3, 10 mM), which acted as the scavengers for hydroxyl
radicals (•OH), holes (h+), superoxide radicals (•O2

−), and electrons (e−), respectively.

4. Conclusions

In this study, highly photocatalytic active Ce–Sm co-doped TiO2 NPs (x = 0.00, 0.25,
0.50, 1.00, and 2.00%) were successfully synthesized through the sol–gel auto-combustion
approach. The analyses using XRD, TEM, and elemental mapping techniques confirmed
the development of spherical nanoparticles with a tetragonal anatase TiO2 structure and an
average crystallite size of 15.1–17.8 nm. A reduction in particle size was noticed upon the
inclusion of Ce–Sm co-dopants. DFT calculations and UV/Vis diffuse spectra showed a
reduction in Eg values with Ce–Sm co-doping. The photocatalytic activities of the synthe-
sized nanoparticles were assessed against RB dye. The exploration of absorbance results
indicated that the different Ce–Sm co-doped TiO2 nanoparticles display enhanced photo-
catalytic activities in comparison with pristine TiO2 nanoparticles. Interestingly, the sample
co-doped with an x content of 0.50% displayed the best photocatalytic activity among the
different prepared nanoparticles, where the photo-degradation efficiency reached about
98% within 30 min. h+ and •O2

− are the most important active species in photocatalytic
degradation, and •OH is also involved in the degradation. In addition to having good
photocatalytic activities, the present nano-photocatalysts are highly stable, easily recovered,
and easily reused, indicating their potential for practical applications in the future.
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