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Abstract: CeVO4-V2O3 composites were prepared by simple hydrothermal method, and the effects
of ethylene glycol(EG) on the products were studied by XRD, N2 adsorption–desorption, SEM, EDS,
XPS, PL and UV-vis spectra. The characterization reveals a slight decrease in surface area and a slight
enhancement of visible light absorption in the final sample, while the crystalline phase, morphology
and separation efficiency of the collective carriers are severely affected by the EG. At the same
time, the photocatalytic effect of CeVO4-V2O3 composites was evaluated by the degradation rate of
methylene blue (MB) under simulated visible light. The sample for 10 mL EG obtained the highest
efficiency of 96.9%, while the one for 15 mL EG showed the lowest efficiency of 67.5% within 300 min.
The trapping experiments and ESR experiment showed that the contribution of active species to
the photocatalytic degradation of MB was ·OH > h+ > ·O2− in descending order, and a possible
degradation mechanism was proposed.

Keywords: ethylene glycol; CeVO4-V2O3; methylene blue oxidation; visible light

1. Introduction

Photocatalytic technology is a green and economical solar-driven pollutant removal
technology that can be carried out at normal temperatures and pressure. Using semicon-
ductors and related materials as photocatalysts, we can carry out relatively compound
chemical conversion under relatively simple conditions, which has unparalleled advantages
in pollutant removal technology by directly using reducing agents or oxidizing agents. Pho-
tocatalytic technology provides an environmentally friendly and efficient transformation
path for pollutant removal, leading many researchers to develop in a more cutting-edge
research direction, and provides an efficient solution for carbon neutrality and sustainable
development [1–6]. Nevertheless, TiO2 cannot be excited when the wavelength is higher
than 420 nm, which greatly limits its practical application in the visible light region. There-
fore, research is devoted to developing a series of visible light-responsive photocatalysts to
effectively utilize solar energy [7–11].

Cerium vanadate (CeVO4), as a rare earth vanadate, has good physical and chemi-
cal properties and is widely used in the fields of batteries, semiconductors and catalysis.
After vanadate is combined with rare earth metals such as Ce, La and Pr, its electrochem-
ical performance, thermal stability, specific surface area and magnetism are obviously
enhanced [12]. In view of the excellent physical and chemical properties of CeVO4, many
researchers use the precipitation method, microwave radiation method, sonochemical
method and hydrothermal method to synthesize CeVO4 [13–15]. In the absence of any
catalyst and template, Xie et al. prepared tetragonal CeVO4 with the same precursor by
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hydrothermal method and ultrasonic methods, such as micro-rods, nanoparticles, nanorods
and nanosheets [16]. Mosleh et al. reported a simple sonochemical method to synthesize
CeVO4 nanoparticles with the aid of ammonium metavanadate, using cerium (III) nitrate
hexahydrate as the initial reagent and water as the solvent [17].

CeVO4 has excellent catalytic performance, relatively stable chemical properties and
a relatively simple preparation method, so it is a photocatalytic material with important
research significance. Therefore, various micro/nanosized CeVO4 samples have been pre-
pared for use in the removal of organic compounds [18–21]. Phuruangrat et al. synthesized
tetragonal zircon CeVO4 photocatalytic particles by sol-gel method with tartaric acid as
a complexing agent, which showed good activity in photocatalytic degradation of MB
under ultraviolet light [22]. Liu et al. prepared egg yolk shell-like CeVO4 microspheres
composed of nanosheets by citric acid-assisted hydrothermal method, which realized the
rare long cycle and high capacity of CeVO4, and was considered as the next promising
candidate negative electrode material for lithium-ion batteries [23]. However, consider-
ing the practical application, the photocatalytic activity of pure CeVO4 still needs to be
improved. The combination of CeVO4 with other materials is considered to be an effective
method to improve the separation efficiency of photo-generated carriers and improve
photocatalytic performance [24]. Ma et al. prepared the flexible integrated composite of
CeVO4 and multi-walled carbon nanotubes (MWCNTs) by a simple hydrothermal tech-
nique. CeVO4/MWCNTs composite can be applied to the detection of sulfadiazine residues
in water samples of actual aquaculture [25]. Song et al. obtained the one-dimensional
structure of AgNW@CeVO4 composite photocatalyst by depositing CeVO4 on the surface
of a silver nanowire, which expanded the light absorption range of CeVO4. In addition,
compared with pure CeVO4, AgNW@CeVO4 composite photocatalyst showed excellent
photocatalytic performance for the degradation of pollutants such as rhodamine B, MB and
4-nitrophenol under sunlight irradiation [26]. However, the above-mentioned combination
methods were performed by adding additional materials, which undoubtedly increases
the cost and complicates the process. Therefore, we try to study a simple and economi-
cal one-step preparation method; that is, cerium vanadate and vanadium anhydride can
be obtained at the same time by controlling the reaction conditions, and they can form
composites, thus improving the photocatalytic performance of CeVO4.

In this paper, CeVO4-V2O3 composites were prepared by a simple ethylene glycol
(EG) assisted hydrothermal method. Because the solubility of ammonium vanadate is 4.8 at
room temperature, and it is slightly soluble in water, adding organic solvent is a favorable
dissolution method. Compared with ethanol, glycerol and other solvents, EG was chosen
as the solvent. Moreover, the effects of EG addition on the crystal structure, morphology,
separation efficiency of the recombination electron holes and photocatalytic activity have
been studied in detail by XRD, N2 adsorption–desorption, SEM, EDS, XPS, PL and UV-vis
spectra. Trapping experiments and ESR are employed to study the active species in the
photodegradation process. Based on the above results, the possible photodegradation
mechanism of MB over CeVO4-V2O3 composites is proposed.

2. Results and Discussion
2.1. Characterization and Analysis

The influence of EG on the crystal phase of the as-prepared samples was analyzed
by X-ray powder diffraction (XRD). Figure 1 shows the XRD patterns of the composite
samples. The four main peaks of these samples located at 2θ = 18.3, 24.2, 32.4 and 46.5 are
assigned to the (101), (200), (112) and (312) planes of CeVO4, respectively. All the diffraction
peaks of the products obtained from different EG addition were assigned to the tetragonal
phase of CeVO4 (JCPDS No. 12-0757). The XRD patterns also showed two main diffraction
peaks at 2θ = 28.6 and 36.9, corresponding to the (102) and (110) planes of the V2O3 phase
(JCPDS No.01-071-0344).
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It can also be seen from Figure 1a that the sample added with 15 mL EG only has the
diffraction peak of tetragonal CeVO4, and no impurity peak is detected, indicating that
the CeVO4-V2O3 composite has not been formed. In other samples, the diffraction peak
corresponding to the V2O3 phase was detected, indicating the formation of the CeVO4-
V2O3 composites. Therefore, the addition of EG promotes the formation of the composites,
but the excessive EG is not conducive to the formation of vanadic anhydride.

The specific surface area and porosity of the as-synthesized samples are determined
by N2 adsorption–desorption isotherms (Figure 1b). Obviously, the isotherms of all the
samples were identified as type IV, with an H1 pattern hysteresis loop [27,28]. It could be
deduced that as-prepared samples are members, and the specific surface area of obtained
catalysts with additional amounts of 0, 5, 10 and 15 mL EG are 51.27, 50.15, 48.24 and
40.12 m2·g−1, respectively. These results show that the addition of EG leads to a slight
decrease in specific surface area.

The morphology of as-prepared samples with different amounts of EG is investigated
by SEM. As shown in Figure 2a, the product with no EG appears as a nanoparticle with an
average diameter of about 230 nm. Adding 5 mL EG (as shown in Figure 2b), the product
appears as a nano-tetrahedral bipyramid with an average diameter of about 550 nm. Upon
increasing EG to 10 mL (as shown in Figure 2c), the product appears as microparticles
with an average diameter of 1.0 µm, which is composed of several tetrahedrons and slices.
Further increasing EG to 15 mL (as shown in Figure 2d), numerous leaf-like nano-slices are
clustered together in groups to form a microsphere, caused by excessive EG probably. In
addition, the average diameter increases to 1.6µm. The SEM results show that an increase
in EG content leads to an increase in the average diameter of nanocomposites, which leads
to a decrease in the specific surface area of nanocomposites. The chemical composition and
element distribution of samples prepared in a solution containing 15 mL EG were studied
by EDS. As shown in Figure 2e, the atomic ratio of O:V:Ce for the as-prepared sample is
66.46:17.82:15.72, which is larger than the theoretical stoichiometric ratio of 4:1:1 for O:V:Ce
in CeVO4.

X-ray photoelectron spectroscopy (XPS), as an important surface analysis technology,
has the characteristics of simple preparation, no damage to the sample and can distinguish
the chemical state information of elements, which has attracted more and more attention
and use by researchers [29–31]. The chemical composition of the obtained catalysts is
analyzed by XPS with 10 and 15 mL of EG addition. The survey scan spectra in Figure 3a
is shown that both samples mainly contain Ce, V, C and O elements peaks (C 1s peak is
assigned to the signal of the background hydrocarbon). As for the HR-XPS spectra of Ce 3d
shown in Figure 3b, the Ce 3d5/2 peaks locate at 881.1 and 884.9 eV and Ce 3d3/2 peaks
locate at 899.8 and 903.2 eV, indicating Ce in both samples mainly exists as Ce3+ [32]. The
HR-XPS spectra of V 2p resolve into two spin-orbit doublets (Figure 3c), characteristic of
V5+ and V3+.The binding energies at 516.8 and 524.4 eV correspond to V 2p3/2 and V 2p1/2
of V5+, and those at 515.4 and 522.6 eV can be attributed to V 2p3/2 and V 2p1/2 of V3+. As
for the HR-XPS spectra shown in Figure 3d, O 1s peaks are divided into the lattice oxygen
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of CeVO4 at 529.4 eV and O2- ions of V2O3 at 531.1 eV [33]. These results show that the
final samples synthesized in solutions containing 10 and 15 mL of EG are CeVO4-V2O3
composites, which are different from the XRD results. The possibility of such a result can
be explained by the fact that V2O3 is distributed in amorphous form over the sample for
15 mL EG, which is not detectable by XRD.
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2.2. Photocatalytic Performance of CeVO4-V2O3 Composites

Photoluminescence spectra (PL) can be used to determine the recombination of elec-
trons and holes induced by light indirectly. Higher fluorescence intensity means higher
electron and hole recombination efficiency [34,35]. Figure 4a shows the PL spectra of the
CeVO4-V2O3 composites. The emission bands centered at 512, 521, 556, 559 and 638 nm
correspond to 5D0→7Fi (i = 0, 1, 2, 3, 4) electronic transitions of Ce3+ ion, respectively [36].
This result indicates that the CeVO4-V2O3 composites are excited by UV light (360 nm),
transfer energy to Ce3+, and then exhibit red emission through the f–f transition of Ce3+ [37].
In addition, the strength of the CeVO4-V2O3 sample without EG is high, which shows that
the photo-generated electrons and holes generated by the sample under the condition of
light excitation are easier to recombine and reduce the photocatalytic efficiency. The PL
emission intensity of the sample synthesized in the EG precursor solution shows a dramatic
weakness compared to that of the sample without EG. The intensity of the emission peak is
the lowest for an added EG of 10 mL, indicating that the photo-generated electron and hole
separation efficiency at the surface of this catalyst is maximally enhanced, and therefore,
many photo-generated electrons and holes are generated.
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The optical properties of the as-synthesized samples were studied by UV-Vis ab-
sorption spectra (Figure 4b). The band gap of a semiconductor photocatalyst has a vital
influence on its catalytic performance and determines the light absorption range in the
process of photocatalysis. The band gap of the CeVO4-V2O3 sample is calculated according
to the following formula (Kubelka–Munk formula) [38,39]:

αhν = A(hν − Eg)2 (1)

where α stands for absorption coefficient, ν corresponds to the optical frequency, h is Planck
constant and Eg stands for the band gap of the sample. Figure 4b shows the curve of (αhν)2

versus hν, which is derived from the corresponding absorption spectra. Without EG, the
four absorption peaks are located at 257, 353, 452 and 590 nm, respectively, and the energy
gap is estimated to be 1.20 eV. When 5, 10 and 15 mL EG were added to the sample, the
three absorption peaks were concentrated at 257, 452 and 568 nm, respectively, and the
energy gap can be estimated as 1.03 eV. The results show that the addition of EG may
enhance the absorption of visible light from the final products, indicating that they have
an excellent UV-Vis response to visible light illumination. Comparatively speaking, the
smaller the band gap of the composite, the less energy is needed for the electron transition
reaction and the easier the photocatalytic reaction.

The catalytic activity of as-prepared CeVO4-V2O3 photocatalysts was evaluated, and
the effect of EG on the photocatalytic performance of the CeVO4-V2O3 sample was also
studied by simulating the photocatalytic conversion efficiency of MB under visible light
(λ > 420 nm). Figure 4c shows the degradation efficiency of MB by photocatalyst in
different irradiation times. Before photodegradation, the photocatalyst was dispersed
in MB solution, and the adsorption–desorption equilibrium was completed in the dark
for 60 min. It can be seen that the photocatalytic conversion efficiency of MB increases
gradually with the increase of the amount of EG from 0 mL to 10 mL, but the photocatalytic
conversion efficiency is the lowest when the amount of EG increases to 15 mL. It shows
that the addition of EG is beneficial to the enhancement of the photocatalytic effect, but



Catalysts 2023, 13, 659 6 of 13

it is not suitable to add too much. As can be observed, the photodegradation rate of
MB can reach 96.9% within 300 min under the irradiation of visible light. However, the
photocatalytic effect of the as-prepared CeVO4-V2O3 composites is not as good as that of Ag
nanowire@CeVO4 heterostructure photocatalyst. Maybe introducing Ag can strengthen O2
adsorption on the CeVO4 surface, which advances the photocatalytic activity of CeVO4 [26].
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In addition, based on the Langmuir–Hinshelwood (L-H) kinetic model, the photo-
catalysis degradation results conform to pseudo-first-order photocatalysis kinetics, and the
corresponding reaction rate constants (k) of the different photocatalysts are calculated from
the following equation [40,41]:

ln (C0/C) = kt (2)

where C0 corresponds to the initial concentration of MB solution, C is the concentration
of MB solution at t minutes and t stands for irradiation time. As can be clearly seen from
Figure 4d, the CeVO4-V2O3 photocatalyst prepared by adding 10 mL of EG has the highest
k value (0.0107 min−1), which shows that adding 10 mL EG is helpful in optimizing the
photocatalytic activity of CeVO4-V2O3 for MB. The result is similar to the rate constants of
6 wt% CeVO4/g-C3N4 [42].

Cycling runs of photodegradation of MB were performed to determine the stability
of the CeVO4-V2O3 sample with 10 mL EG. As shown in Figure 4e, the removal rates
of MB by CeVO4-V2O3 photocatalyst after four cycles decrease from 96.9% to 87.8%,
indicating excellent photocatalytic stability. The result is consistent with the cycle stability
of T-CeVO4 [34].

As can be seen from the characterization results, EG slightly reduces the surface area
and slightly improves the absorption of visible light in the final sample while severely
affecting the crystalline phase, morphology and electron–hole separation efficiency. When
the additive content of EG is increased from 0 to 10 mL, the final CeVO4-V2O3 composite
is formed, which improves the electron–hole separation efficiency and thus enhances the
photocatalytic activity. Further increasing the amount of EG will form amorphous V2O3,
and the nanosheets will gather together, which will reduce the electron–hole separation
efficiency, thus reducing the photocatalytic activity.

2.3. Photocatalytic Mechanism of CeVO4-V2O3 Composites

In order to explore the reaction mechanism of CeVO4-V2O3 in the photocatalytic
process, the trapping test of active substances was carried out, as shown in Figure 5.
TEOA, BQ and IPA are trapping agents for the hole (h+), superoxide radical (·O2

−) and
hydroxyl radical (·OH), respectively. During the photocatalytic oxidation h+, ·OH and ·O2

−

usually separately or together act as the main radicals for destroying and mineralizing
pollutants [43]. Thence, we added TEOA, BQ and IPA scavengers during the removal
reaction of MB to remove h+, ·O2

− or ·OH species generated in the CeVO4-V2O3 system,
respectively [44]. Figure 5 shows the degradation rate of MB is reduced from 96.9% to
70.4% by the addition of TEOA, illustrating that h+ plays a significant role in photocatalytic
oxidation. Then, after BQ was added, the degradation efficiency of MB decreased from
96.9% to 86.8%, demonstrating that fewer ·O2

− participated in the photocatalytic reaction,
which indicated that ·O2

− did not play a major role in the photocatalytic process. However,
with the addition of IPA, the degradation rate of MB decreased significantly from 96.9%
to 35.4%, indicating that additional ·OH is involved in the photocatalysis process, which
illustrated that ·OH was an important active substance produced in the degradation process
of MB. Thus, the order of influence of active species on the photocatalytic degradation of
MB by CeVO4-V2O3 is ·OH> h+ > ·O2

−. MB is mainly degraded by ·O2
− and ·OH active

species in CeVO4-V2O3 samples under the irradiation of visible light.
Electron paramagnetic resonance (EPR) has been extensively used for the identification

of free radicals that are generated from advanced oxidation processes (AOPs) so as to
establish the reaction mechanism. According to the energy band theory of semiconductors,
when the semiconductor is irradiated by light with energy equal to or greater than the
forbidden band, electrons (e−) in the valence band are excited to transition to the conduction
band, and corresponding holes (h+) are generated in the valence band. Photo-induced
holes have strong electron acquisition ability, which can capture the electrons of water
or hydroxyl adsorbed on the surface of photocatalysis particles and produce hydroxyl
radicals. In ESR, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) is usually used as a trapping
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agent of ·OH, which can interact with photo-generated holes (h+) or ·OH on the surface of
photocatalysis to form a stable DMPO-OH adduct [45].
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To further identify the active species generated in the CeVO4-V2O3 for 10 mL EG, the
DMPO spin-trapping ESR technique was utilized to detect the production of ·OH and ·O2

-.
Figure 6a,b show the detection results of ·OH and ·O2

− generation, respectively. When
it was not excited by visible light, ESR signals of DMPO-O2

− adducts and DMPO-OH
adducts were not detected, indicating that no free radicals were produced in the CeVO4-
V2O3 sample. After being irradiated by visible light for 1 min, the characteristic peak of
the DMPO-OH adduct can be clearly detected. Similarly, the typical signal of DMPO-O2

−

adduct can also be detected, but the intensity is weaker than that of DMPO-OH, which is
also consistent with the results of the active trapping experiment. The ESR signal intensity
of spin adducts of DMPO-O2

− and DMPO-OH after 5 min of visible light irradiation is
higher than that after 1 min of irradiation. Meanwhile, the signal intensity of DMPO-OH
and DMPO-O2

− increase with light irradiation, which further confirms that ·OH and
·O2
− play a major role in promoting the degradation of MB. However, the intensities of

DMPO-OH are obviously higher than that of DMPO-O2
−, which indicates the CeVO4-V2O3

for 10 mL EG produces additional ·OH active species. This result is consistent with the
trapping test, which shows that ·OH was an important active substance produced in the
degradation of MB.
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Based on the above analysis, the tentative mechanism for the photocatalytic reaction
of MB in CeVO4-V2O3 samples prepared with 10 mL EG is proposed, as shown in Figure 7.
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In the visible light irradiation, the photo-generated electrons in VB located in V2O3 and
CeVO4 migrate to CB in V2O3 and CeVO4, respectively. After the coupling, the interface
between V2O3 and CeVO4 pushes the photo-generated electrons from the CB of CeVO4 to
the CB of V2O3. At the same time, the photo-generated holes are also transferred from the
VB of V2O3 to the VB of CeVO4. Therefore, faster electron transfer between CeVO4 and
V2O3 may lead to higher quantum efficiency and provide more photo-generated electrons
for photocatalytic reactions. Then, the photo-generated electrons are captured by O2 in
water, resulting in superoxide radical ·O2−, while the photo-generated holes are captured
by the OH− or H2O, resulting in ·OH. The oxidizability of ·OH, ·O2− and h+ is enough to
effectively degrade MB into CO2 and H2O.
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3. Materials and Methods
3.1. Materials

All reagents used in the study, including ammonium metavanadate, ethylene glycol,
cerium nitrate hexahydrate, ethylene glycol and anhydrous ethanol, are of analytical
grade. They are purchased from Aladdin’s company and used as received without further
purification. All the solutions were prepared with deionized water obtained from a PURE
ROUP 30 water purification system.

3.2. Synthesis of CeVO4-V2O3 Composite

Typically, 2.17 g Ce(NO3)3·6H2O and 0.59 g NH4VO3 were dispersed in 60 mL of
deionized water at 90 ◦C under vigorous stirring for 1 h. Subsequently, 0–15 mL EG was
added to the above suspension under stirring for an additional 1 h. Afterward, the obtained
mixture was transferred into a Teflon-lined steel autoclave of 100 mL capacity, which was
kept in an oven at 160 ◦C for 5 h. After naturally cooling in air, the obtained precipitates
were alternately washed with deionized water and absolute ethanol three times and then
dried at 100 ◦C for 12 h and calcined at 300 ◦C for 5 h (in N2 atmosphere). A schematic
representation of the synthesis of the CeVO4-V2O3 composite is shown in Figure 8.

Figure 8. The schematic representation of synthesis of CeVO4-V2O3 composite.

3.3. Characterization of CeVO4-V2O3 Composite

The crystalline phase of the products was characterized by X-ray Diffractometer
(Bruker Advance D-8, Billerica, MA, USA) with PIXel3D detector using CuKa radiation.
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The diffraction patterns were matched with that of the recorded standards in JCPDS. The
materials’ surface morphology was studied with the aid of scanning electron microscopy-
SEM (Hitachi S-4300 Field Emission SEM, Tokyo, Japan). The absorption spectra were
determined by UV-Vis DRS (UV-2550), and the emission spectra were measured by photolu-
minescence spectra (PL, Spex Fluorolog-3, Metuchen, NJ, USA). The surface area was stud-
ied by N2 adsorption–desorption (ASAP 2020). The elemental components and bonding
energies of the synthesized samples were measured on X-ray photoelectron spectroscopy
(XPS, VG Multilab 2000, London, UK).

3.4. Photocatalytic Performance Experiment

By studying the degradation of MB aqueous solution under visible light irradiation,
the photocatalytic activities of CeVO4-V2O3 composites with the addition of 0, 5, 10 and 15
were evaluated. A 500 W Xe discharge lamp with a 420 nm cut-off filter, equipped with
a circulating water source and a 50 mg/L concentration of the dye, was prepared and
used for the study. For each measurement, 50 mg of the catalyst was suspended in MB
aqueous solution and stirred vigorously in the dark for 60 min to ensure the establishment
of adsorption equilibrium between the catalyst surface and the dye. Then, the suspension
was exposed to a 500 W Xe discharge lamp with a 420 nm cut-off filter and equipped
with a circulating water source and was continuously stirred for 300 min. During this
process, 5 mL of the suspension in the reaction system was taken out for testing at 60, 120,
180, 240 and 300 min, respectively. The resulting supernatants were examined using a
UV-1100 spectrophotometer, and the absorbance of the MB solution was measured at its
characteristic absorption wavelength of 664 nm. The degradation curve of the dye was
studied by absorption spectrum. Use the formula in Equation (3) to calculate the degraded
MB concentration.

Degradation (%) =
C0 − Ci

C0
× 100% =

A0 − Ai
A0

× 100 (%) (3)

where Ci is the concentration of MB at specific time; C0 denotes the initial concentration of
MB; Ai is the absorbance of MB at different times and A0 denotes the blank absorbance of
the original MB solution.

3.5. Photocatalytic Mechanism Tests

The trapping tests are similar to the photodegradation experiment. The difference is
that 1 mmol of isopropanol (IPA), triethanolamine (TEOA) or benzoquinone (BQ) is added
into the reaction solution before irradiation, and the degradation rate of MB after irradiation
for 300 min is analyzed. Species (h+, ·O2

− and ·OH) formed in the photodegradation
process were studied with electron spin resonance (ESR, Bruker E500, Billerica, MA, USA)
by adding 5,5-dimethyl-1-pyrroline N-oxide (DMPO, >99.0%) into ultrapure water and
methanol, respectively.

4. Conclusions

The effects of EG on the crystalline phase, surface area, morphology, chemical compo-
sition, electron–hole separation efficiency and optical properties of the final product have
been studied using XRD, N2 adsorption–desorption, SEM, XPS, PL and DRS. The results
show that a proper amount of EG can form CeVO4-V2O3 composites. With the addition of
EG, the specific surface area of the composites decreased slightly, the average particle size
increased, and the visible light absorption increased. At the same time, the photocatalytic
removal effect of CeVO4-V2O3 composites on MB shows that adding moderate EG into
the precursor solution (0–10 mL) can improve the electron–hole separation efficiency of
the final products, thus increasing the photocatalytic activity (83.6% to 96.9%). However,
excessive EG (15 mL) makes the nanosheets gather together to form aggregates, which
reduces the separation efficiency of electron holes, thus reducing the photocatalytic activity
(67.5%). According to the trapping experiments and ESR experiments, h+ and ·OH played
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a more significant part in the photocatalytic degradation of MB than ·O2
−, and the order

of influence of active species on the photodegradation of MB over CeVO4-V2O3 sample
prepared with 10 mL EG is ·OH > h+ > ·O2

−. Finally, the mechanism of photocatalytic
degradation of MB by the CeVO4-V2O3 composites was discussed. The coupling of V2O3
and CeVO4 realizes the effective separation and faster transfer of photo-generated electrons
and holes and leads to higher quantum efficiency. When they are captured by O2 and OH−

in water, active species, ·O2
− and ·OH, are generated. The oxidizability of ·OH, ·O2

− and
h+ is enough to effectively degrade MB into CO2 and H2O.
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