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Abstract: As we all know, the massive emission of carbon dioxide has become a huge ecological
and environmental problem. The extensive exploration, exploitation, transportation, storage, and
use of natural gas resources will result in the emittance of a large amount of the greenhouse gas
CH4. Therefore, the treatment and utilization of the main greenhouse gases, CO2 and CH4, are
extremely urgent. The CH4 + CO2 reaction is usually called the dry methane reforming reaction
(CRM/DRM), which can realize the direct conversion and utilization of CH4 and CO2, and it is of
great significance for carbon emission reduction and the resource utilization of CO2-rich natural
gas. In order to improve the activity, selectivity, and stability of the CO2-CH4 reforming catalyst, the
highly active and relatively cheap metal Ni is usually used as the active component of the catalyst. In
the CO2-CH4 reforming process, the widely studied Ni-based catalysts are prone to inactivation due
to carbon deposition, which limits their large-scale industrial application. Due to the limitation of
thermodynamic equilibrium, the CRM reaction needs to obtain high conversion and selectivity at
a high temperature. Therefore, how to improve the anti-carbon deposition ability of the Ni-based
catalyst, how to improve its stability, and how to eliminate carbon deposition are the main difficulties
faced at present.

Keywords: CO2-CH4 reforming; Ni-based catalyst; carbon deposition

1. Introduction

With the increasing use of fossil resources, such as coal, oil, and natural gas, the
global CO2 emissions will continue to rise. In recent years, some countries have been
using renewable energy; however, this trend has not been enough to prevent the climate
change, polar ice sheet melting, and hurricane intensification caused by the increase in
CO2 emissions. The massive emission of CO2 not only accelerates the deterioration of the
greenhouse effect but also wastes valuable carbon resources. Therefore, CO2 reduction
and resource utilization have become the most noticeable research issues. According
to the proportions of different greenhouse gases in the total greenhouse gas emissions
calculated by CO2 equivalent, CH4 accounts for 16% and is therefore the second villain of
the greenhouse effect. Although the emission of CH4 is far less than that of CO2, its potential
to produce a greenhouse effect is about 20 times more than that of CO2. Therefore, how to
convert the above two greenhouse gases into useful chemicals or chemical raw materials
has attracted the great attention of governments and scientists around the world [1–3].
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As early as 1928, Fischer and Tropsch discovered the carbon dioxide reforming of
methane reaction, that is, CO2 + CH4 = 2CO + 2H2 (carbon dioxide reforming of methane,
CRM, ∆H = 247 kJ/mol), also known as methane dry reforming. CRM can produce
synthesis gas; it is a strongly endothermic reaction, and the synthesis gas obtained has a
low H2/CO ratio, which is more suitable for the subsequent Fischer–Tropsch synthesis
reaction [4]. The ratio of H2/CO in the CRM product is about 1, and it can also be used in
chemical reactions such as carbonyl synthesis and hydrocarbon production and to produce
clean liquid fuels and high-value chemicals [5,6]. Hence, this reaction can also utilize CO2
and CH4, which are two main greenhouse gases; therefore, it has significant industrial
value and ecological and environmental significance. The research on this reaction has been
further developed, particularly in the past 30 years [7].

CRM and steam reforming of methane (SRM) are catalytic reactions at a high temper-
ature (about 800 ◦C). The ∆H of CRM = 247 kJ/mol, which is greater than that of SRM
(206 kJ/mol), indicating that both CRM and SRM are strongly endothermic reactions, and
the endothermic capacity of CRM is nearly 20% higher than that of SRM. Therefore, the
reverse reaction of CRM can theoretically release up to 247 kJ/mol of energy. Therefore, the
reaction can be used as a good chemical energy transmission system (CETS) to store energy.
On the other hand, CRM can be realized through fossil fuels (such as coal, petroleum, etc.),
light energy, or nuclear energy, and the above energy can be stored in the product (synthesis
gas); then, the synthesis gas can be transported to the place where it is needed for a reverse
reaction to release energy.

Over a long period of time, researchers have conducted many studies on the selec-
tion and optimization of CRM catalysts, and have achieved fruitful results, making the
research on this reaction increasingly broad and deep. Without loss of generality, the
relationship between the chemical reaction itself, the type of active component and carrier,
the modification of additives, the carbon deposition, and the catalyst performance have
been consistently discussed by many researchers. As far as the CRM process is concerned,
the main side reaction is the reverse water gas shift reaction (CO2 + H2 = CO + H2O, re-
verse water gas shift reaction, RWGS), which consumes the H2 (CH4 = C + 2H2) generated
by CH4 cracking and generates a large amount of CO, which can cause carbon deposi-
tion on the catalyst through another side reaction—the CO disproportionation reaction
(2CO = C + CO2) [8,9]. Thus, the proportion of CO2 can be increased from the perspective
of chemical equilibrium to inhibit the formation of carbon deposition (that is, the carbon
elimination reaction, C + CO2 = 2CO). Thermodynamic calculation showed that the RWGS
reaction can be inhibited or avoided at temperatures above 820 ◦C, but this needs a lot of
energy [10]. Therefore, how to optimize the catalyst structure, match the process conditions,
and selectively control the degree of carbon deposition, the reverse water gas shift reaction,
carbon elimination, and other chemical reactions involving carbon is of great significance in
improving the activity of the CO2-CH4 reforming catalyst, inhibiting catalyst deactivation,
and extending the service life of the catalyst.

Pakhare et al. [11] introduced DRM literature on a catalyst based on Rh, Ru, Pt, and
Pd metals. This includes the effect of these noble metals on the kinetics, mechanism, and
deactivation of these catalysts. The inert support catalysts are more prone to deactivation
due to carbon deposition than the acidic or basic supports.

At present, the widely used CO2-CH4 reforming catalyst is still dominated bythe
non-noble metal catalyst, especially the Ni-based catalyst. Its activity is equivalent to that
of the noble metal, but it is very easily inactivated due to carbon deposition. Therefore,
the development of the Ni-based catalyst with high carbon deposition resistance is the
key to realizing the industrialization of CO2-CH4 reforming. A large number of studies
have shown that carbon deposition in the hydrocarbon conversion process is mainly
affected by such factors as the acid–base property of the carrier, the dispersion of the active
component, and the interaction between the carrier and the active metal [12–16]. The
acid sites on the catalyst surface are not conducive to the adsorption of CO2, resulting
in the carbon deposition rate on the catalyst surface being much higher than the carbon
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elimination. Conversely, the surface basic sites can inhibit the carbon deposition caused by
CO disproportionation to a certain extent, thereby improving the stability of the catalyst.
It was found that when the particle size of the active component was less than 10 nm,
the catalyst could present a high anti-coking performance [14]. In addition, strong metal-
support interaction is also beneficial in improving the anti-carbon deposition performance
of the catalyst [15,16].

In this paper, the thermodynamics, kinetics, and reaction mechanism of the CO2-CH4
reforming reaction are reviewed. Because Ni-based catalysts exhibit high activity but have
the problem of the easy deactivation of carbon deposition, this paper further summarizes
the research situation regarding carbon deposition on Ni-based catalysts, including the
types of carbon deposition, the amount of carbon deposition, and the elimination of carbon
deposition. As to how to improve the anti-carbon deposition ability of the Ni-based
catalyst and how to eliminate carbon deposition, this paper focuses on two aspects: one
is the resistance of carbon deposition from the perspective of catalyst optimization; the
other is the elimination of carbon deposition from the perspective of process condition
matching. Finally, how to improve the carbon deposition resistance of Ni-based CRM
catalyst is prospected.

2. Thermodynamics of CO2-CH4 Reforming

CO2-CH4 reforming mainly includes the following reactions:

CH4 + CO2 = 2H2 + 2CO, ∆H (298 K) = 247 kJ/mol, (1)

H2 + CO2 = H2O + CO, ∆H (298 K) = 41 kJ/mol, (2)

2CO = CO2 + C, ∆H (298 K) = −172 kJ/mol, (3)

CH4 = C + 2H2, ∆H (298 K) = 75 kJ/mol, (4)

CO + H2 = C + H2O, ∆H (298 K) = −131 kJ/mol, (5)

Zhang et al. [17] obtained the thermodynamic equilibrium constants of the above
reactions as a function of temperature through thermodynamic calculations, as shown
in Figure 1.
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As both methane and carbon dioxide are very stable, CRM is an extremely strong
endothermic reaction. Meanwhile, the RWGS reaction is an important side reaction in the
CRM process which reduces the H2/CO ratio in the product [18,19]. In the CRM reaction
process, high temperature (>1000 K) and low pressure (~1 atm) are usually required to
obtain the efficient conversion of methane and carbon dioxide to syngas. At a higher
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pressure, it can promote the RWGS reaction and reduce the H2/CO ratio. Therefore, the
ratio of carbon dioxide and methane in the feed gas has a great influence on the H2/CO
ratio. Many experiments showed that the ideal H2/CO ratio of 1 can be achieved when
the CO2/CH4 ratio is about 1. With the increase in the CO2/CH4 ratio, the H2/CO ratio
decreases. This trend is more obvious at higher pressures (10 atm).

In addition to RWGS, there are two other side reactions, methane decomposition and
CO disproportionation, which also occur in the CRM process [11]. These two reactions lead
to the formation of carbon deposition, which leads to the deactivation of the catalyst. In
order to study the formation of the carbon deposition, Lu et al. [19] calculated the limit
temperatures of the two side reactions (where the Gibbs free energy change is zero). The
CO2-CH4 reaction can be accompanied by methane cracking at above 640 ◦C, while the
reverse water gas shift reaction starts at above 820 ◦C, without CO disproportionation
(2CO = C + CO2, the Boudouard reaction). In the range of 557–700 ◦C, carbon is mainly
formed by methane cracking or the Boudouard reaction. Under the pressure of 0.01–0.1
atm, the feed ratio of CO2/CH4 = 1 can reach the equilibrium conversion rate. At a fixed
temperature, the rate at a low pressure is always higher than that at a high pressure. Under
the pressure of 0.01 atm, the rate reached 90% at 550 ◦C, and did not reach 90% until 700 ◦C
at 0.1 atm. There is an upper temperature limit for carbon deposition, and the temperature
increases with the increase in reaction pressure and the decrease in the CO2/CH4 ratio.
Therefore, the formation of carbon deposition at a certain temperature can be inhibited
by reducing the reaction pressure and increasing the proportion of carbon dioxide in the
feed gas.

The main reactions of carbon deposition are methane decomposition and the carbon
monoxide disproportionation reaction. Severe carbon deposition will lead to blockage or
even deactivation of the catalyst bed. According to thermodynamic analysis, the carbon
monoxide disproportionation reaction is a strongly exothermic reaction, which mainly
occurs in a relatively low temperature range (<650 ◦C), and methane cracking reaction
is a strongly endothermic reaction, which mainly occurs in a relatively high temperature
range. Therefore, low temperature and high pressure are beneficial to carbon monoxide
disproportionation, and high temperature and low pressure are beneficial to methane
cracking, and the main reaction temperature is in the range of 557–700 ◦C. When the
temperature is higher than 600 ◦C, the amount of carbon deposition will increase rapidly.
However, with the increase in reaction temperature, the disproportionation reaction of
carbon monoxide will be inhibited, and methane cracking will become the main reaction
of the carbon deposition [11,20,21]. However, a high reaction temperature often leads to
both the sintering of the active metal and carbon deposition on the catalyst. Sometimes, the
fibrous carbon formed during the reaction process has a high mechanical strength, which
will damage the catalyst and lead to rapid deactivation of the catalyst [18,19,22].

Adding O2 to CRM system can remove the carbon deposition formed to promote the
regeneration of the catalyst, and the heat released from the reaction can also accelerate the
decomposition of the methane. For periodic operation, the addition of oxygen (CO2/O2
ratio of 7/3) during the regeneration process at 750 ◦C significantly improved the stability
and activity of the catalyst. During the stability experiment, the catalytic performance of
the Ni/SiO2·MgO catalyst for CRM in the presence of O2 increased with the increase in O2
content and reaction temperature [23]. In addition, the introduction of another auxiliary
means, such as light and plasma treatment, can break the energy barrier of the reaction
and improve the conversion rate of the reactants. Some researchers used Au as the plasma
promoter for the first time to improve the reforming performance of noble metal-based
catalysts. The results showed that visible light irradiation could significantly improve
the reforming activity of the Rh-Au/SBA-15 catalyst. The maximum CO2 conversion rate
under light conditions is 1.7 times higher than that under dark conditions. The test at
400 ◦C showed that the CO2 conversion rate under light conditions was 2.4 times higher
than that under dark conditions. Kinetic measurement showed that the activation energy
was reduced by 30% under light conditions [24].
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3. Kinetics of CO2-CH4 Reforming (Reaction Mechanism)

With the development of research technology at the micro-level, the perspective of the
theoretical research has gradually shifted from thermodynamics to kinetics. The view on
the adsorption and dissociation of reactants and products provides an ideal explanation for
the kinetics of the CRM reaction.

Presently, the focus of the research on CO2-CH4 reforming has two aspects. On the
one hand, it is necessary to find new catalysts and additives to improve the catalyst activity
and carbon deposition resistance. On the other hand, it is necessary to study the reaction
mechanism in detail by the kinetic method, with the aim of deeply understanding the
reforming reaction and designing a new catalyst according to the mechanism. Kinetic study
is one of the best methods to reveal the intrinsic activity of the used catalyst. Due to the high
activity and low price of Ni in CO2-CH4 reforming, the study of Ni kinetics has attracted
more and more attention. Most studies have focused on exploring the rate-determining step
in the CO2-CH4 reforming process. Discussing the rate-determining step of the reaction
can lead to further understanding of the catalytic reaction mechanism and the design and
improvement of the catalyst and reaction conditions. It was found that the kinetic process
of CO2-CH4 reforming mainly includes the adsorption and dissociation of the reactants,
CH4 and CO2, as well as the formation and desorption of the products, H2 and CO. In
order to correctly understand the kinetics and reaction mechanism of the reaction, we
should understand the adsorption, desorption, and reaction properties of the reactants and
products on the catalyst.

CRM reaction is a complex process. The mechanism of CRM varies greatly according
to the difficulty in forming reaction intermediates in different catalyst systems and reaction
conditions [25]. Many studies have shown that the key step of CRM is the adsorption and
dissociation of CH4 on the catalyst surface.

The reaction mechanism of CO2-CH4 reforming is closely related to the type and
composition of the catalyst. At present, there is no uniform conclusion on the reaction
mechanism of CO2-CH4 dioxide reforming. Many researchers have explored the mecha-
nisms of different catalysts.

Bodrov et al. [26] first proposed the CO2-CH4 reforming reaction principle on a Ni-
based catalyst, including the following basic steps:

CH4+*→ CH2* + H2, (6)

CO2+*←→ CO + O*, (7)

O* + H2 ←→ H2O+*, (8)

CH2* + H2O←→ CO* + 2H2, (9)

CO*←→ CO+*, (10)

In the above formula, “*” represents the active site, (6) represents an irreversible slow
reaction, and the other steps are reversible reactions.

Later, Hansen et al. [27] improved the above mechanism and proposed that the
dissociation of CH4 on Ni/MgO can be divided into two steps:

CH4+*→CH3* + H*, (11)

CH3* + (3 − x)*→CHx* + (3 − x)H*, (12)

Osaki et al. [28] analyzed the surface pulse reaction rate of a Ni/MgO catalyst and
found that the adsorption and dissociation of CH4 can directly generate gaseous H2, namely

CH4+*→CHx* + (4 − x)/2H2*, (13)

It was experimentally concluded that the dissociation of CH4 was the rate-determining
step of the CO2-CH4 reforming reaction.
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For Ni and Pt-based catalysts, Bradford et al. [29] believed that CH4 first dissociated
into CHx* and H2, while CO2 dissociated under the action of H* to form CO* and OH*;
then, CHx* reacted with OH* to form CHxO*, and finally, CHxO* decomposed into CO
and H2.

Wei et al. [30] studied the kinetics of the CO2-CH4 reaction on a Ni/MgO catalyst by
using carbon dioxide and methane isotopes. They observed an obvious isotope effect of
CH4 dissociation and speculated that CH4 dissociation was the rate-determining step of
the reforming reaction. In the field of theoretical research, Wang et al. [31] used the DFT
(density functional theory) method to study the principle of the CO2-CH4 reaction on the
surface of perfect Ni(111). The calculation results showed that the principle of CO2-CH4
reforming is:

1. CO2 decomposes to generate O and CO, while CH4 gradually cleaves H on the surface
to generate CH and H2;

2. CH is oxidized to obtain CHO;
3. The main product CO is obtained by the dissociation reaction of CHO;
4. H2 and CO are desorbed from Ni(111) to form free H2 and CO.

Although the activation mechanisms of different catalytic systems are quite different,
the existing research results show that the dehydrogenation cracking of CH4 on the metal
surface is a common and critical process. That is, CH4 is decomposed into surface CHx
(x = 1–3) and H (CH4→CH3→CH2→CH). On the other hand, the adsorption and activation
mechanism of CO2 is very important for the decarbonization process, because it not only
generates the key product CO, but also provides a surface oxygen species for CH4 reforming,
which is the core intermediate for the elimination of carbon deposition. CO2 activation
consists of two steps: the first step is CO2 chemical adsorption and the formation of an
anionic CO2

δ- precursor on the surface [32,33]; in the second step, the CO2
δ- precursor is

dissociated into surface adsorbed CO and O species. Therefore, CO2 is the only source of
the oxygen atom in the reaction gas and is the supplier of active oxygen species on the
catalyst surface [34–38]. In addition, the activation path of CO2 varies with the acidity
and alkalinity of the support, which has a certain effect on the anti-carbon deposition
performance of a Ni-based catalyst. Generally, at the interface between the active metal
and the support, the acidic support can promote the dissociation of CH4, but the stronger
the acidity, the easier it is to produce carbon deposition [39].

It is known that increasing the adsorbed oxygen species over the catalyst surface is
really effective in promoting the catalytic activity and restraining the side reaction (RWGS).
Simultaneously, the adsorbed oxygen species are effective in suppressing/removing the
deposited carbon, thereby alleviating catalyst deactivation [40].

The higher CO2 activity enhanced the oxidation rate of the surface carbon generated
from the side reactions, thereby resulting in a higher reforming rate and in the inhibition of
the coke formation, especially the detrimental graphitic encapsulating carbon on an active
nickel surface [41].

Based on the combined results of catalytic testing and characterization, Ni/Ce0.9Eu0.1
O1.95-HT can accelerate the rate of CO2 activation and promote the conversion of CH4 into
CO instead of into coke deposition, leading to a relatively good performance for the DRM
reaction [42].

Burghaus [43] clarified the correlation between CO2 adsorption kinetics and the surface
structure characteristics of various metals and oxides, including metals (Cu, Cr), metal
oxides (ZnO, TiO2, CaO), model catalysts (Cu/ZnO, Zn/Cu), and nano-catalysts. The
binding energy of CO2 and metal oxides is generally greater than that of metals. When
CO2 chemisorption occurs on CaO, the C atom combines with the O site of CaO, and the
surface carbonate formed is very stable. Its decomposition and desorption temperature is
as high as 1100 K.

Pan et al. [44] used DFT calculation and found that the adsorption and activation of a
3D transition metal dimer (M2/γ-Al2O3, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) supported
by γ-Al2O3 were consistent with the experimental results reported in many of the studies.



Catalysts 2023, 13, 647 7 of 25

CO2 adsorbed on M2/γ-Al2O3, a negatively charged species is formed, forming a metal
dimer; γ-Al2O3 supports could provide electrons to the adsorbed CO2 to activate it, and
the most favorable adsorption position was at the interface between the metal dimer and
the support; so, the highly dispersed metal particles showed good activity. In addition, the
hydroxyl group on the surface of the carrier reduces the amount of charge transferred from
the metal dimer to the CO2 and weakened the chemical adsorption of CO2.

The addition of La2O3 to the Ni/γ-Al2O3 catalyst could inhibit the carbon deposition
in CO2-CH4 reforming. Some researchers have found that in the CO2-CH4 reaction, La2O3
interacts with CO2 on the Ni/La2O3 catalyst to generate La2O2CO3 [45], and La2O2CO3
decomposes CO and provides oxygen species, and the oxygen species can react with
carbon species accumulated after the dissociation of CH4 on Ni grains to generate CO, thus
achieving the effect of inhibiting carbon deposition.

4. Carbon Deposition and Elimination on Ni-Based Catalyst

The Ni-based catalyst is widely used in industrial processes because of its high activity,
good stability, and low cost, but the biggest problem is that the catalysts are easily inacti-
vated. There are three main ways that deactivation occurs: carbon deposition, sintering,
and poisoning. Among them, the most important factor causing catalyst inactivation in
the carbon-related reaction process was carbon deposition. Hence, the reaction mech-
anism of carbon deposition and the inhibition of carbon deposition need to be further
studied. The several existing inhibition methods can be divided into two types: one in-
volves the resistance of carbon deposition from the perspective of catalyst optimization,
and the other involves the elimination of carbon deposition from the perspective of process
condition matching.

4.1. Formation and Type of Carbon Deposition

The deactivation of the Ni-based catalyst is mainly due to carbon deposition on the
catalyst surface. The raw materials for the CO2-CH4 reforming reaction are all carbon-
containing gases. Methane cracking (CH4 = C + 2H2) and carbon monoxide disproportion-
ation (2CO = C + CO2) will inevitably form carbon on the catalyst surface [11].

According to existing studies, the types of carbon deposition can be divided into amor-
phous carbon, polymerized carbon, carbon nanotubes, graphitized carbon, and filamentous
carbon [46]. Amorphous carbon is composed of carbon atoms adsorbed on the metal active
center; these atoms have high reactivity and can be removed by an oxidation reaction
(C + O2 = CO2) at about 200 ◦C. Polymerized carbon composed of partially hydrogenated
carbon-carbon chains has low reactivity, but it is still a kind of carbon species that can be
oxidized and eliminated under mild conditions or eliminated under appropriate process
conditions (such as excessive CO2). Graphitized carbon is a ring structure composed
of six carbon atoms and needs higher a reaction temperature to be oxidized and elimi-
nated. It belongs to inert carbon deposition. Filamentous carbon and carbon nanotubes
can block the pores of the catalyst and gradually reduce its activity until it is completely
deactivated [7,47,48].

Mo et al. [49] studied the effect of reaction time on carbon deposition on a Ni-Al2O3
catalyst. Figure 2 shows the TPH spectra of samples after a reforming reaction at different
times. According to the report [50], 200–350 ◦C is the first type of hydrogenation peak,
which belongs to the amorphous α type of carbon species, which is the active intermediate
of the decarbonization reaction (CO2 + C = 2CO) and is also the desired type of carbon
deposition for a carbon-related reaction. It is easy for this type of carbon to be converted
into a slightly less active carbon at a high-temperature β type of carbon species; 350–500 ◦C
is the second type of hydrogenation peak, which belongs to the β1 type carbon species,
which do not form a strong interaction with the carrier and are easy to deposit in the catalyst
pore, or they enter the catalyst lattice to form carbon nanotubes or filamentous carbon; they
have decarbonization reaction activity at higher temperatures but easily become inert when
aggregated for a long time at high-temperature γ carbon species; 500–700 ◦C is the third
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type of hydrogenation peak, belonging to the γ type of carbon species, such as graphite
carbon, whose activity is lower than α carbon and β carbon and is an important reason
for the irreversible deactivation of the catalyst due to carbon deposition. The literature
also showed that [51], after the CRM reaction occurred on the surface of the Ni-CaO-ZrO2
catalyst for 1 h, the temperature-programmed hydrogenation reaction characterization
(TPH) found that the coking hydrogenation peak at about 800 ◦C was attributable to β2
types of carbon species, namely the fourth type of hydrogenation peak. It can be seen from
Figure 2 that in the process of the CO2-CH4 reforming reaction on the Ni-Al2O3 catalyst,
the surface hydrogenation peaks of the carbon species generated are all at 200–500 ◦C, that
is, the amorphous carbon Cα and filamentous carbon Cβ1 type exists [52,53]. However,
no obvious hydrogenation peak was found at about 600 and 800 ◦C. Therefore, it can be
considered that in the range of 10 h, the CO2-CH4 reforming reaction almost did not form
the Cγ and Cβ2 types of carbon species.
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According to the degree of difficulty of carbon elimination under the conditions of
the reforming reaction, the above carbon deposition can be classified as active carbon
deposition (amorphous carbon), transitional carbon deposition (polymeric carbon, carbon
nanotubes, and filamentous carbon), and inactive carbon deposition (graphitized carbon).

Mo et al. [49] observed the carbon deposition on the catalyst surface at different
reaction times and found that the fibrous carbon deposition began to accumulate after 2 h
of reaction, and after 5 h, it was observed that there were many fibrous or rod-shaped
morphologies with larger diameters. With the extension of reaction time, the amount of
fibrous carbon deposition increased significantly, while the diameter of the carbon fibers
decreased significantly, which is probably because of the occurrence of a carbon elimination
reaction (C + CO2 = 2CO) in CO2-CH4 reforming (Figure 3). The results also showed that
each sample had two hydrogenation peaks, one low-temperature hydrogenation peak
and one high-temperature hydrogenation peak, corresponding to two types of carbon
deposition species [49]. With the increase in reaction temperature, the high-temperature
hydrogenation peak of the carbon deposition moves to a high temperature. The reaction
temperature increased from 650 ◦C to 850 ◦C, and the peak temperature of the high-
temperature hydrogenation peak increased from 425 ◦C to 455 ◦C, which may be due to the
fact that filamentous carbon is easily converted into graphite carbon at high temperatures,
and the hydrogenation reaction needs to be carried out at a higher temperature [54].
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Figure 4 showed the morphological characteristics of carbon on the catalyst surface
after the reforming reaction. It can be seen from the figure that a large amount of filamentous
carbon is formed on the catalyst surface and is even covering the catalyst surface in a large
range. It can be speculated that if the carbon deposition continues, it will completely cover
the catalyst surface and cause catalyst deactivation [46].

Catalysts 2023, 13, x  10 of 25 
 

 

 

Figure 4. SEM of CO2-CH4 reforming reaction after 20 h [46]. 

4.2. Resistance and Elimination of Carbon Deposition 

In CO2-CH4 reforming, the carbon deposition rate usually depends on its formation 

rate and elimination rate. When the elimination rate of carbon deposition is higher than 

the formation, the carbon deposition can be inhibited [55]. According to the cause of car-

bon deposition in the CO2-CH4 reaction, the carbon deposition can be suppressed by two 

aspects: catalyst modification and process conditions optimization. 

In the process of CO2-CH4 reforming, carbon deposition mainly comes from methane 

cracking and carbon monoxide disproportionation. The dehydrogenation of CH4 on the 

metal surface generates carbon species CHx (x = 0–3, CH4→C + 2H2), which do not react 

with the surface oxygen species generated by the timely adsorption and dissociation of 

CO2 to generate carbon species of CO (C + CO2→2CO), and the carbon species may accu-

mulate on the metal surface, causing carbon deposition. As the carbon dioxide content in 

the reactant gas increases, the adsorption rate of methane and its subsequent dissociation 

rate (i.e., the cracking of methane) decrease. At the same time, the oxidation rate of carbon 

species on the catalyst surface increases. Therefore, the amount of carbon deposited on 

the active site is reduced, which can significantly improve the stability of the Ni-based 

catalyst. In an atmosphere with sufficient CO2, during a long catalytic process, carbon will 

migrate and accumulate in the center of the Ni crystal, forming a hollow fiber type struc-

ture from bottom to top. The process of carbon deposition and carbon elimination on a 

Ni/CeO2 catalyst is shown in Figure 5 [56]. 

Figure 4. SEM of CO2-CH4 reforming reaction after 20 h [46].

4.2. Resistance and Elimination of Carbon Deposition

In CO2-CH4 reforming, the carbon deposition rate usually depends on its formation
rate and elimination rate. When the elimination rate of carbon deposition is higher than the
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formation, the carbon deposition can be inhibited [55]. According to the cause of carbon
deposition in the CO2-CH4 reaction, the carbon deposition can be suppressed by two
aspects: catalyst modification and process conditions optimization.

In the process of CO2-CH4 reforming, carbon deposition mainly comes from methane
cracking and carbon monoxide disproportionation. The dehydrogenation of CH4 on the
metal surface generates carbon species CHx (x = 0–3, CH4→C + 2H2), which do not react
with the surface oxygen species generated by the timely adsorption and dissociation of CO2
to generate carbon species of CO (C + CO2→2CO), and the carbon species may accumulate
on the metal surface, causing carbon deposition. As the carbon dioxide content in the
reactant gas increases, the adsorption rate of methane and its subsequent dissociation rate
(i.e., the cracking of methane) decrease. At the same time, the oxidation rate of carbon
species on the catalyst surface increases. Therefore, the amount of carbon deposited on the
active site is reduced, which can significantly improve the stability of the Ni-based catalyst.
In an atmosphere with sufficient CO2, during a long catalytic process, carbon will migrate
and accumulate in the center of the Ni crystal, forming a hollow fiber type structure from
bottom to top. The process of carbon deposition and carbon elimination on a Ni/CeO2
catalyst is shown in Figure 5 [56].
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Kuijpers [57] found the size sensitivity of CH4 activation in the study of Ni-based
catalysts, that is, CH4 preferentially dissociates on smaller Ni grains. Osaki et al. [28,58]
reported the x value of CHx species on different catalysts: Ni/MgO = 2.7, Ni/ZnO = 2.5,
Ni/Al2O3 = 2.4, Ni/TiO2 = 1.9, Ni/SiO2 = 1.0, and Co/Al2O3 = 0.75. It can be seen that for
the same metal, the x value of basic carrier is higher, that is, the degree of CH4 dissociation
increases with the increase in carrier acidity. On the other hand, the activation of the C-H
bond requires electrons from the surface of the Ni; so, the electronic environment around
the Ni is also extremely important [59]. For example, the strong metal-support interaction
will significantly affect the activity of Ni to dissociate CH4 [60,61].

Horiuchi et al. [7] believe that alkaline metal oxides can enhance the adsorption
capacity of CO2 and generate more active oxygen atoms (Oad); Oad can effectively prevent
the adsorption of CHx,ad on the active center of Ni metal through the reaction of CHx,ad
+ Oad→CO + H2, thus avoiding the surface carbon deposition caused by the cracking of
CHx,ad. Therefore, adding additives such as alkali or alkaline oxide can enhance the basicity
of the carrier surface and the ability to absorb CO2, change the electronic density of the
metal active center, effectively improve the catalytic activity of the catalyst, and inhibit the
carbon deposition on the catalyst surface [62].
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4.2.1. Resistance of Carbon Deposition from the Perspective of Catalyst
Effect of Ni Grain Size on the Deposition of Carbon

Studies have shown that high dispersion of active metal on the surface of the support
can reduce the agglomeration size and effectively inhibit carbon deposition [11,63,64]. It
has also been shown that only when the size of the active component is larger than a
certain critical size (for example, ≥9 nm) can lead the carbon simple substance to form
nuclei [7]. The small size and high dispersion of the active component can effectively inhibit
the nucleation and growth of carbon whiskers. Therefore, by selecting the appropriate
support, additive, and preparation method, the metal dispersion and particle size can
be adjusted to effectively inhibit the occurrence of carbon deposition and improve the
anti-carbon deposition performance [65]. In addition, the addition of an appropriate
additive can also improve the surface alkalinity of the catalyst, strengthen the adsorption
of CO2, promote the elimination of deposited carbon species, and enhance the anti-carbon
deposition performance of the catalyst.

XU et al. [66] prepared Ni/La2O3/γ-Al2O3 and Ni/La2O3/α-Al2O3 catalysts and
found that when the size of the Ni particles was less than 15 nm, the carbon deposition
was significantly reduced (Figure 6), which made the catalyst have higher catalytic activity
and stability. CRNIVEC et al. [67] found that the catalyst surface with metal active par-
ticles less than 6 nm has excellent resistance to carbon deposition. LIU et al. [68] found
that when nickel particles were less than 5 nm, they had an obvious inhibition effect on
carbon deposition.
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Li et al. [69] analyzed the surface carbon on a Ni/MgO catalyst based on density
functional theory and found that the size of the active component Ni had a great influence
on the anti-carbon deposition performance of the catalyst. The three different sizes of
active metals, Ni4, Ni8, and Ni12 were loaded on the surface of MgO, showing significant
differences in catalytic activity and stability. Small size Ni4 can reduce the activation
energy of the CH4 dissociation adsorption, the CH dissociation, and the Coxidation, thus
improving the CO2-CH4 reforming performance.

In their study, Mo et al. [70,71] found that after the reduction in the Ni-based catalyst
based on NiAl2O4 spinel, the size of the Ni crystal was small and could effectively prevent
the high-temperature sintering of the active component. By increasing the calcination
temperature, the proportion of NiAl2O4 spinel (the active component precursor) in the
catalyst was increased, and the size of the active component was effectively reduced; the
stability of the catalyst was improved, and the amount of carbon deposited on the catalyst
was obviously reduced. It was also found that there were two Ni precursors, crystalline
NiO (calcinated at lower temperature (≤600 ◦C) and spinel NiAl2O4 (calcinated at higher
temperature (≥700 ◦C), indicating that the calcination temperature significantly affected the
interaction force between the metal and the support. The higher the calcination temperature,
the stronger the force, and the more the spinel phase Ni species that formed. This type of
Ni species gave a small size of active component after reduction, which could obtain higher
CO2 and CH4 conversion and H2 selectivity [72].
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Inhibition of Carbon Deposition from the Stability of Ni Component

In general, researchers add some additives to the Ni-based catalyst to improve the
dispersion and stability of the nickel, promoting the reforming reaction and inhibiting the
formation of carbon deposition, which is a research hotspot in this reaction. The additives
commonly used are mainly divided into two categories. The first type of additive is alkaline
oxides, including MgO, CaO, K2O, etc. [73,74]. It was found that the addition of alkaline
oxides to a Ni-based catalyst can promote dispersion of the Ni and inhibit carbon deposition.
On the other hand, the alkaline medium can improve the adsorption performance of CO2
(weak acid gas). Some researchers [74] believed that the addition of alkali metals can inhibit
carbon deposition and improve the activity and stability of the catalyst. Mo et al. [75]
studied the effect of CaO on the structure, reforming performance, and carbon deposition
of the Ni-Al2O3 catalyst. The results showed that the activity of Ni-Ca-4 was higher, with
the conversion rate of CH4 and CO2 of 52.0% and 96.7%, respectively. The amount of
carbon deposited on the catalyst was lower, and the type of the carbon was attributed to an
amorphous one, presenting a good anti-carbon deposition performance.

Another kind of additive is rare earth oxides [73], such as CeO2 and La2O3, which
can achieve both high activity and stability for CO2-CH4 reforming. By adding rare earth
oxide, the crystal phase, pore structure, and mechanical strength of the catalyst could
be significantly changed, thereby improving the activity, stability, and selectivity of the
catalyst. For example, the addition of La2O3 to the Ni/γ-Al2O3 catalyst could inhibit the
carbon deposition in CO2-CH4 reforming. Some researchers found that in the CO2-CH4
reaction, La2O3 interacts with CO2 on the Ni/La2O3 catalyst to generate La2O2CO3 [52];
La2O2CO3 decomposes CO and provides oxygen species, and the oxygen species can react
with the carbon species accumulated after the dissociation of CH4 on Ni grains to generate
CO, thus achieving the effect of inhibiting carbon deposition. Other additives, such as metal
Cr [76] and mixed oxide CeO2-ZrO2 [77,78], can also improve the activity and stability of
the catalyst.

Mo et al. [70] prepared a series of La2O3-NiO-Al2O3 catalysts with different La loading
to improve the performance of the Ni-based catalyst for CO2-CH4 reforming. The results
showed that the precursor of the active component mainly exists in the form of NiAl2O4
spinel. The “confinement effect” of La2O3 on Ni grains can inhibit the sintering of the
active component, prevent carbon deposition, and improve the reforming performance. Mo
et al. [79] also prepared a Ni-Al2O3 catalyst with Ca, Co, and Ce as additives by the com-
bustion method. The results showed that the activity order of the catalysts was followed by
Co-Ni-Al2O3>Ca-Ni-Al2O3>Ni-Al2O3>Ce-Ni-Al2O3. Carbon deposition analysis showed
that Ca-Ni-Al2O3 presented poor carbon deposition resistance, and a certain amount of
graphitic carbon was generated on the catalyst. The dry reforming performance of Ni
catalysts supported by different supports is shown in Table 1
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Table 1. Catalytic performance of Ni-based catalysts with different supports.

Active
Component Support

Mass Fraction of
Active Component

/%

Temperature
/◦C

Time
/h

SV
/(mL·g−1·h−1)

CH4 Conversion Rate
/%

CO2 Conversion Rate
/%

Carbon Deposition
/% Reference

LaNiO3 SBA-15 10 700 60 36,000 78 73 4.47 [80]
LaNiO3 MCM-41 10 700 60 36,000 75 71 4.83 [80]
LaNiO3 SiO2 10 700 60 36,000 68 64 5.67 [80]

Ni MgO 20 750 2.3 168,000 46.13→34.3 51.4→37.6 2.648 [81]
Ni Al2O3-T 10 700 5 24,000 80 90 —— [82]
Ni Al2O3-S 10 700 5 24,000 68 79 —— [82]
Ni Al2O3 10 700 5 24,000 72 75 —— [82]
Ni γ-Al2O3-S 10 700 5 48,000 56.0→52.2 —— —— [83]
Ni γ-Al2O3-P 10 700 5 48,000 52.2→39.3 —— —— [83]

Co-Ni CeO2 —— 600 10 12,000 77 80 —— [84]
Ni MgO-ZrO2 10 700 60 16,000 84.7 86.5 20 [85]
Ni ZrO2-RC-100 5 700 7 42,000 67.4→46.5 68.4→58.2 66.3 [86]
Ni ZrO2-ELTN 5 700 7 42,000 42.3→31.9 52.3→43.9 25.2 [86]
Ni ZrO2-Z-3215 5 700 7 42,000 62.2→45.3 69.5→58.4 38.3 [86]
Ni ZrO2(MK) 5 700 7 42,000 51.2→36.3 56.7→46.4 46.9 [86]
Ni ZrO2-O2 10 750 10 24,000 78→64 86→73 —— [87]
Ni ZrO2 5 750 36 24,000 83→78 —— —— [87]
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Application of High-Activity Bimetallic Catalysts

The introduction of a second metal to obtain a bimetallic Ni-based catalyst is also
considered to be an effective and practical strategy to improve the performance of the CRM
catalyst. The synergistic effect between Ni and the second metal can significantly improve
the activity and carbon deposition resistance of the Ni-based catalyst [17,88–91].

In order to discuss the synergistic effect and the basic principle for improving the
performance of the used catalyst, the researchers prepared a series of bimetallic Ni-based
CRM catalysts. The results showed that Ni-Pt [92], Ni-Co [93], and Ni-Cu [94] showed better
activity and carbon deposition resistance. In general, bimetallic Ni-based CRM catalysts
include Ni-noble metals (Pt, Ru, etc.) and Ni-transition metals (Co, Fe, and Cu) [95,96].
Ni-noble metal bimetallic catalysts have three advantages: the promotion of reduction,
surface modification, and surface reconstruction. Noble metals usually contribute to the
reduction in NiO crystal, thereby increasing the number of active sites [97–100]. In terms of
surface modification, the surface properties of Ni can be changed by adding a trace noble
metal. In addition, the surface reconstruction of the bimetallic particles can be caused by
temperature or adsorbate [101,102]. GARCIÁ-DIÉGUEZG et al. [103] prepared a Ni-Pt
bimetallic catalyst for a CRM reaction. Compared with the Ni catalyst, the Ni-Pt bimetallic
catalyst formed a Ni-Pt alloy with higher activity and lower carbon deposition. Although
only a small amount of precious metals was added to the Ni-based catalyst, the production
cost of the catalyst still increased. Therefore, some researchers doped transition metals such
as Co, Fe, and Cu into a Ni-based catalyst to construct a CRM bimetallic catalyst to reduce
the industrial production cost [104]. Co, Fe, and Cu have a strong synergistic effect in the
bimetallic system. Of course, the specific effects of the three metals are different [105–109].
Some researchers discussed the effect of Ni-Co, Ni-Fe, and Ni-Cu bimetallic catalysts. The
introduction of the second active component, Co or Cu, into the Ni-based catalyst helped
to improve the catalytic activity and carbon deposition resistance [110].

The Ni-Co bimetallic catalyst shows a stronger synergistic effect [111–113]. Addition-
ally, the Ni/Co ratio, which can adjust the surface composition of Ni-Co clusters, plays a
crucial role in the Ni-Co bimetallic system [114–117]. Generally, a small amount of Co can
optimize the adjustment process, while excessive Co will cause the catalyst to be oxidized.
The promotive effect of Co is mainly due to its strong affinity for oxygen species, enhancing
the ability to eliminate carbon deposition on the catalyst [111,118,119]. The Ni-Co/Al2O3
bimetallic catalyst showed high thermal stability at 800 ◦C and effectively inhibited the
side reaction of RWGS [120]. Turap et al. [84] prepared a Ni-Co/CeO2 bimetallic catalyst
for CRM reaction and found that the strong oxygen affinity of Co and the strong oxygen
storage capacity of CeO2 were helpful in eliminating carbon deposition. As the Co/Ni
ratio was up to 0.8, the catalyst presented better activity and stability. Li et al. [121] studied
the catalytic performance of a bimetallic Ni-Co/Al2O3 catalyst for CRM and found that
the addition of metal Co can form a Ni-Co alloy, increasing the activation energy of CH4
dissociation, thus inhibiting the CH4 cracking activity. At the same time, the addition of
Co could improve the oxygen affinity of the catalyst and remove carbon deposition. Liang
et al. [122] used a one-pot method to synthesize an attapulgite-derived MFI (ADM) zeolite-
coated Ni-Co alloy. The results showed that the Ni-Co alloy existed stably in the CRM
process, which was conducive to the formation of electron-rich Ni metal and significantly
improved the fracture ability of the C-H bond. At the same time, ADM not only firmly
anchors metal sites through pore structure or layered system, but also provides rich CO2
adsorption/activation centers, realizing high CRM reaction activity and improving the
anti-carbon deposition performance.

Cu can partly replace Ni to improve catalyst activity and carbon deposition resis-
tance [110]. Song et al. [123] constructed a Ni-Cu bimetallic catalyst. The catalyst with a
0.25–0.50 Cu/Ni ratio showed good activity, stability, and carbon deposition resistance,
while the catalyst with higher and lower Cu/Ni ratios would be deactivated due to serious
carbon deposition. The excellent performance of the optimized Ni-Cu/Mg(Al)O catalyst
was related to the synergistic effect between Ni and Cu. On the one hand, the alloying of
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Ni and Cu inhibited the deep dissociation of methane, and the carbon species obtained
were more easily gasified (carbon eliminated). On the other hand, Cu provided active sites
for the dissociation of CO2, leading to the formation of active oxygen species. The alloying
of Ni and Cu reduced the decomposition rate of CH4, promoted the dissociation of CO2,
and effectively inhibited carbon deposition. Other studies showed that [124], during the
CRM reaction, the addition of Cu had a significant effect on the activity and anti-carbon
deposition performance of the Ni/CeO2 catalyst, and the formation of a Ni-O-Ce solid
solution generated more oxygen vacancies, improving catalytic activity.

Fe has always played a certain role in promoting the CRM reaction. Both Fe and
Ni are iron elements with similar element properties, and the two metals can be alloyed
in a certain proportion to make a catalyst with good catalytic performance [93,125]. The
research from Kim et al. [126] showed that the catalysts supported solely with Ni or Fe
presented the problems of fast deactivation and a low conversion rate, respectively, while
the bimetallic Ni-Fe catalyst showed good activity and stability in the CRM reaction. By
further analysis, it was found that the promotion of Fe in a Ni-Fe alloy was due to the
cracking of CH4 on the active metal Ni to produce H2 and carbon. A part of Fe reacts with
CO2 to generate FeO, which falls off from the alloy. Additionally, the carbon can react with
FeO and be oxidized to generate CO. Then, FeO is reduced to Fe, which is the original Ni-Fe
alloy. This decarburization reaction cycle is conducive to the reducing of the surface carbon
on the catalyst. The anti-carbon deposition performance of different bimetallic catalysts is
shown in Table 2.

Table 2. Carbon deposition resistance of bimetallic catalysts in DRM.

Catalysts SV
/(mL·g−1·h−1) Feed Ratio Temperature

/K

CH4 Conversion
Rate
/%

CO2 Conversion
Rate
/%

Carbon
Deposition

/%

Ru-Ni/Al2O3 [127] 60,000 1023 94.00 97.00 0.32
Co-Ni/CeO2 [84] 30,000 CH4:CO2 = 1:1 1073 80.10 82.20 10.00
NiFe/Al2O3 [128] 12,000 CH4:CO2 = 1:1 823 26.60 37.80 2.30
NiCu/Al2O3 [129] 18,000 CH4:CO2:He = 1:1:8 923 65.00 64.34 6.40
Ni-Co/Al2O3 [130] 54,000 CH4:CO2:N2 = 2:2:1 1023 96.10 92.20 1.00
NiPt/Al2O3 [100] CH4:CO2:Ar = 45:45:10 1023 86.00 87.00 7.00

Selection of Support

The support is a very important part of a catalyst. In a CO2-CH4 reforming reaction,
the commonly used supports are Al2O3, MgO, CeO2, TiO2, SiO2, etc. Although the support
itself has no activity in the reaction, it can change the overall performance of the catalyst.
The physical and chemical properties of the support, such as surface morphology, pore
structure, interaction with active component, and the resulting differences due to the
support, such as surface–interface structure, surface composition, grain size, and dispersion
of the active component, can affect the existence form of the active component precursor and
the catalyst activity, selectivity, stability, and carbon deposition resistance. Many studies
have pointed out that strong interaction between the support and the active component is
conducive to improving the dispersion and sintering resistance of the active metal, resulting
in a high carbon resistance performance.

The stronger the interaction between the support and the metal, the less likely the
catalyst will be reduced. If it can be reduced under certain conditions, then the smaller
the metal particles, the better the dispersion. The excessive surface acidity of the support
leads to catalyst deactivation through methane decomposition. Similarly, excessive surface
basicity leads to catalyst deactivation through the Boudouard reaction as well as through
the formation of metal oxides [39]. Hao et al. [131] reported that a close combination
of Ni and carrier caused by a strong metal-support interaction promoted the transfer of
transition species at the interface and the transfer of electrons, leading to the transformation
of non-inert carbon species in the reaction process and avoiding the forming of inert carbon
deposition. At the same time, strong metal-support interaction can effectively inhibit the
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sintering and growth of Ni particles under the reaction conditions and can have a certain
stabilizing effect on Ni particles, thereby improving the performance of the catalyst. Liu
et al. [60] found through their research that Ni/CeO2 was very active in the CRM reaction
and that strong metal-support interaction enhanced the dissociation reaction activity of Ni
to CH4 and inhibited the formation of carbon deposition. Ruckenstein et al. [132] prepared a
Ni/TiO2 catalyst and found that there was a strong interaction between Ni and TiO2, which
led to the reduction in the free energy of the system. TiOx can promote the elimination of
carbon to a certain extent, but TiOx molecules migrate on the surface during the reduction
process, covering the active sites of Ni. A large amount of filamentous carbon was formed
on Ni supported on CeO2 and on CeO2 doped with iso-valent Zr, while a negligible amount
was formed on Ni supported on CeO2 doped with aliovalent Sm or La (Figure 7). The ceria
dopants can change the interaction of Ni with the support [133].
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The pore structure of the support has a great influence on the performance of the
catalyst and has a limited domain effect on the active component. It has been found
that micropores (<2nm) are not conducive to the dispersion of metal particles; mesopores
(2–50 nm) can make the catalyst have a large specific surface area; macropores (>50nm)
can promote the diffusion of reactant and product molecule, make gas molecules fully
contact the catalyst, and increase the number of exposed Ni active sites [134]. Due to
the limitation of the mesoporous structure of the support, Ni particles exist in the pores
on the catalyst as much as possible, with high dispersion, which is conducive to strong
metal-support interaction, thus reducing the formation of carbon deposition [135]. The
catalyst with multistage pore structure has higher carbon capacity and a lower carbon
deposition deactivation rate due to the addition of different levels of pores [134,136]. Du
et al. [137] reported a CRM catalyst of HT-NiMgAl with a multistage pore structure. The
multistage pore structure of this catalyst effectively increased the specific surface area of
the catalyst, improving the dispersion of Ni particles; it could effectively inhibit carbon
deposition due to its role in limiting the region of the active component.

After the reduction in the catalyst, the Ni atoms are easily sintered at high temperature,
which leads to the reduction in the dispersion of Ni atoms on the surface and the increase
in the concentration difference between the bulk Ni atoms and the surface Ni atoms so that
the Ni atoms dissolved in the support will migrate to the surface under the promotion of
the concentration gradient, supplementing the dispersion of the surface Ni atoms. Studies
showed that the Co/MgO catalyst provides a strong Lewis alkaline environment due to the
formation of solid solution CoMgOx, which effectively stabilizes the Co nanoparticles on
the surface of the support. Due to the alternating polar nanolayer structure of O2- and Mg2+

and the existence of a large number of O2- Lewis alkaline sites on the surface of MgO(111),
the anti-sintering ability and anti-carbon deposition performance of the catalyst have been
improved [138,139]. In addition, the support has a Lewis base, which can increase the
alkalinity of the catalyst, promote the adsorption and dissociation of CO2, and eliminate
carbon deposition in the reaction. At the same time, the alkalinity of the support can inhibit
the growth of Ni metal particles at high temperatures, thus improving the activity, stability,
and carbon deposition resistance of the catalyst [140]. Jafarbegloo et al. [141] prepared a
NiO-MgO catalyst and found that the strong Lewis base of MgO absorbed a large amount
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of carbon dioxide, improved the conversion rate of carbon dioxide, and eliminated carbon
deposition on the catalyst surface.

Li et al. [142] prepared an iron-rich biomass-derived carbon for the CO2-CH4 reforming
and found that it had higher activity than non-iron-rich carbon. Before 800 ◦C, the order
of the iron-rich carbon promoting the reforming reaction was followed by Fe-C2 (10% Fe
content) > Fe-C3 (20% Fe content) > Fe-C1 (5% Fe content). After 800 ◦C, Fe-C2 can still
achieve the maximum CH4 conversion rate. In addition, the catalytic activity of Fe-C2 to
CH4 at 800 ◦C was better than that of other catalysts at higher temperature. By further
measuring the carbon catalyst used, it was found that the weights of iron-rich carbon
and non-iron-rich carbon increased by 0.2% and 0.9%, respectively. Therefore, it can be
proved that the carbon deposition on the carbon catalyst is less, which effectively eliminates
the carbon deposition. After the test, the iron-rich carbon had less carbon deposition,
mainly in the form of filamentous carbon, which was more easily removed by carbon
removal reaction.

Most biomass carbons are alkaline, and their ash contains a large amount of alkali
metals (K, Na) and alkaline earth metals (Ca, Mg), which can promote the formation of
alkaline sites, facilitate the adsorption and dissociation of CO2, and inhibit the formation
of carbon deposition. It has been reported that alkali/alkaline earth metals are one of the
main reasons for biomass carbon to promote CO2-CH4 reforming [142]. Zhang et al. [143]
studied the role of alkali/alkaline earth metals in tar reforming. The results showed that
alkali/alkaline earth metals promoted the interaction between the active metal Ni and
the carrier and inhibited the sintering of Ni. Alkali/alkaline earth metals cause more
oxygen to be adsorbed on the surface of the catalyst, which has strong oxidizability. It
can react with reaction intermediates or C, avoid the deposition of C on the catalyst, and
inhibit carbon deposition [142–144]. San et al. [145] studied the role of alkali metal K and
speculated that K can promote C gasification reaction and cover some active sites to inhibit
CH4 decomposition and reduce carbon deposition, but the coverage of active sites will
also have a certain negative impact on the reforming reaction. Wu et al. [146] used CaO as
the carrier to theoretically calculate that the presence of CaO adsorbed more CO2 to the
participate in the CO2-CH4 reforming and that CO2 dissociated at the interface between Ni
and CaO; in addition, the oxygen species produced by dissociation and carbon deposition
on the surface of the catalyst generated CO, which extended the service life of the catalyst.

Application of Confined Catalyst

A confined catalyst can effectively confine the active center on the catalyst in different
ways, which mainly include lattice limit, pore limit, core-shell limit, surface space limit,
and multiple limits.

Lattice confinement can effectively anchor precious metal or non-precious metal on
the regularly arranged spatial skeleton and can improve the dispersion of active centers.
Ruitenbeek et al. [147] used a catalyst composed of a single iron atom in the lattice confined
region; it had high activity and selectivity in the reaction and almost no carbon deposition.
The surface confined catalyst had a high specific surface area, highly ordered pore structure,
and narrow pore size distribution. Wang et al. [148] used dendritic mesoporous SiO2 (DMS)
as a carrier to prepare an alkali metal oxide modified low-temperature carbon deposition-
resistant Ni-based catalyst and applied it to a reforming reaction, which showed excellent
low-temperature carbon deposition resistance.

Kong et al. [149] prepared microporous molecular sieve S-1 with rich pores and high
specific surface area, and effectively embedded the active component Ni in the pores and
applied it to CO2-CH4 reforming. The results showed that the catalyst had excellent activity
and stability at 650 ◦C and 0.5 MPa for 100 h. The thermogravimetric test of the catalyst
after reaction did not find weight loss and indicated that the S-1-encapsulated Ni-based
catalyst had excellent carbon deposition resistance. The main reason was that the catalyst
channel effectively restricted the aggregation of Ni particles, which made the Ni disperse
uniformly and reduced the size of the Ni.
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Core-shell catalysts mainly include two types: one is the close contact type; the other
is the eggshell type (the active component is separated from the shell). Zhang et al. [150]
wrapped the perovskite LaNiO3 nano-cube in the mesoporous silica shell to form a new
core-shell structure catalyst, which was used in the CO2-CH4 reforming and showed
excellent carbon deposition resistance. Compared with the eggshell catalyst, the core-shell
catalyst had a contact interface between the core and shell, which resulted in enhanced
interaction, inhibition of the movement of the active center, and reduction in the particle
size. Liu et al. [151] designed a high-performance In-Ni@SiO2 close-contact nanocore-shell
catalyst. The In-Ni@SiO2 catalyst had higher activity compared to the Ni@SiO2 catalyst.
CO2 and CH4 reacted at 800 ◦C for 430 h and still maintained 90% conversion. After
reaction, compared with the other supported catalyst, they had less carbon deposition,
better stability, and anti-carbon deposition performance.

Multiple restriction can limit the active center, reduce its exposure, and improve carbon
deposition resistance on the catalyst. Wang et al. [152] prepared a Ni@La2O3/SiO2 catalyst,
and the results showed that an amorphous La2O3 layer was coated on the SiO2, while
small Ni nanoparticles were encapsulated in the La2O3 layer. As Ni nanoparticles were
encapsulated in the La2O3 amorphous layer, it could effectively inhibit the formation of
carbon deposition in CO2-CH4 reforming.

4.2.2. Eliminate Carbon Deposition from Process Condition Matching

The conversion rate of carbon dioxide and methane varies with the ratio of reaction
gas, space velocity, reactor size, and catalyst dosage.

Selection of Operating Conditions (Temperature, Pressure, etc.)

Nematollahi et al. [153] conducted the same thermodynamic simulation under differ-
ent pressures and found that the conversion rate of CH4 and CO2 and the amount ratio
of the H2/CO substances decreased significantly with the increase in operating pressure.
This is due to the fact that the CRM reforming is a reaction with an increase in volume.
The lower the pressure, the better the reaction. The high-pressure environment inhibits
the conversion of the reactants. Some researchers conducted thermodynamic simulation
on the influence of temperature, CH4/CO2 ratio, reaction pressure, and other oxidants
on the formation of carbon deposition and proposed that high conversion and less car-
bon deposition could be obtained by operating at a high temperature, low pressure, and
high CH4/CO2 ratio above 850 ◦C [17,154,155]. Bao et al. [156] prepared a NiCeMgAl
double-porous (mesoporous–mesoporous) catalyst. When the space velocity was lower
than 96,000 h−1, the larger mesopores provides a fast transport channel for the reactants
and product molecules. At a higher space velocity (such as 120,000 h−1), the conversion
rate was reduced because the reactants could not fully diffuse to the active center in the
catalyst. The thermogravimetric analysis results showed that with the (Ni15CeMgAl) the
total weight loss of the dual porous catalyst after reaction was 16.8%, of which amorphous
carbon accounted for 2.5%, carbon nanotubes accounted for 9%, graphite-like carbon ac-
counted for 1%, and the others comprised the desorption of adsorbed small molecules. It
was further found that carbon nanotubes could act as a carrier to continue the reaction and
prolong the service life of the catalyst.

Adjustment and Matching of Reaction Gases

Carbon species deposited on the catalyst surface can usually be eliminated by the
oxidation of CO2 through the carbon elimination reaction (CO2 + C→2CO). Therefore, the
total amount of carbon deposition on the catalyst depends on the balance between methane
cracking, carbon monoxide disproportionation, and the decarburization reaction [63], which
can be considered from the two aspects of the inhibition of the carbon deposition reaction
and the promotion of the decarburization reaction to improve the anti-carbon deposition
performance of the catalyst. Of course, increasing the proportion of CO2 can inhibit the
formation of carbon deposition but increasing the proportion of CO2 will promote the
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occurrence of side reactions and lead to increased separation costs in the later period.
Therefore, the determination of the CO2/CH4 ratio should be combined with various
factors. Mo et al. [49] found that with the increase in the CO2/CH4 ratio, the amount of
carbon deposition on the catalyst surface gradually decreased, and the area and intensity of
the high-temperature hydrogenation peak gradually weakened, indicating that low activity
β carbon was significantly reduced due to the increase in the proportion of CO2. The
results also showed that the addition of CO2 played an important role in preventing the
transformation from active carbon to inactive carbon.

Adding steam or oxygen to the reaction for mixed reforming can also reduce carbon
deposition on the catalyst. Li et al. [157] prepared a Ni/CeO2-ZrO2-Al2O3 catalyst, carried
out a CO2-CH4 reforming reaction with and without steam, and measured the amount of
carbon deposition. The results showed that the addition of steam to the reaction gas could
significantly reduce the carbon deposition, improving the stability of the catalytic reaction.
O’Connor et al. [158] found that the Ni/Al2O3 catalyst had high activity at 550–800 ◦C
under the conditions of CO2 reforming and the partial oxidation of methane. With the
increase in the O2 addition, almost no surface carbon deposition was found, but the activity
of the catalyst decreased with time.

LI et al. [159] conducted a study employing the action of microwave-irradiated bio-
logical semi-coke; the experimental study of CO2/steam-combined CH4 reforming was
carried out. The characteristics of the combined reforming reaction were examined, and the
effects of the combined reforming reaction on the quality of the syngas, the loss of biochar,
the surface characteristics, and the functional groups were discussed. The results showed
that the combined reforming reaction could promote the conversion of the reaction gas,
causing the the average value of the volume ratio of H2/CO in the syngas to be within 90,
the min reaction time to rise to 0.923, and the H2/CO gas volume ratio to be closer to 1.

5. Conclusions and Prospect

CRM reforming not only promotes the utilization of CH4 and CO2 but also plays an
important role in mitigating the greenhouse effect and reducing carbon emissions. It is
an effective means of achieving carbon peaking and carbon neutralization and has good
industrial value and application prospects. The key to the stable operation of the reaction
is the construction of the catalyst, and the easy sintering of the active component and
carbon deposition on the catalyst in the reaction is the core problem that needs to be solved
urgently. As the preferred catalyst for this reaction, the Ni-based catalyst also faces the
above problems. This paper briefly introduces the thermodynamics, kinetics, and reaction
mechanism of the CRM reaction and focuses on the research progress of carbon deposition
and carbon elimination on the used catalysts. The following prospects are put forward in
terms of inhibiting carbon deposition in order to improve the activity and stability of the
CRM catalyst:

1. More advanced characterization methods should be used to explore the reaction
mechanism and carbon deposition mechanism of the CRM reaction on a Ni-based
catalyst, and the reaction mechanism and anti-carbon deposition mechanism of the
Ni-based catalyst should be further clarified.

2. By introducing different types of additives to regulate the number of alkaline sites
on the surface of the catalyst, the adsorption performance of CO2 may be enhanced,
and more adsorbed oxygen may be generated; the gasification process of the carbon
deposition may also be promoted.

3. By DFT or other calculations, the formation and elimination mechanism of carbon
deposition can be discussed in depth, and the catalyst design scheme can correspond-
ingly be optimized to inhibit carbon deposition.
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