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Abstract: Due to the importance of SCN-containing heteroarenes, developing novel and green
synthetic protocols for the synthesis of SCN-containing compounds has drawn much attention over
the last decades. We reported here an electrochemical oxidative cyclization of ortho-vinyl aniline to
access various SCN-containing benzoxazines. Mild conditions, an extra catalyst-free and oxidant-free
system, and good tolerance for air highlight the application potential of this method.

Keywords: electrochemistry; cascade cyclization; thiocyanation; difunctionalization

1. Introduction

Due to the unique physiological activities of heteroarenes, heterocyclic compounds are
widely present in natural products, pharmaceuticals, pesticides, and materials [1–4]. Among
these valuable heterocycles, benzoxazine has also served as a key skeleton in polymers, con-
tributing to their outstanding characteristics [5,6]. Therefore, the construction and modification
of benzoxazines have drawn much attention from synthetic chemists and material scientists.

To date, the flourishing development of radical chemistry has provided attractive proto-
cols to access heterocycles via cascade routes [7–13]. Utilizing radicals as functional reagents, the
complicated heterocycles could be effectively obtained under mild conditions. In this context,
the radical-induced cyclization cascade process is a considerable path for synthesizing benzox-
azines (Scheme 1A). Recently, several breakthroughs have been achieved in such processes. In
2015, Ji and co-workers developed a Cu-catalyzed system for cascade cyclization using nitrile
as radical precursors [14]. Two years later, Zhao reported a similar catalytic condition in which
alkane was used as radical precursors [15]. Additionally, the radical cascade cyclization was
also tolerated with S-centered radicals. In 2019, Li developed an Ag-induced reaction to obtain
benzoxazines in which sulfonyl radicals served as a key [16]. Recently, Liang discovered a
Mn(OAc)3-promoted sulfonation-cyclization cascade via the SO3

– radical [17]. Without the
assistance of transition-metal, Guo developed a K2S2O8-induced strategy to achieve radical
thiocyanooxygenation [18]. Despite of these advances, the heat condition, the use of transition-
metal and/or sacrificial oxidant promote the development of alternative methods. Photoredox
chemistry provide a mild route to radical cyclization [19,20]. Xiao and colleagues developed
an oxytrifluoromethylation of N-allylamides to access CF3-containing oxazolines and ben-
zoxazines with Ru-photocatalysts [21]. In 2016, Fu and co-authors reported a photo-induced
oxydifluoromethylation of olefinic amides via a difluoromethyl radical method [22]. Three years
later, Sun used bromomethyl cyanides as radical precursors to synthesize 4-cyanoethylated
benzoxazines by photo-induction [23]. However, the using of expensive catalysts may limit
their further application. Overall, developing a practical and green method with bulk radical
precursors is in demand for cascade cyclization to synthesize benzoxazines.
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cluding trifluoromethyl thioether, alkyl thioethers, and tetrazole [29]. Since the wide ap-
plication of ammonium thiocyanates [30–32], constructing thiocyanato-containing ben-
zoxazines via an S-centered radical process is a considerable route [33]. Recently, we have 
developed an efficient electrochemical method to oxidize the olefinic amides to construct 
the derivatives of benzoxazines and iminoisobenzofurans [34,35]. Based on these ad-
vances, we reported here an electrochemical thiocyanation/cyclization cascade to con-
struct benzoxazine under mild conditions (Scheme 1B). The merit of this method was 
demonstrated by its extra catalyst-free and oxidant-free conditions. While we were pre-
paring this paper, Huang and coworkers reported a similar work that an electrochemical 
oxythiocyanation of ortho-olefinic amides enables the synthesis of thiocyanated benzoxa-
zines [36]. 

2. Results 
2.1. Condition Optimization 

Initial condition optimization was examined with N-(2-(prop-1-en-2-yl)phenyl)ben-
zamide 1a as radical acceptor and ammonium thiocyanate 2 as radical precursor (Table 
1). After a series of efforts, the optimized condition was established with a carbon rod as 
the anode, Pt as the cathode, 0.5 M CH3CN as the solvent, and 1 equivalent H2SO4 as the 
acid. Under a 15 mA electrolysis with 3 h, the desired product 3a was obtained in 91% 
isolated yield (entry 1). Without H2SO4, this organic transformation was realized in a low 
yield (entry 2). When trifluoroacetic acid (TFA) was used as the acid, the desired transfor-
mation was achieved smoothly in 74% GC yield (entry 3). Using H2O or 2,2,2-trifluoroeth-
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Scheme 1. Recent advances in cyclization cascade to access benzoxazines. (A) Advances in radical
cascade cyclization. (B) Outline of this work: electrochemical thiocyanation/cyclization cascade to
access thiocyanato-containing benzoxazines.

Over the last decade, electrochemical organic synthesis has been regarded as a sustain-
able technology in which electrons serve as redox reagents [24–27]. Especially, benefiting
from diverse derivatizations of the thiocyanic group, electrochemical alkene thiocyanation
has undergone vigorous development [28]. For example, the aryl thiocyanate generated
by electrochemistry can be effectively transformed to other valuable chemicals, including
trifluoromethyl thioether, alkyl thioethers, and tetrazole [29]. Since the wide application
of ammonium thiocyanates [30–32], constructing thiocyanato-containing benzoxazines
via an S-centered radical process is a considerable route [33]. Recently, we have devel-
oped an efficient electrochemical method to oxidize the olefinic amides to construct the
derivatives of benzoxazines and iminoisobenzofurans [34,35]. Based on these advances,
we reported here an electrochemical thiocyanation/cyclization cascade to construct ben-
zoxazine under mild conditions (Scheme 1B). The merit of this method was demonstrated
by its extra catalyst-free and oxidant-free conditions. While we were preparing this paper,
Huang and coworkers reported a similar work that an electrochemical oxythiocyanation of
ortho-olefinic amides enables the synthesis of thiocyanated benzoxazines [36].

2. Results
2.1. Condition Optimization

Initial condition optimization was examined with N-(2-(prop-1-en-2-yl)phenyl)benzamide
1a as radical acceptor and ammonium thiocyanate 2 as radical precursor (Table 1). After a
series of efforts, the optimized condition was established with a carbon rod as the anode, Pt
as the cathode, 0.5 M CH3CN as the solvent, and 1 equivalent H2SO4 as the acid. Under
a 15 mA electrolysis with 3 h, the desired product 3a was obtained in 91% isolated yield
(entry 1). Without H2SO4, this organic transformation was realized in a low yield (entry 2).
When trifluoroacetic acid (TFA) was used as the acid, the desired transformation was achieved
smoothly in 74% GC yield (entry 3). Using H2O or 2,2,2-trifluoroethanol (TFE) instead of
H2SO4, reaction yields obviously decreased (entries 4–5). Moreover, this electrochemical
transformation performed worse with other solvents, such as THF, DMSO, and EtOH (entries
6–8). The yields of 3a were slightly decreased with SS (stainless steel) or Ni plates as the cathode
(entries 9–10). Control experiments provide the electrolysis essential for this electrochemical
cascade cyclization (entry 11).
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Entry Variation from the Standard Conditions Yield (%) a

1 None 93 (91 b)
2 Without H2SO4 28
3 TFA instead of H2SO4 74
4 H2O instead of H2SO4 28
5 TFE instead of H2SO4 10
6 THF instead of MeCN 10
7 DMSO instead of MeCN 28
8 EtOH instead of MeCN 36
9 SS plate instead of Pt plate 70
10 Ni plate instead of Pt plate 59
11 Without electrolysis N.d.

Reaction conditions: carbon rod anode, platinum plate cathode, constant current = 15 mA, 1a (0.3 mmol), 2
(0.9 mmol), H2SO4 (0.3 mmol), CH3CN (6.0 mL), air, 3 h. a Yields of 3a were determined by gas chromatography
(GC) analysis by using biphenyl as the internal standard. b Isolated yield. N.d. = not detected.

2.2. Scope of Substrates

Next, the scope of the substrates was examined (Scheme 2). Various olefinic benzamide
derivatives were compatible radical acceptors for achieving the desired transformation.
Both electron-donating and electron-withdrawing substitutions on the para-position of
the phenyl group were well tolerated, producing corresponding products in moderate
to high yields (3a to 3g). It is notable that substrates with a redox-sensitive functional
groups smoothly completed this electrochemical reaction, for example, N-dimethylamino
3h. Moreover, ortho-, meta-, and even multi-substituted aryl amides were successfully
transformed to corresponding products in moderate yields (3i to 3l). In addition, other
(hetero)aryl -modified substrates also performed well in this system (3n to 3p). Additionally,
this electrochemical cascade cyclization was suitable for stilbene to offer the product in
moderate yield (3m). Furthermore, a set of alkyl amides realized the desired transformation,
forming target products in moderate yields (3q to 3w).

2.3. Mechanistic Studies

Subsequently, radical inhibition experiments were carried out to determine the
existence of radical processes (Scheme 3A). With the addition of 2 equivalents 2,2,6,6-
tetramethyl-1-piperidinyloxy, the desired transformation was totally inhibited, support-
ing a radical process involved in this transformation. Moreover, the thiocyanate radical
was trapped by 1,1-diphenylethylene under standard conditions. Then, cyclic voltam-
metry experiments were carried out to investigate the mechanism (Scheme 3B and
Supplementary Materials). Without the acid, the oxidation peak of 1a is not observed.
In contrast, the oxidation peak potential of 1a is detected at 2.27 V in the existence of
acid. Notably, the oxidation peak potential of 2 appears at 1.48 V. With the addition
of acid, two oxidation peaks of 2 are observed, promoting the secondary oxidation of
thiocyanate which is similar to the halogen property {SCN−-(SCN)3

−-(SCN)2
−}. These

CV studies disclosed ammonium thiocyanate was preferentially oxidized over 1a.
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Based on the above results, a plausible mechanism was proposed (Scheme 4). In
the anode, the thiocyanate anion was oxidized to form thiocyanate radical, which could
react with 1a to offer C-centered radical intermediate I. Then, I transformed to carbon
cation II via SET in the anode. Next, the final product 3a was generated, followed by an
intramolecular nucleophilic attack and deprotonation. In the cathode, two protons were
reduced to furnish hydrogen.
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3. Materials and Methods

General procedure for the preparation of substrates: A round-bottom flask was
charged with methyltriphenylphosphonium bromide (5.36 g, 15.00 mmol) and dry THF
(20.00 mL) under N2 atmosphere, followed by the addition of potassiumtert-butoxide
(1.68 g, 15.00 mmol) at 0 ◦C. The reaction mixture was allowed to warm to ambient
temperature and stir for 0.50 h. Next, 2-aminoacetophenone (1–1) (1.35 g, 10.00 mmol)
was added. The reaction mixture was stirred at room temperature overnight. After
completion, the reaction was quenched with saturated NaHCO3 solution and extracted
with EtOAc (100.00 mL). The organic phase was dried over anhydrous MgSO4 and
concentrated under reduced pressure. The reaction mixture was purified via column
chromatography to give 1–2. To a solution of 1–2 (0.99 g, 7.40 mmol) and Et3N (1.53 g,
11.10 mmol) in CH2Cl2 (15.00 mL) was added the solution of benzoylchloride (1.00 mL,
8.90 mmol) in dichloromethane (5.00 mL) dropwise at 0 ◦C. After completion, the
reaction mixture was purified via column chromatography to give 1a. Analogues 1a–1w
were synthesized by using similar procedures.

General procedure for electrochemical thiocyanation/cyclization cascade: In an oven-
dried, undivided three-necked bottle (10 mL) equipped with a stir bar, N-(2-(prop-1-en-2-
yl)phenyl)benzamide 1a (0.30 mmol), ammonium thiocyanate 2 (0.90 mmol) was added to
the mixture of acetonitrile (6 mL) and sulfuric acid (0.30 mmol). The bottle was equipped
with a graphite rod (φ 6 mm, about 15 mm immersion depth in solution) as the anode and
platinum plate (15 mm × 15 mm × 0.3 mm) as the cathode. The reaction mixture was stirred
and electrolyzed at a constant current of 15 mA under air atmosphere at room temperature
for 3 h. After completion of the reaction, as indicated by TLC and GC-MS, the pure product
was obtained by flash column chromatography on silica gel.

CV experiments: Cyclic voltammetry experiments were performed in a three-electrode
cell connected to a Schlenk line under air at room temperature. The working electrode was
a glassy carbon electrode, the counter electrode was a platinum wire. The reference was
an Ag/AgCl electrode submerged in saturated aqueous KCl solution, and 6 mL of CH3CN
containing 0.03 M H2SO4 was poured into the electrochemical cell in all experiments. The
scan rate was 0.1 V/s, ranging from 0 V to 2.5 V. The peak potentials vs. Ag/AgCl were used.

Characterization of products: 4-methyl-2-phenyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine
(3a). White solid was obtained in 91% isolated yield, 79.9 mg, 0.3 mmol scale, Rf = 0.35
(petroleum ether/ethyl acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 8.16 (dd, J = 8.0, 1.7 Hz,
2H), 7.58–7.42 (m, 3H), 7.41–7.33 (m, 2H), 7.29–7.22 (m, 1H), 7.14 (d, J = 7.6 Hz, 1H), 3.58 (d,
J = 13.8 Hz, 1H), 3.45 (d, J = 13.9 Hz, 1H), 1.91 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 155.3,
138.6, 131.8, 131.8, 129.9, 128.3, 127.9, 127.2, 126.3, 125.9, 122.8, 112.2, 78.9, 44.4, 25.8. HRMS (ESI)
m/z: [M + H]+ Calcd for C17H15N2OS+ 295.0899; found 295.09245.
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4-methyl-4-(thiocyanatomethyl)-2-(p-tolyl)-4H-benzo[d][1,3]oxazine (3b). Colorless oil was ob-
tained in 74% isolated yield, 68.1 mg, 0.3 mmol scale, Rf = 0.35 (petroleum ether/ethyl
acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 8.11–7.96 (m, 2H), 7.40–7.30 (m, 2H), 7.28–7.19
(m, 3H), 7.11 (dd, J = 7.4, 1.2 Hz, 1H), 3.54 (d, J = 13.8 Hz, 1H), 3.41 (d, J = 13.8 Hz, 1H), 2.40
(s, 3H), 1.88 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 155.4, 142.3, 138.7, 129.8, 129.0, 128.9,
127.9, 126.9, 126.2, 125.7, 122.8, 112.2, 78.6, 44.2, 25.6, 21.5. HRMS (ESI) m/z: [M + H]+ Calcd
for C18H17N2OS+ 309.1056; found 309.1062.
2-(4-methoxyphenyl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3c). Colorless
oil was obtained in 86% isolated yield, 83.8 mg, 0.3 mmol scale, Rf = 0.32 (petroleum
ether/ethyl acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 8.14–8.07 (m, 2H), 7.38–7.29 (m,
2H), 7.21 (td, J = 7.3, 1.7 Hz, 1H), 7.10 (dd, J = 7.6, 1.4 Hz, 1H), 6.97–6.91 (m, 2H), 3.84 (s, 3H),
3.55 (d, J = 13.8 Hz, 1H), 3.40 (d, J = 13.8 Hz, 1H), 1.87 (s, 3H). 13C NMR (101 MHz, CDCl3)
δ 162.5, 155.1, 138.8, 129.72, 129.69, 126.6, 126.1, 125.4, 124.0, 122.7, 113.6, 112.2, 78.5, 55.3,
44.1, 25.4. HRMS (ESI) m/z: [M + H]+ Calcd for C18H17N2O2S+ 325.1005; found 325.1013.
2-(4-(tert-butyl)phenyl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3d). White
solid was obtained in 76% isolated yield, 79.8 mg, 0.5 mmol scale, Rf = 0.39 (petroleum
ether/ethyl acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 8.12–8.05 (m, 2H), 7.53–7.45 (m,
2H), 7.41–7.33 (m, 2H), 7.29–7.21 (m, 1H), 7.14 (dd, J = 7.6, 1.3 Hz, 1H), 3.59 (d, J = 13.7 Hz,
1H), 3.45 (d, J = 13.8 Hz, 1H), 1.91 (s, 3H), 1.35 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 155.4,
138.8, 129.9, 129.0, 127.8, 127.0, 126.4, 125.83, 125.79, 125.4, 122.8, 112.3, 78.7, 44.3, 34.9, 31.1,
25.7. HRMS (ESI) m/z: [M + H]+ Calcd for C21H23N2OS+ 351.1525; found 351.1547.
2-(4-fluorophenyl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3e). White solid
was obtained in 79% isolated yield, 73.7 mg, 0.3 mmol scale, Rf = 0.30 (petroleum ether/ethyl
acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 8.22–8.12 (m, 2H), 7.40–7.30 (m, 2H), 7.24 (td,
J = 7.4, 1.7 Hz, 1H), 7.17–7.08 (m, 3H), 3.56 (d, J = 13.9 Hz, 1H), 3.42 (d, J = 14.0 Hz, 1H), 1.89
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 166.2, 163.7, 154.3, 138.4, 130.2, 130.1, 129.9, 127.89,
127.86, 127.2, 126.1, 125.8, 122.8, 115.5, 115.3, 112.1, 79.0, 44.3, 25.8. 19F NMR (376 MHz,
CDCl3) δ −107.52. HRMS (ESI) m/z: [M + H]+ Calcd for C17H14FN2OS+ 313.0803;
found 313.0805.
4-(4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazin-2-yl)benzonitrile (3f). White solid
was obtained in 84% isolated yield, 79.7 mg, 0.3 mmol scale, Rf = 0.20 (petroleum ether/ethyl
acetate = 5:1). 1H NMR (400 MHz, CDCl3) δ 8.33–8.23 (m, 2H), 7.77–7.69 (m, 2H), 7.45–7.34
(m, 2H), 7.34–7.25 (m, 1H), 7.14 (dd, J = 7.6, 1.4 Hz, 1H), 3.58 (d, J = 14.1 Hz, 1H), 3.46 (d,
J = 14.1 Hz, 1H), 1.91 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 153.2, 137.8, 135.8, 131.9,
130.0, 128.2, 128.0, 126.2, 126.0, 122.8, 118.3, 114.6, 111.8, 79.6, 44.4, 26.2. HRMS (ESI) m/z:
[M + H]+ Calcd for C18H14FN3OS+ 320.0852; found 320.0863.
4-methyl-4-(thiocyanatomethyl)-2-(4-(trifluoromethyl)phenyl)-4H-benzo[d][1,3]oxazine (3g). White
solid was obtained in 75% isolated yield, 81.3 mg, 0.3 mmol scale, Rf = 0.21 (petroleum
ether/ethyl acetate = 5:1). 1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 8.1 Hz, 2H), 7.71 (d,
J = 8.3 Hz, 2H), 7.43–7.34 (m, 2H), 7.32–7.25 (m, 1H), 7.13 (dd, J = 7.6, 1.3 Hz, 1H), 3.57 (d,
J = 14.0 Hz, 1H), 3.45 (d, J = 14.0 Hz, 1H), 1.91 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 153.8,
138.1, 135.1 (d, J = 1.5 Hz), 133.0 (q, J = 32.7 Hz), 130.0, 128.2, 127.8, 126.1 (d, J = 1.8 Hz), 125.2 (q,
J = 3.8 Hz),125.1, 123.8 (q, J = 273.7 Hz) 122.9, 112.0, 79.4, 44.4, 26.1. 19F NMR (376 MHz, CDCl3)
δ -62.76. HRMS (ESI) m/z: [M + H]+ Calcd for C18H14F3N2OS+ 363.0772; found 363.0773.
4-(4-(isothiocyanatomethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)-N,N-dimethylaniline (3h). White
solid was obtained in 31% isolated yield, 31.3 mg, 0.3 mmol scale, Rf = 0.39 (petroleum
ether/ethyl acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 2.0 Hz, 1H), 8.11 (dd,
J = 8.4, 2.0 Hz, 1H), 7.44–7.33 (m, 2H), 7.28–7.22 (m, 3H), 7.13 (dd, J = 7.4, 1.2 Hz, 1H), 3.58 (d,
J = 13.9 Hz, 1H), 3.45 (d, J = 13.9 Hz, 1H), 2.78 (s, 6H), 1.92 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ 154.2, 153.8, 138.4, 130.0, 129.1, 128.9, 128.0, 127.4, 126.2, 126.0, 122.9, 122.8, 120.6,
112.1, 111.1, 78.8, 44.4, 44.3, 25.9. HRMS (ESI) m/z: [M + H]+ Calcd for C19H20N3OS+ 395.0095;
found 395.1007.
4-methyl-4-(thiocyanatomethyl)-2-(o-tolyl)-4H-benzo[d][1,3]oxazine (3i). Colorless oil was ob-
tained in 77% isolated yield, 70.5 mg, 0.3 mmol scale, Rf = 0.35 (petroleum ether/ethyl
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acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 7.86–7.80 (m, 1H), 7.41–7.30 (m, 3H), 7.30–7.22
(m, 3H), 7.12 (dd, J = 7.7, 1.4 Hz, 1H), 3.60 (d, J = 13.7 Hz, 1H), 3.47 (d, J = 13.7 Hz, 1H), 2.65
(s, 3H), 1.88 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 156.8, 138.4, 138.3, 131.6, 131.5, 130.6,
129.8, 129.5, 127.3, 125.8, 125.7, 125.4, 122.8, 112.0, 79.2, 44.4, 26.4, 21.8. HRMS (ESI) m/z:
[M + H]+ Calcd for C18H17N2OS+ 309.1056; found 309.1071.
2-mesityl-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3j). White solid was ob-
tained in 86% isolated yield, 86.3 mg, 0.3 mmol scale, Rf = 0.36 (petroleum ether/ethyl
acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 7.40–7.33 (m, 1H), 7.31–7.25 (m, 2H), 7.11 (dd,
J = 8.0, 1.4 Hz, 1H), 6.89 (s, 2H), 3.69 (d, J = 13.7 Hz, 1H), 3.48 (d, J = 13.6 Hz, 1H), 2.36 (s,
6H), 2.28 (s, 3H), 1.85 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 157.4, 139.1, 137.8, 135.7, 130.5,
129.9, 128.3, 127.5, 125.9, 124.6, 123.0, 111.9, 79.8, 45.2, 28.4, 21.1, 19.5. HRMS (ESI) m/z:
[M + H]+ Calcd for C20H21N2OS+ 337.1369; found 337.1380.
2-(3-chlorophenyl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3k). White solid
was obtained in 62% isolated yield, 60.7 mg, 0.3 mmol scale, Rf = 0.35 (petroleum ether/ethyl
acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 8.06 (t, J = 1.9 Hz, 1H), 7.99–7.94 (m, 1H),
7.43–7.37 (m, 1H), 7.34–7.24 (m, 3H), 7.22–7.16 (m, 1H), 7.05 (dd, J = 7.6, 1.4 Hz, 1H), 3.48 (d,
J = 13.9 Hz, 1H), 3.36 (d, J = 13.9 Hz, 1H), 1.82 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 153.9,
138.2, 134.4, 133.6, 131.7, 129.9, 129.6, 127.8, 127.6, 126.1, 126.0, 125.8, 122.8, 111.9, 79.3, 44.4,
26.0. HRMS (ESI) m/z: [M + H]+ Calcd for C17H14ClN2OS+ 329.0510; found 329.0519.
2-(2,4-dichlorophenyl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3l). White solid
was obtained in 82% isolated yield, 88.4 mg, 0.3 mmol scale, Rf = 0.29 (petroleum ether/ethyl
acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 2.1 Hz,
1H), 7.31 (ddd, J = 8.5, 7.2, 1.4 Hz, 1H), 7.27–7.19 (m, 3H), 7.04 (dd, J = 7.6, 1.4 Hz, 1H),
3.54 (d, J = 13.9 Hz, 1H), 3.43 (d, J = 13.9 Hz, 1H), 1.82 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ 154.8, 137.9, 137.0, 133.9, 132.2, 130.5, 130.3, 130.0, 128.0, 127.1, 126.0, 125.3, 123.0,
111.9, 80.5, 44.6, 26.8. HRMS (ESI) m/z: [M + H]+ Calcd for C17H13N2Cl2OS+ 363.0120;
found 363.0129.
2,4-diphenyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3m). Colorless oil was obtained in
64% isolated yield, 68.4 mg, 0.3 mmol scale, Rf = 0.27 (petroleum ether/ethyl acetate = 5:1). 1H
NMR (400 MHz, CDCl3) δ 8.30–8.21 (m, 2H), 7.54–7.43 (m, 3H), 7.42–7.37 (m, 2H), 7.36–7.24 (m,
6H), 7.20–7.14 (m, 1H), 4.05–3.88 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 155.4, 140.0, 139.5,
131.8, 131.6, 130.1, 129.0, 128.8, 128.4, 127.9, 126.9, 126.1, 125.6, 124.7, 124.0, 112.1, 82.3, 43.6.
HRMS (ESI) m/z: [M + H]+ Calcd for C22H17N2OS+ 357.1056; found 357.1084.
4-methyl-2-(naphthalen-2-yl)-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3n). Colorless oil was
obtained in 88% isolated yield, 90.3 mg, 0.3 mmol scale, Rf = 0.31 (petroleum ether/ethyl
acetate = 5:1). 1H NMR (400 MHz, CDCl3) δ 8.63 (d, J = 1.7 Hz, 1H), 8.26 (dd, J = 8.7, 1.8 Hz,
1H), 7.98–7.94 (m, 1H), 7.90–7.81 (m, 2H), 7.58–7.47 (m, 2H), 7.42–7.34 (m, 2H), 7.27–7.19 (m,
1H), 7.12–7.07 (m, 1H), 3.55 (d, J = 13.9 Hz, 1H), 3.42 (d, J = 13.9 Hz, 1H), 1.91 (s, 3H). 13C NMR
(101 MHz, CDCl3) δ 155.3, 138.6, 134.9, 132.6, 129.8, 129.04, 129.02, 128.6, 128.0, 127.7, 127.2,
126.5, 126.3, 125.8, 124.3, 122.8, 112.2, 78.9, 44.2, 25.7. HRMS (ESI) m/z: [M + H]+ Calcd for
C21H17N2OS+ 345.1056; found 345.1060.
2-(furan-2-yl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3o). Yellow oil was
obtained in 76% isolated yield, 64.8 mg, 0.3 mmol scale, Rf = 0.22 (petroleum ether/ethyl
acetate = 5:1). 1H NMR (400 MHz, CDCl3) δ 7.62 (dd, J = 1.7, 0.8 Hz, 1H), 7.42–7.33 (m, 2H),
7.27–7.21 (m, 1H), 7.15 (dd, J = 3.5, 0.8 Hz, 1H), 7.14–7.09 (m, 1H), 6.54 (dd, J = 3.5, 1.8 Hz,
1H), 3.58 (d, J = 14.0 Hz, 1H), 3.39 (d, J = 13.9 Hz, 1H), 1.89 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ 148.2, 145.9, 145.7, 137.9, 129.9, 127.2, 126.2, 125.8, 122.8, 115.5, 112.0, 111.9, 78.8,
43.9, 25.5. HRMS (ESI) m/z: [M + H]+ Calcd for C15H13N2O2S+ 285.0692; found 285.0721.
2-(2-chloropyridin-3-yl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3p). White
solid was obtained in 84% isolated yield, 82.9 mg, 0.3 mmol scale, Rf = 0.21 (petroleum
ether/ethyl acetate = 5:1). 1H NMR (400 MHz, CDCl3) δ 8.49 (dd, J = 4.8, 2.0 Hz, 1H), 8.17
(dd, J = 7.6, 2.0 Hz, 1H), 7.45–7.30 (m, 4H), 7.14 (dd, J = 7.9, 1.3 Hz, 1H), 3.65 (d, J = 14.0 Hz,
1H), 3.55 (d, J = 14.0 Hz, 1H), 1.94 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 154.2, 150.8, 149.3,
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140.0, 137.7, 130.0, 128.8, 128.2, 126.0, 125.2, 123.1, 122.2, 111.8, 80.8, 44.7, 27.1. HRMS (ESI)
m/z: [M + H]+ Calcd for C16H13N3ClOS+ 330.0462; found 330.0471.
2,4-dimethyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3q). Colorless oil was obtained in
46% isolated yield, 32.1 mg, 0.3 mmol scale, Rf = 0.32 (petroleum ether/ethyl acetate = 5:1).
1H NMR (400 MHz, CDCl3) δ 7.32 (td, J = 7.6, 1.5 Hz, 1H), 7.25–7.13 (m, 2H), 7.03 (dd,
J = 7.7, 1.4 Hz, 1H), 3.48 (d, J = 13.9 Hz, 1H), 3.27 (d, J = 14.0 Hz, 1H), 2.19 (s, 3H), 1.80 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 159.0, 138.0, 129.8, 127.0, 125.3, 125.0, 122.8, 112.2, 78.7, 45.0,
26.5, 21.4. HRMS (ESI) m/z: [M + H]+ Calcd for C12H13N2OS+ 233.0743; found 233.0743.
2-isopropyl-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3r). Colorless oil was
obtained in 66% isolated yield, 51.5 mg, 0.3 mmol scale, Rf = 0.33 (petroleum ether/ethyl
acetate = 2:1). 1H NMR (400 MHz, CDCl3) δ 7.39–7.34 (td, J = 7.6, 1.5 Hz, 1H), 7.32–7.24 (m,
2H), 7.06 (dd, J = 7.6, 1.5 Hz, 1H), 3.63–3.42 (m, 2H), 1.86 (s, 6H), 1.83 (s, 3H). 13C NMR
(101 MHz, CDCl3) δ 158.8, 137.0, 130.0, 128.2, 126.2, 125.4, 122.9, 111.8, 111.6, 80.6, 55.5, 44.2,
26.7, 26.6. HRMS (ESI) m/z: [M + H]+ Calcd for C14H16N2OS+ 260.1055; found 260.1056.
2-(tert-butyl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3s). Colorless oil was
obtained in 50% isolated yield, 41.2 mg, 0.3 mmol scale, Rf = 0.35 (petroleum ether/ethyl
acetate =10:1). 1H NMR (400 MHz, CDCl3) δ 7.32 (t, J = 7.3 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H),
7.04 (d, J = 8.1 Hz, 1H), 3.53 (d, J = 13.6 Hz, 1H), 3.42 (d, J = 13.7 Hz, 1H), 1.74 (s, 3H), 1.28
(s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.3, 138.3, 129.6, 126.8, 125.6, 125.5, 122.5, 112.3,
78.0, 44.1, 37.2, 27.4, 26.0. HRMS (ESI) m/z: [M + H]+ Calcd for C15H18N2OS+ 275.1212;
found 275.1213.
4-methyl-4-(thiocyanatomethyl)-2-(2,4,4-trimethylpentyl)-4H-benzo[d][1,3]oxazine (3t). Colorless oil
was obtained in 45% isolated yield, 44.6 mg, 0.3 mmol scale, Rf = 0.35 (petroleum ether/ethyl
acetate = 10:1). 1H NMR (400 MHz, CDCl3) δ 7.35–7.29 (m, 1H), 7.23–7.17 (m, 2H), 7.06–7.01
(m, 1H), 3.52 (dd, J = 13.8, 8.3 Hz, 1H), 3.34 (t, J = 14.1 Hz, 1H), 2.52–2.34 (m, 1H), 2.30–2.16 (m,
1H), 2.15–2.06 (m, 1H), 1.79 (d, J = 6.5 Hz, 3H), 1.39–1.28 (m, 1H), 1.20–1.09 (m, 1H), 1.04 (dd,
J = 6.6, 3.4 Hz, 3H), 0.92 (d, J = 4.8 Hz, 9H). 13C NMR (101 MHz, CDCl3) δ 160.8 (d, J = 5.8 Hz),
138.0 (d, J = 5.3 Hz), 129.8 (d, J = 4.0 Hz), 126.8 (d, J = 3.6 Hz), 125.5 (d, J = 6.3 Hz), 125.2, 122.7
(d, J = 10.6 Hz), 112.1 (d, J = 1.8 Hz), 78.4 (d, J = 3.9 Hz), 50.5 (d, J = 25.3 Hz), 44.7 (dd, J = 39.5,
19.6 Hz), 31.0 (d, J = 2.9 Hz), 30.0, 27.5 (d, J = 10.3 Hz), 26.8, 26.5, 22.5 (d, J = 19.5 Hz). HRMS
(ESI) m/z: [M + H]+ Calcd for C19H27N2OS+ 331.1839; found 331.1843.
2-cyclopropyl-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3u). Colorless oil was
obtained in 73% isolated yield, 56.6 mg, 0.3 mmol scale, Rf = 0.22 (petroleum ether/ethyl
acetate = 5:1). 1H NMR (400 MHz, CDCl3) δ 7.33–7.27 (td, J = 7.6, 1.4 Hz, 1H), 7.21–7.12
(m, 2H), 7.02 (dd, J = 7.9, 1.3 Hz, 1H), 3.48 (d, J = 13.8 Hz, 1H), 3.32 (d, J = 13.9 Hz, 1H),
1.80–1.67 (m, 4H), 1.16–1.04 (m, 2H), 0.97–0.85 (m, 2H). 13C NMR (101 MHz, CDCl3) δ
162.0, 138.4, 129.7, 126.3, 125.6, 124.6, 122.6, 112.1, 78.4, 44.2, 25.8, 14.4, 7.4, 6.9. HRMS (ESI)
m/z: [M + H]+ Calcd for C14H15N2OS+ 259.0900; found 259.0906.
2-cyclohexyl-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3v). White solid was
obtained in 51% isolated yield, 45.5 mg by 1H NMR, 0.3 mmol scale, Rf = 0.39 (petroleum
ether/ethyl acetate = 5:1). 1H NMR (400 MHz, CDCl3) δ 7.35–7.29 (m, 1H), 7.23–7.17 (m,
2H), 7.07–7.02 (m, 1H), 3.51 (d, J = 13.7 Hz, 1H), 3.36 (d, J = 13.7 Hz, 1H), 2.42–2.29 (m,
1H), 2.00–1.91 (m, 2H), 1.87–1.78 (m, 2H), 1.76 (s, 3H), 1.74–1.65 (m, 1H), 1.57–1.45 (m, 2H),
1.38–1.19 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 164.3, 138.2, 129.8, 126.8, 125.7, 125.2,
122.7, 112.2, 78.1, 44.5, 43.6, 26.1, 25.7, 25.7, 25.6. HRMS (ESI) m/z: [M + H]+ Calcd for
C17H21N2OS+ 301.1369; found 301.1379.
2-(adamantan-1-yl)-4-methyl-4-(thiocyanatomethyl)-4H-benzo[d][1,3]oxazine (3w). Colorless oil was
obtained in 53% isolated yield, 46.7 mg, 0.3 mmol scale, Rf = 0.44 (petroleum ether/ethyl
acetate = 5:1). 1H NMR (400 MHz, CDCl3) δ 7.34–7.29 (m, 1H), 7.23–7.17 (m, 2H), 7.04 (dd,
J = 7.6, 1.4 Hz, 1H), 3.51 (d, J = 13.6 Hz, 1H), 3.40 (d, J = 13.6 Hz, 1H), 2.11–2.02 (m, 3H), 1.95
(d, J = 2.9 Hz, 6H), 1.74 (d, J = 2.7 Hz, 9H). 13C NMR (101 MHz, CDCl3) δ 165.9, 138.5, 129.6,
126.7, 125.9, 125.5, 122.6, 112.4, 77.8, 44.2, 39.03, 38.98, 36.5, 28.0, 25.9. HRMS (ESI) m/z: [M + H]+
Calcd for C21H25N2OS+ 353.1682; found 3531694.
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4. Conclusions

We have developed an electrochemical method to produce various benzoxazines un-
der extra catalyst-free and oxidant-free conditions. The good functional group tolerance,
excellent performance under air, and scalability demonstrated the application potential
of this method. We believe this method not only provides a synthetic route towards
thiocyanato-containing benzoxazines but also has a potential to inspire other electrochemi-
cal thiocyanations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13030631/s1, Figure S1: cyclic voltammetry experiments;
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